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Abstract: This paper presents a standard H∞ controller design for singularly perturbed systems with 
frequency domain by unified approach using the delta operators. Decomposition of the singularly 
perturbed systems into the fast and slow subsystems is shown. And the delta operator approach is 
implemented to improve a finite word-length (FWL) characteristics. The delta operator systems have 
the better FWL characteristics over the shift operator systems. The result is shown in the example.   
 
Keywords: H∞ control, singularly perturbed systems, delta operator, finite word-length 
characteristics    
 
 

 
1. INTRODUCTION 

 
Singularly perturbed systems are decomposed into the 
fast and slow subsystems. In the continuous time and 
discrete time domains (Chang, 1974; Kokotovic, 1975; 
Chow and Kokotovic, 1976; Kokotovic et al., 1986) and 
Naidu (1988) made valuable contributions in the 
systems decomposition by matrix block diagonalization, 
respectively. Luse (1985 and 1986) studied systems 
decomposition in the frequency domain. It is noted that 
A. Tikhonov, A.B. Vasileva, L. Fridman, and V.F. 
Butuzov studied the singularly perturbed systems 
mathematically. Their papers are too many to list in the 
reference. 

 It is shown that the unified approach using the 
delta operators has improved finite word-length (FWL) 
characteristics by reducing round off errors where 
compared with the discrete systems. Middleton and 
Goodwin made fundamental studies on the unified 
approach using the delta operators (Middleton and 
Goodwin, 1986 and 1990). Shim and Sawan (2001 and 
2002) studied LQR design and State Feedback Control 
design for the singularly perturbed delta operator 
systems.  

 The shift (q) operators are used to write the discrete 
systems. But, these systems are inconvenient to use since 
they are chopped and lengthy compared to the continuous 
systems. Their resolution of the stability circle is coarse 
especially where the system poles gather near j01 +  

point at small sampling interval. They have lager round-
off errors. 

The delta operator approach alleviates the problems 
of the discrete systems especially at higher sampling 
period. It unified both the continuous and the discrete 
systems; thus, the discrete system is handled and solved 
like the continuous one.  
 Zames (1981) first studied H∞ control in the frequency 
domain. Doyle et al. (1989) showed the state space 
formulations of the H∞ method. Zhou et al. (1995) 
introduces comprehensive descriptions of the robust 
control with the optimal sense. Stoorvogel (1992) 
worked for H∞ control for the discrete systems. Guillard 
et al. (1996) describe sufficient conditions for the 
existence and the construction of a feedback law that 
imposes a prescribed level of disturbance attenuation 
with internal stability. Loescharataramdee studied a 
standard H∞ controller design for two-time-scale 
continuous systems (1997). Collins and Song (1999) 
developed a method to directly design discrete-time H∞ 
controllers, represented using the delta operator. 

 In this paper, the authors extend 
Loescharataramdee (1997) by implementing a unified 
approach using the delta operators. 

 
 

2.  DELTA OPERATOR APPROACH 
 
According to Middleton and Goodwin (1990), the delta  
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operator is defined as follow: 

.)1(
∆
−

= qδ                             (2.1) 

 
The shift and the delta operators have the following 
relations as 

),1()( +≅ kxkqx  
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= kxkqxkxδ                       (2.2) 

                                                                                                                                   
where ∆ is the sampling interval. Now, consider a linear, 
time-invariant continuous system 

).()( tButAx
dt
dx +=                           (2.3)                                                                                                                       

 
where x is state vector with n by 1 and u is control 
vector with r by 1 dimensions. A has n by n and B has n 
by r matrices. The corresponding sampled-data system 
with zero-order hold and sampling interval ∆ is then 
given by 
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Eq. (2.4) is rewritten using the relation between q and δ 
operators as, 
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Eqs. (2.3) - (2.5) are written as a comprehensive form as, 
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The upper and lower rows denote continuous-time 
systems and discrete-time systems, respectively. When 
∆ → 0, then  ., BBAA →→ δδ  This means that, 
when the sampling time goes to zero, the discrete-like 
delta expression becomes that of continuous system.   
 
Now, the stability regions for various operators are 
introduced. For continuous system, operator is d/dt, 
transform variable is s and stability region Re{s}< 0. 

For discrete systems, operator is q, transform variable is 
z and stability region |z| <1. For unified system, operator 
is δ, transform variable is γ and stability region is  

.0}Re{
2

|| 2 <+∆ γγ                          (2.7) 

 
As ∆ closes to zero, Eq. (2.7) is identified to that of the 
continuous system.                                                                                  
 
Remark 2.1:   
When truncated power series is used to evaluate the 
matrix exponential as,   
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selection of the sampling time ∆ as  in 2|||| A∆  should  
not be close to 1 because of numerical difficulty for 
computing this finite power series. 
 
