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Abstract: This paper deals with the problem of H∞ detection filter design for discrete-
time systems with multiple time delays, where methods for decoupling the fault effects
from unknown inputs including model uncertainties and external plant disturbances
are not available. Through the appropriate choice of the filter gain, the filter is
convergent if there is no fault in the system, and the effect of disturbances on residual is
minimized in the sense of H∞ norm. The problem of achieving satisfactory sensitivity
of the residual to faults and its solution are formulated. The detection threshold of the
filter is also discussed. Finally, simulation of a numerical example is made to illustrate
the efficiency of the proposed method.
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1. INTRODUCTION

A system designed to provide both sensitivity
to faults and robustness to modelling error or
disturbances is called a robust FDI scheme. One
of the most successful robust fault diagnosis ap-
proaches is the use of disturbance decoupling
principle. This can be done by using unknown
input observer (Seliger and Frank, 1991), by
using structured parity equations (Staroswiecki
and Comtet-Varga, 2001; Gertler and Kunwer,
1993), or by eigenstructure assignment (Patton
and Chen, 1991). But in most cases the effects
of faults and unknown inputs can not be com-
pletely decoupled from each other. (see (Jiang et
al., 1999; Jiang et al., 2001), for example).

In recent years much attention has been focused
on the FDI problem by using H∞ theory in order
to improve unknown input attenuation capability.

Edelmayer et al (Edelmayer et al., 1994) described
an H∞ filtering approach that minimizes the l2-
norm of the disturbance residual component. Qiu
and Gertler (Qiu and Gertler, 1993) considered
robust FDI based on H∞ optimization. Chung
and Speyer (Chung and Speyer, 1998) developed
in detail a related game-theoretic filter. Frank and
Ding (Frank and Ding, 1994) applied H∞ theory
to FDI in the frequency domain. Most recently,
Chen and Patton (Chen and Patton, 2000) con-
sidered standard H∞ filtering formulation of ro-
bust fault detection. However, these papers men-
tioned above only consider the systems without
time delays. Time delay is commonly encountered
in various engineering systems, such as chemical
processes, long transmission lines in pneumatic,
hydraulic and rolling mill systems. More recently,
Liu and Frank (Liu and Frank, 1999) studied the
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problem of H∞ detection filter design for state
delayed linear continuous-time systems.

In this paper, we extend the work in (Liu and
Frank, 1999) to discrete-time systems with multi-
ple time delays, in which the effects of faults and
unknown inputs (including model uncertainties
and external disturbance) cannot be decoupled
from each other. The detection filter gains are
designed so that if there is no fault in the sys-
tem, the filter is convergent. The transfer function
from the unknown input to the residual satisfies
a prescribed H∞ norm upper bound. The design
freedom in filter gain can be used to assure sat-
isfactory sensitivity of the residual to faults. The
detection threshold of the filter is also discussed
and simulation of a numerical example is made to
illustrate the efficiency.

This paper is organized as follows. Section 2 in-
cludes system description, definition of the design
problem and useful lemma. A sufficient condition
under which the H∞ detection filter exists is given
in section 3. Section 4 characterizes the set of the
desired filtering gains. Simulation result of a nu-
merical example is included in Section 5, followed
by some concluding remarks in Section 6.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider the following linear discrete-time system
with multiple time delays described by

x(k + 1) = Ax(k) +
N

∑

i=1

Aix(k − τi) + Bu(k)

+F1f(k) + Dω(k) (1)

y(k) = Cx(k) + F2f(k) (2)

where x(k) ∈ Rn is the system state vector,
u(k) ∈ Rm is the control input, y(k) ∈ Rr

is the measurement vector, k = 0, 1, 2, · · · , and
τi (i = 1, 2, 3, · · ·) are the time-delays. Since this
paper deals with fault detection filter design which
is not affected by control input delays, only state
delays are considered in the model. The matrices
A,B, C,D, F1, F2 and Ai (i = 1, · · · , N) are real
matrices of appropriate dimensions, and C is of
full row rank. The unknown input vector ω(k) ∈
Rd including model uncertainties and external
plant disturbances is a l2 sequence each of which
components has norm less than one. The unknown
fault vector is f(k) ∈ Rq. Many discrete-time
systems can be described by the above model
(Shen and Hsu, 1998).

