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Abstract: : This paper deals with the comparison between two control strategies for
the optimal operation of Activated Sludge Processes (ASPs). The first approach
describes an industrial control strategy composed of two decentralized Proportional
Integral controllers (PIs) while the second approach is based on a state space model
of the system together with the Disturbance Modeling Principle (Johnson, 1976). It is
shown that if the second approach needs additional sensors than the first one, when
implemented properly, it allows the user to estimate unknown inputs that can be
useful for diagnosis purposes. Simulation results are provided before some
conclusions are drawn. Copyright © 2002 IFAC.
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1.- INTRODUCTION

The Activated Sludge Process is a widely used
system for biological wastewater treatment.
Traditionally, ASP's involve an anoxic followed by an
aerobic zone and a settler from which the major part of
the biomass is recycled to the anoxic bassin. This
prevents washout of the process by decoupling the
Sludge Retention Time (SRT) from the Hydraulic
Retention Time (HRT).

As it is underlined in (Lukasse et al., 1999), the main
challenge in control of the ASP's can be posed in
terms of a disturbance attenuation control problem.
Furthermore, the problem faced is a multivariable
nonlinear control problem of time varying ill defined
systems. A comprehensive view of the problems
involved in these processes is summarized in
(Andrews, 1994).

Among the specific problems to be solved, the
following ones are of first order :
- Attenuation of the bad influence of rain events on

the controlled variables,

- Accounting for the large range of variations of
ASP's internal dynamics,

- Attenuation of the bad influences of the influent
charateristics and flows rates diurnal variations.

The main improvement to be expected is the
minimization of cost operation and management by
controlling the process through its control handles.
In this study, the control inputs are the aeration
power in one of the aerobic tank and the internal
recirculation flow rate. This paper is organized as
follows. In section 2, the benchmark model is recalled.
Then, the PI control strategy is described in section 3.
In section 4, the state space approach is presented.
Then, results are discussed in section 5 before some
conclusions are drawn in section 6.

2.- A BENCHMARK FOR EVALUATING CONTROL
STRATEGIES IN ASPS

2.1.- Description of the benchmark

The COST Action 682 (now being called COST
Action 624) is dedicated to the optimization and to
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the evaluation of the design and the operation of
biological wastewater treatment processes on the
basis of process dynamical models. In this project, a
first benchmark (now being updated within the
framework of COST Action 624) was developed in
order to evaluate control strategies on a common and
independent basis (Pons et al., 1999). This first
benchmark consists of a fully specified model of a
predenitrification type activated sludge plant. The
layout of this activated sludge plant is illustrated in
Figure 1. It consists of two anoxic completely mixed
tank compartments, followed by four completely
mixed aerobic tanks. The first three aerobic tanks are
subject to a constant aeration flow, while the aeration
of the last aerobic compartment is variable. An
internal recycle flow links the last tank to the first
anoxic compartment, which also receives the influent
and the recycled sludge from the settler. The influent
composition and flow rate are fully specified. In this
paper, only the dry weather files are used. The waste

sludge flow rate and recycle sludge flow rate are set
at a fixed value, while the internal recycle flow is
variable and used as one of the two control actions.

The model used in this first version of the benchmark
is the association of the ASM 1 model (Henze et al.,
1987) with the Takacs model (Takacs et al., 1991) for
simulating the settler behavior. The parameter values
and an initialization procedure for the states are
specified. The following measurements are assumed
to be available : a perfect measurement of the oxygen
concentration in the 2nd compartment and a
discontinuous biased measurement of the nitrate
concentration in the 6th compartment, the noise on
this measurement being provided with the benchmark.
The sample period of this measurement is 20 minutes.
The control tasks to be performed on this benchmark
are to maintain the NO3 concentration in the 2nd

compartment at 1 mg/l and the oxygen concentration
in the 6th compartment at 2 mg/l.

Figure 1 : Illustration of the COST 682 benchmark No. 1

2.2.- Implementation of the benchmark

The benchmark is implemented using SIMBA 3.0 +
(IFAK, 1998), an application for the MATLAB
Simulink (The Mathworks, 1998) environment. Since
the benchmark makes use of the same models as
SIMBA, (i.e., the ASM 1 model and the Takacs settler
model), the implementation was only a matter of
parametrization. The hydraulics model used in the
standard SIMBA blocks however deviated somewhat
from the model used in the benchmark, where the
hydraulic dynamics of the various tanks is not taken
into account. Setting these dynamics very fast
however, yields to the fact that the benchmark was
approximated in a satisfactory manner.

2.3.- Modeling approaches

It is to be noticed that the previously presented
benchmark model has to be seen as a simulation
model (also called an evaluation model). In other
words, this benchmark model is used to simulate the
real behavior of the process variables and then, the
control designer is assumed to face a real process. As
a consequence, he does not know, a priori, the
number of real biological states involved neither the

expressions of the kinetics, etc… He can only use
this model to generate some relevant data in order to
obtain a design model that will be used for control
synthesis.