The filter considered in this paper is written as

x̂(k + 1) = Ãx̂(k) +
N

∑

i=1

Aix̂(k − τi)

+Bu(k) + Ky(k) (3)

where x̂(k) ∈ Rn is the state estimation vector,

Ã
4
= A−KC and K is the filter’s gain matrix to

be designed.

Let the filter error be e(k) = x(k)− x̂(k), then the
error dynamics is described by

e(k + 1) = Ãe(k) +
N

∑

i=1

Aie(k − τi)

+(F1 −KF2)f(k) + Dω(k) (4)

The residual vector ε(k) is defined as

ε(k) = Se(k) (5)

where S is a suitable weighting matrix designed
to assure isolability properties. The disturbance
transfer matrix Hω(z) from ω(k) to ε(k) and fault
transfer matrix Hf (z) from f(k) to ε(k) can be
described as

Hω(z)
4
= S[zIn − Ã−

N
∑

i=1

z−τiAi]−1D (6)

Hf (z)
4
= S[zIn − Ã−

N
∑

i=1

z−τiAi]−1F,

F
4
= F1 −KF2 (7)

Now, we describe the design problem as follows:

H∞ detection filter problem: Given the state
delayed discrete-time system (1) and (2) with the
detection filter (3), determine the filter gain ma-
trix K such that
(i) The filter (3) is convergent for all τi (i =
1, · · · , N) and f(k) = 0; i.e. the filter error dy-
namics is asymptotically stable.
(ii) The H∞ norm of the disturbance transfer
matrix Hω(z) satisfies the constraint

‖ Hω(z) ‖∞≤ γ (8)

where γ is a given positive scalar, and

‖ Hω(z) ‖∞= sup
ω∈l2

‖ ε ‖2
‖ ω ‖2

= sup
θ∈[0,2π]

σmax[Hω(ejθ)].

(iii) The satisfactory sensitivity of the residuals
to the faults can be achieved using the design
freedom of the gains.

Lemma 1: Suppose that xi (i = 1, · · · , n) are
vectors with appropriate dimensions, then for any
symmetric positive definite matrix P > 0, the
following inequality holds

(
n

∑

i=1

xi)T P (
n

∑

i=1

xi) ≤ n(
n

∑

i=1

xT
i Pxi).



Proof : It is a direct consequence of the fact that
function f(x) = xT Px is convex. 2

3. SUFFICIENT CONDITION FOR H∞

DETECTION FILTER

In this section, we develop a Riccati equation
framework that guarantees the filter (3) to be
convergent for all τi (i = 1, · · · , N) when f(k) =
0, and satisfies the disturbance attenuation con-
straint (8).

Theorem 1: If there exist symmetric positive
definite matrices P, Q and scalar ε > 0 such that

Gi
4
= Q−NAT

i PAi > 0, i = 1, · · · , N. (9)

H
4
= γ2Id −DT PD > 0 (10)

P = ÃT PÃ +
N

∑

i=1

ÃT PAiG−1
i AT

i PÃ

+
N

∑

i=1

PAiG−1
i AT

i P + ÃT PDH−1DT PÃ

+ST S + NQ + εIn (11)

hold, then
(a) Filter error system (4) is asymptotically stable
for all τi (i = 1, · · · , N) and f(k) = 0.
(b) The H∞ norm of the disturbance transfer
matrix Hω(z) satisfies constraint (8).