When choosing this approach, two solutions are then
offered to the control designer who absolutely needs
a model. On the one hand, he can identify the process
using an input-output description. This refers to
black box or behavioral modeling. On the other hand,
he can re-model the process in assuming a reaction
network and in setting expressions for kinetics to
obtain an internal nonlinear description of the
process (knowledge or white box modeling).
Obviously, in this second case, it is necessary to get
a number of internal pertinent biological data that are
usually very difficult to obtain regarding the limited
number of available measurements. In this paper, the
process is modeled using a black box modeling
approach. Furthermore, up to now and to prevent
confusion about the models under interest, the box
that simulates the behavior of the actual plant is
either called the "simulation model", "the plant" or
"the actual plant"...



In the following, two control strategies are
investigated. The controllers are synthezised using
two specific design models which the identification is
explained in details and these control laws are tested
in simulation using the simulation model.

3.- TWO INDEPENDENT PI CONTROLLERS

3.1.- Structure of the control

In a first approach, we chose to control the nitrate
concentration by manipulation of the internal recycle
flow rate, and the oxygen by manipulation of the Kla,
with two independent PI controllers. In order to tune
the two PI controllers independently, two black box
SISO models were constructed for each of the two
identified subsystems.

3.2.- System identification

In order to facilitate the implementation and the
burden on the plant, the necessary experiments that
have to be performed in reality in order to identify
these models were deliberately kept simple. The
experiments consist of two step changes on the
actuators (a change in Kla from 3.5 to 6 h-1 and a
change in Qa from 18444 to 36888 m3/d). For each of
the considered subsystems, a first order plus pure
time delay model was selected for its simplicity. It was
found that the disturbances (imposed by the influent
variations) had a very important influence on the
system responses. Therefore a model for the
disturbances were also considered. For each of the
considered subsystems, the model chosen for the

disturbances was a double sine wave superposed on
the output of the first order plus delay.

The unique model structure was thus the following :
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with f1 and f2 the first order plus delay models, and w
the double sine wave :
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Because of lack of space, the results of the
identification are not presented here

3.3.- The control design

These simple models were then used to optimize the
parameters of two independent PI controllers. The
objective functions to be minimized were the Integral
Absolute Error (IAE) of the errors between the
constant setpoints and the responses of the models
simulated over 20 days. The values that resulted from
this optimization were then used in the PI controllers
on the plant (the simulation model).

3.4.- Experimental results

In order to be applied to the plant in the more
possible realistic conditions, the previously
synthesized controllers were discretized using first
order Euler approximations of the control laws and
applied to the simulation model. The results of one 14
dry weather run, compared to the non controlled case,
are shown in Figures 2
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Figure 2a : Plant results of independently optimized PI
controllers : Kla / O2
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Figure 2b : Plant results of independently optimized PI
controllers : Qa / NO3

Before discussing these results in details, the
following section presents the second control
approach. 4.- A DISTURBANCE ACCOMMODATING

CONTROLLER

4.1.- The control strategy

In (Skelton, 1989), disturbances are classified into two
classes : noises and waveform perturbations and, for



this last kind of disturbances, Johnson (1976) has
developed the Disturbance Accommodating Control
theory (DAC) that uses the so-called Disturbance
Modeling Principle (DMP). Mathematically speaking,
this concept consists of assuming that any
disturbance signal is a linear combination of different
basic functions : constants, ramps, sine or polynoms.
In fact, this concept is very similar to the approach we
used previously. However, as it will be shown
hereafter, its use within an advanced optimal control
strategy leads us to consider the state space form of
the disturbance model instead of considering its
nonlinear form as written in equation (2). When the
disturbances are modeled by these mathematical
functions under a state space form, the model of the
process can be augmented by the model of the
disturbances. Notice however that the higher the
degree of the disturbance model, the higher the
degree of the controller. Then, under appropriate
observability hypothesis, the use of a state estimator
such as a Kalman filter allows us to estimate on line
the process state together with the expected
disturbances without actually measuring them. Notice
that if the disturbances vary with time, this strategy
holds if the dynamics of the estimator are faster than
those of the disturbances.

This theory was motivated by the fact that in most of
the practical applications, the experts or the engineers
in charge of the process have an a priori idea about
the kind of internal/external disturbances they can
expect to deal with. More precisely, in this paper, the
structure of the disturbances to be rejected is well
known (very close to the double sine previously
considered). Using this approach, the control problem
can then be seen as an unmeasured input disturbance
attenuation problem (i.e., the input ammoniac and
COD concentrations, the latest being defined as a
function of the state in the benchmark).

Because of lack of space, the design procedure is not
detailed in this paper. However, it follows the
classical procedure proposed in (Johnson, 1976).