Proof: The Lyapunov function is chosen as

V (e(k)) = eT (k)Pe(k)

+
N

∑

i=1

k−1
∑

l=k−τi

eT (l)Qe(l) (12)

The corresponding Lyapunov difference along the
trajectories e(k) of the error system (4) with
ω(k) = 0 and f(k) = 0 is given by

4V (k) = V (e(k + 1))− V (e(k))

= eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

+
N

∑

i=1

[eT (k)Qe(k)− eT (k − τi)Qe(k − τi)]

= eT (k)[ÃT PÃ]e(k)

+[
N

∑

i=1

Aie(k − τi)]T P [
N

∑

i=1

Aie(k − τi)]

+2eT (k)ÃT P
N

∑

i=1

Aie(k − τi)− eT (k)Pe(k)

+
N

∑

i=1

[eT (k)Qe(k)− eT (k − τi)Qe(k − τi)]

= eT (k)[ÃT PÃ− P + NQ]e(k)

+2eT (k)ÃT P
N

∑

i=1

Aie(k − τi)

+[
N

∑

i=1

Aie(k − τi)]T P [
N

∑

i=1

Aie(k − τi)]

−
N

∑

i=1

eT (k − τi)Qe(k − τi) (13)

According to Lemma 1 and (9), equation (13) can
be rewritten as

4V (k)≤ eT (k)[ÃT PÃ− P + NQ]e(k)

+2eT (k)ÃT P
N

∑

i=1

Aie(k − τi)

−
N

∑

i=1

e(k − τi)Gie(k − τi) (14)

Adding and subtracting

eT (k)[
N

∑

i=1

ÃT PAiG−1
i AT

i PÃ]e(k)

to equation (14) yields

4V (k)≤ eT (k)[ÃT PÃ− P + NQ

+
N

∑

i=1

ÃT PAiG−1
i AT

i PÃ]e(k)

−
N

∑

i=1

[G−1/2
i AT

i PÃe(k)−G1/2
i e(k − τi)]T

×[G−1/2
i AT

i PÃe(k)−G1/2
i e(k − τi)] (15)

At last, considering (11), one can get

4V (k)≤−eT (k)We(k)

−
N

∑

i=1

[G−1/2
i AT

i PÃe(k)−G1/2
i e(k − τi)]T

×[G−1/2
i AT

i PÃe(k)−G1/2
i e(k − τi)] (16)

where

W
4
=

N
∑

i=1

PAiG−1
i AT

i P + ÃT PDH−1DT PÃ

+ST S + εIn (17)

Since W > 0, it follows that 4V (k) < 0 for
x(k) 6= 0 and hence the filter error dynamics
described by (4) is asymptotically stable.

Next, to prove condition (8), one can rewrite
equation (11) as

ST S = ejθPe−jθ − ÃT PÃ

−
N

∑

i=1

ÃT PAiG−1
i AT

i PÃ−
N

∑

i=1

PAiG−1
i AT

i P



−ÃT PDH−1DT PÃ−NQ− εIn (18)

Define z
4
= ejθ, z̄

4
= e−jθ, equation (18) becomes

ST S = [z̄In − Ã−
N

∑

i=1

z̄−τiAi]T

×P [zIn − Ã−
N

∑

i=1

z−τiAi]

−ÃT PÃ−NQ−
N

∑

i=1

ÃT PAiG−1
i AT

i PÃ

−
N

∑

i=1

PAiG−1
i AT

i P − ÃT PDH−1DT PÃ

−εIn − ÃT PÃ + z̄P Ã + zÃT P

+
N

∑

i=1

[z̄PAiz−τi + z̄−τiAT
i Pz

−z−τiÃT PAi − z̄−τiAT
i PÃ]

−(
N

∑

i=1

z̄−τiAT
i )P (

N
∑

i=1

Aiz−τi) (19)

Let L(z)
4
= (zIn−Ã−

∑N
i=1 z−τiAi), then equation

(19) can be rewritten as

ST S = L∗(z)PL(z) + L∗(z)PÃ + ÃT PL(z)

−ÃT PDH−1DT PÃ

−M − U∗(z)U(z)− εIn (20)

where

U(z)
4
=

N
∑

i=1

(zG−1/2
i AT

i P − z−τiG1/2
i )

M
4
=

N
∑

i=1

(2NAT
i PAi + ÃT PAiG−1

i AT
i PÃ)

and (·)∗ stands for complex conjugate transpose.
Substituting (20) into (6) yields

H∗
ω(z)Hω(z) = DT (L−1)∗(z)ST SL−1(z)D

= DT PD + DT PÃL−1(z)D + DT (L−1)∗(z)ÃT PD

−DT (L−1)∗(z)[M + U∗(z)U(z)]L−1(z)D

−DT (L−1)∗(z)ÃT PDH−1DT PÃL−1(z)D

−εDT (L−1)∗(z)L−1(z)D (21)

From (10) and (21), one can obtain

H∗
ω(z)Hω(z)− γ2Id

=−Y ∗(z)Y (z)

−DT (L−1)∗(z)[U∗(z)U(z) + M ]L−1(z)D

−εDT (L−1)∗(z)L−1(z)D ≤ 0 (22)

where

Y (z)
4
= H−1/2DT PÃL−1(z)D −H1/2 (23)

Therefore (8) holds. This completes the proof of
Theorem 1. 2

Remark 1: Although the structure of the pro-
posed filter in equation (3) is standard, the con-
ditions (9)-(11) under which the filter is conver-
gent are novel. As it can be seen in the proof of
Theorem 1, extension of detection filter design for
continuous-time systems to the case of discrete-
time systems is not trivial.

4. CHARACTERIZATION OF THE FILTER
GAIN

First, we derive the sufficient condition for the
existence of an achievable (P, Q, ε), that is, the
set of filter gains K can be found such that the
matrix inequalities (9), (10) and (11) hold.

Theorem 2: For a given H∞ attenuation con-
straint γ, (P, Q, ε) is achievable if (P,Q, ε) satisfy
(9), (10) and the following algebraic matrix in-
equality

R
4
= P + AT4A−NQ− ST S − εIn

−
N

∑

i=1

PAiG−1
i AT

i P ≥ 0 (24)

where

4= P +
N

∑

i=1

PAiG−1
i AT

i P

+PDH−1DT P (25)

Proof: Substituting Ã = A−KC into (11) yields

P = CT KT4KC −AT4KC − CT KT4A

+NQ + ST S + εIn

+
N

∑

i=1

PAiG−1
i AT

i P (26)

where4 is given by (25). Since4 > 0, there exists
41 that is full column rank and 4 = 4T

141.
Equation (26) can be rewritten as

(41KC −41A)T (41KC −41A)

= P + AT4A−NQ

−ST S − εIn −
N

∑

i=1

PAiG−1
i AT

i P (27)

Since matrix C is full row rank, from (27), there
exists a solution K to (11) (i.e. the (P,Q, ε) is
achievable) if (9) and (10) hold and the right-hand



side of (27) is semi positive definite, i.e. (24) holds.
This complete the proof of Theorem 2. 2

Theorem 2 gives the existence condition of an
achievable (P,Q, ε) in terms of matrix inequality.
The following theorem characterizes the algebraic
expression of all filter gains K related to the
achievable (P, Q, ε).