4.2.- System identification

The process to be characterized is a Multi Input Multi
Output system (MIMO). In order to find a linear
model of this system, the process was stabilized
around a functioning point. At that point, it was
assumed that both the input and output ammonium
concentrations together with the input COD, the
nitrate concentrations in the 2nd reactor and the
oxygen concentration in the 6th tank were measured.
However, it is to be noticed that these assumptions
are only necessary during the time required to get
data to be used for system identification. Once
identified, we will only use the actual measurements

that are the nitrate concentration in the 2nd reactor and
the oxygen concentration in the 6th tank.

To identify the links between the outputs and the
inputs, the process was excited with negative and
positive input steps of about 10 l/h magnitude over 6
series of 200 hours each around the predefined
functioning point. The sampling period was 20
minutes. The best data fit for the series has been
retained and are not shown here because of lack of
space.

The data set used for identification have been
introduced into the well known algorithms from the
Matlab Identification Toolbox software (see (Ljung,
1995) following the standard procedure proposed by
Ljung (1987).

The best least square approximation has been found
by a systematic trials and errors procedure (including
the choice of the structure and of the degree of the
model). The model was then transformed into a
discrete state space form and then augmented by the
model of the disturbance as proposed in (Johnson,
1976).

4.3.- The control design

An optimal Disturbance Accommodating Control law
based on this augmented model was synthesized
using the well known Linear Quadratic Gaussian
(LQG) controller design.

4.4.- Experimental results

The conditions for the implementation of the DAC
were the same than those used for the PI controller.
The results of two different tunings of the DAC
(choice of the weighting matrices Q and R) are shown
in Figure 3 and 4 together with the open loop
simulations :
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Figure 3a : Plant results using DAC #1 : Kla / O2
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Figure 3b : Plant results using DAC #1 : Qa / NO3
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Figure 3c : Plant results using DAC #1 : Estimation of the
NH4in load
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Figure 3d : Plant results using DAC #1 : Estimation of the
CODin load
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Figure 4a : Plant results using DAC #2 : Kla / O2
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Figure 4b : Plant results using DAC #2 : Qa / NO3
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Figure 4c : Plant results using DAC #2 : Estimation of the
NH4in load
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Figure 4d : Plant results using DAC #2 : Estimation of the
CODin load



5.- DISCUSSION

Although the identified state space model was quite
good, the regulation results of the implementation of
the DAC were not completely satisfactory when
compared to those obtained with the two
decentralized PI controllers. It can be explained by
two different reasons. First, it is to be noticed that the
tuning of a DAC controller is a very difficult task. In
particular, the computation of the optimal values of
the weighting matrices Q and R is very delicate and
has not been optimized for the study. Second,
remember that the dynamics of the oxygen and of the
nitrate are very different. For example, notice that the
proportional PI gain for the DO controller was 2.448
while equal to 9785 for the internal recirculation
controller. As a consequence, it is even more difficult
to tune the centralized DAC controller. However, it is
to be noticed that the input estimator exhibited some
excellent results as shown in Figure 3c and 3d. From
this point of view, an additional point can be stated :
when good regulation results are obtained with the
DAC strategy, then the estimation of the input NH4
and COD loads are bad (Cf. Figures 4). Conversely,
when relatively bad regulation results are obtained
(as those presented in Figures 3), then estimation
results are better. These two extreme cases reported
here come from the fact that a DAC is an observer-
based regulator. Then, there exists an optimal trade-
off between the rate of convergence of the estimator
and the dynamic of the controller.

With respect to the additional information it is able to
provide for diagnosis purposes (estimation of the
input loads in several pollutants), the use of the DAC
is obviously very interesting. As noticed above, from
a regulation point-of-view, the decentralized strategy
gives better performances than the centralized one
due to the large difference between the dynamics of
the two considered feedback loops. Last but not
least, notice that the estimator (based on the
Disturbance Modeling Principle and synthesized
using a Kalman filter) can be used independently of
the associated feedback. Thus, in fact, it appears that
the two strategies should be used simultaneously and
independently : the two decentralized PIs controllers
for regulation purposes and the second strategy for
estimating the unmeasured disturbance inputs.
Moreover, notice that these estimates can be used as
well within the PI strategy in adding a feedforward
term.

6.- CONCLUSIONS AND PERSPECTIVES

In this paper, the comparison between two control
strategies for the optimization of an ASP benchmark

model was realized. From a regulation point-of-view, it
was noticed that the industrial decentralized strategy
gives better results than the centralized one due to a
very large difference in the dynamics of the variables
to be controlled. The simultaneous use of the two
strategies (the first one for control purposes and the
second one for diagnosis purposes) was suggested.
The use of the estimates obtained using the
Disturbances Modeling Principle for being used
within a PI feedback/feedforward strategy is now
being investigated.
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