Theorem 3: If (P, Q, ε) is achievable, the set of
filtering gain can be characterized as follows

K = AC† +4†
1XR1C† (28)

where (·)† stands for the pseudo-inverse of a
matrix, R1 is the square root of R (i.e. RT

1 R1 =
R), and X is an arbitrary orthogonal matrix.

Proof: It follows from (27) that

41KC −41A = XR1 (29)

where X and R1 are given by Theorem 3. Since
41 is of full column rank and C is of full row rank,
(28) follows immediately from (29). This complete
the proof of Theorem 3. 2

Remark 2: It can be seen from the above the-
orem that there exists large freedom in the de-
sign process, such as the choice of (P,Q, ε) and
the arbitrary orthogonal matrix X. This design
freedom can be used to reach satisfactory value of
tr[HT

f (ej0)Hf (ej0)], which is the sensitivity of the
residual to faults, as in (Patton and Hou, 1997).
i.e.

tr{[S(KC −A−
N

∑

i=1

z−τiAi)−1F ]T

×[S(KC −A−
N

∑

i=1

z−τiAi)−1F ]} ≥ β2 (30)

where β > γ > 0 is a prescribed scalar.

Remark 3: By substituting (28) into (30), the
H∞ fault detection filter design can be reformu-
lated as a constrained optimization problem

min
X

tr{[S(KC −A−
N

∑

i=1

z−τiAi)−1F ]T

×[S(KC −A−
N

∑

i=1

z−τiAi)−1F ]}

s.t. XT X = I (31)

where K is an explicit function of X, given by
(28). This is a special type of constrained non-
linear optimization. Some effective nonlinear pro-
gramming algorithms can be used to solve this
problem.

Remark 4: If ‖ ω ‖2≤ ω0, and the desired filter
sensitivity against worst-case disturbance ω(k)

could be achieved which means that
‖ Hω(z) ‖∞<<‖ Hf (z) ‖∞, then the detection
threshold of the filter can be given as (Edelmayer
et al., 1994)

Tr = γ ω0 (32)

As a result, fault detection can be carried out as
follows:

‖ ε(k) ‖< Tr, no fault occurs
‖ ε(k) ‖≥ Tr, fault has occurred

}

(33)

From (32), it can be seen that the threshold Tr
is proportional to the performance index γ. Thus
γ can be determined (estimated) based on the
minimization of criteria such as false alarm rate
and missed detection rate.

Remark 5: This paper is an extension of the work
in (Liu and Frank, 1999). The main differences
between the obtained results in this paper and
that in (Liu and Frank, 1999) are in three aspects.
(i) H∞ detection filter design for discrete-time
systems with multiple time delays is investigated
in this paper, which is more complex than the case
of continuous-time systems in (Liu and Frank,
1999). (ii) The detection threshold of the filter is
proposed in this paper, which was not discussed
at all in (Liu and Frank, 1999), the simulation
result of a numerical example will be presented in
next section to illustrate the efficiency. (iii) The
problem of achieving satisfactory sensitivity of the
residual to faults and its solution are explicitly
described in Remarks 1-2 of this paper.

5. AN ILLUSTRATIVE EXAMPLE

Consider a perturbed state delayed linear discrete-
time system described by (1) and (2), where the
parameters are given by

N = 2, τ1 = 0.1, τ2 = 0.2;

A =
[

−2 1
0 0

]

, A1 =
[

0.2 0
0 0.1

]

, A2 =
[

0.1 0
0 0.2

]

;

C =
[

1 0
]

, B =
[

0
1

]

, S =
[

0.5 0
0 0.5

]

, D =
[

0
0.1

]

;

F1 =
[

0
1

]

, F2 =
[

−1
−2

]

.

In this example, the performance index is:

γ = 0.95.

One may choose Q and ε as follows

Q =
[

1 0
0 1

]

, ε = 0.001.

A solution of the positive definite matrix P can be
obtained from the matrices inequalities (9), (10)
and (24):

P =
[

2.83 −0.18
−0.18 2.79

]



By simple calculation, one can get

G1 = G2 =
[

0.7736 0.0072
0.0072 0.9434

]

, H = 0.8742;

4 =
[

3.6597 −0.2525
−0.2525 3.0952

]

,

41 =
[

1.9118 −0.0688
−0.0688 1.7580

]

;

R =
[

14.3884 −7.4327
−7.4327 4.0651

]

,

R1 =
[

3.4473 −1.5826
−1.5826 1.2492

]

.

Therefore the above (P, Q, ε) is achievable accord-
ing to Theorem 2.

Choose the orthogonal matrix as follows

X =
[

−1 0
0 −1

]

.

Substituting the above matrix into (28) yields the
corresponding desired filtering gain matrix

K =
[

0.4132
0.8985

]

.

In the simulation, the sampling period is 0.01s, the
disturbance ω = 0.5 rand, the fault considered is
created as follows

f(t) =
{

0 for 0 ≤ t ≤ 2
0.5 for 2 < t ≤ 6 (34)

Figure 1 shows the response of the detection signal
ε(k) when there is a fault as described by (34) in
the system. It can be seen that fault detection
shows good performance despite the disturbance
ω in the system.

6. CONCLUSION

In this paper, the problem of H∞ detection filter
design for a class of discrete-time systems with
multiple time delays is investigated. Simulation
of a numerical example is made to show the
applicability of the proposed method. Based on
linear matrix inequalities approaches, to derive
convergent conditions of detection filter which can
be solved more efficiently will be investigated in
the future.

7. REFERENCES

Chen, J. and R.J. Patton (2000). Standard H∞

filtering formulation of robust fault detection.
Proc. IFAC Safeprocess. Budapest. pp. 256–
261.

Chung, W.H. and J.L. Speyer (1998). A game
theoretic fault detection filter. IEEE Trans.
Automat. Contr 43, 143–161.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

Tr

time instant, k

Fig. 1. Detection signal | ε(k) |

Edelmayer, A., J. Bokor and L. Keviczky (1994).
An H∞ filtering approach to robust detection
of failure in dynamical systems. Proc. of 33th
IEEE CDC. Lake Buena Vista. pp. 3037–
3039.

Frank, P.M. and X. Ding (1994). Frequency do-
main approach to optimally robust residual
generation and evaluation for model-based
fault diagnosis. Automatica 30, 789–804.

Gertler, J.J. and M.K. Kunwer (1993). Optimal
residual decoupling for robust fault diagnosis.
Proc. of International Conference on Fault
Diagnosis. Toulouse, France. pp. 436–452.

Jiang, B., J.L. Wang and Y.C. Soh (1999). Robust
fault diagnosis for a class of linear systems
with uncertainty. J. of Guidance, Control and
Dynamics, 22, 736–740.

Jiang, B., M. Staroswiecki and V. Cocquempot
(2001). Robust observer based fault diagnosis
for a class of nonlinear systems with uncer-
tainty. Proc. of IEEE CDC. Orlando, USA,.
pp. 161–166.

Liu, J.H. and P.M. Frank (1999). H∞ detec-
tion filter design for state delayed linear sys-
tems. Proc. of IFAC World Congress. Beijing.
pp. 229–233.

Patton, R.J. and J. Chen (1991). Robust fault
detection using eigenstructure assignment:
A tutorial consideration and some new re-
sults. Proc. of the 30th IEEE CDC. England.
pp. 2242–2247.

Patton, R.J. and M. Hou (1997). H∞ estima-
tion and robust fault detection. Proc. of the
ECC’97 (CD-ROM). Brussels, Belgium.

Qiu, Z. and J. Gertler (1993). Robust FDI systems
and H∞ optimization - disturbances and tall
fault case. Proc. of the 32th IEEE CDC. San
Antonio. pp. 1710–1715.

Seliger, R. and P.M. Frank (1991). Fault diag-
nosis by disturbance decoupled nonlinear ob-
servers. Vol. 3. Proc. of IEEE CDC. Brighton.
pp. 2248–2253.

Shen, L.C. and P.L. Hsu (1998). Robust de-
sign of fault isolation observers. Automatica
34, 1421–1429.

Staroswiecki, M. and G. Comtet-Varga (2001).
Analytical redundancy relations for fault de-
tection and isolation in algebraic dynamic
systems. Automatica, 37, 687–699.