 

3.  SINGULARLY PERTURBED SYSTEMS 
 
3.1 Two-Frequency-Scale Systems 
 
One can describe a system by a transfer function 
matrix H(s,ε) where ε is a small parameter. If there 
exists an integer m and function f analytic at ε = 0 such 
that                                              

.,/)()( εεεε ℜ∈= gfg m                   (3.1) 
  
H(s,ε) is required to be rational in s over the field .εℜ  
Also notations are described in (Luse and Khalil ,1985). 
 
Definition 3.1:  
A matrix H(s,ε) rational in s over the field  εℜ  is two-
frequency-scale (TFS) if, 
 
 (i) H(s,ε) is proper in s, (ii) H(s,0) is defined and 

proper, (iii) 
0

),(
=ε

ε
ε
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the following relations hold.    
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where  .0)()(...)( 01 =+++ εεε asasa n
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It is noted that (3.2) has 0)Re( 0 <b  for stability of 
H(s,ε).  



                                                   
 
Corollary 3.1: 
If H(s,ε) is two frequency scale, then 

)0()( FS HH =∞  and 
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S and F denote the slow and the fast, respectively. Time 
scale expression of the systems are transformed in the 
frequency domain as a unified transfer matrices as  
 

,)()( 1
sssssss DBAICH δδδδ γγ +−= −  

.)()( 2
1

222 fppf DBAICH δδδδ γγ +−= −   (3.4) 
 
Note that  sp εγγ =   as high frequency variable.  
 
Proof: 
See (Luse and Khalil, 1985).  
 
Lemma 3.1: 
H(s,ε) is a stable two-frequency-scale transfer function 
matrix if and only if its subsystem matrices )( ssH γ  
and  )( pfH γ  are stable, all lost poles are stable too.  
While performing system approximation, some poles are 
lost due to order reduction. 
 
Robustness and sensitivity results for linear feedback 
systems typically involve properties of stable rational 
matrices along the imaginary axis. The following 
theorem shows that under certain stability conditions, the 
values of  )( ssH γ  and )( pfH γ along the imaginary axis 

determine a uniform O(ε) approximation of H(s,ε) along 
the imaginary axis.  If such a rational matrix represents a 
signal gain, then )( ωjH s  and )( εωjH f  are 
approximate signal gains for low and high frequency 
sinusoidal inputs. The reciprocal of singular value graphs 
used for robustness evaluation can be approximated 
from )( ssH γ and ).( pfH γ  
  
Theorem 3.1:  
Let H(s,ε) be a two-frequency-scale rational matrix. 
Suppose that )(sH S  and )( pH F  have no pure 
imaginary poles and that ),( εsH  has no pure 
imaginary lost poles. Then 
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where )0()( FS HHW =∞=  holds and ||.|| is some 
matrix norm, and D is the imaginary axis.  
 
Proof: 
See (Luse and Khalil, 1985).  
 
Theorem 3.1 gives an approximation as  
  

).()()(),( ∞−+≅ SFS HpHsHsH ε           (3.6)  
 
3.2 Two-Time-Scale Systems 
 
Singularly perturbed systems with noise input are 
given as,  
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where 1x  and 2x are the slow and fast state vectors. ε is 
called a singular perturbation parameter. ω is 
disturbance input, z is performance variable, u is 
control input, and y is measurement used for feedback. 
For the standard H∞ control diagram, y and u are used 
input and output in the controller design. 

By taking matrix block diagonalization, the slow 
subsystem (3.7) and the fast subsystem (3.8) are 
obtained as below. 
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),()()()( 21222 ττττδ δδδ fufff uBwGxAx ++=  

).()()( 22 τττ δ ffyf wxCy +=                            (3.9)  
 
where ./ ετ t=  
 
 
 
 
 
 
 

Fig. 4.1 Standard H∞ Control Diagram 
 
 

4.  H∞ DESIGN 
 

4.1 The Fast Subsystem 
 
Theorem 4.1:  
From Eq. (3.3), suppose (i) ),( 222 δδ HA is detectable. 
 (ii) There exist 0,0 ≥≥ ff YX which satisfy the 
following Algebraic Riccati Equation (ARE), 
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(iii) The spectral radius is ,)( 2γρ <ff YX (iv) 
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22 δδδδδ γ −+ −  is Hurwitz, then  
a dynamic controller that stabilizes the system (3.3) 
and guarantees the disturbance attenuation level, 

γω ≤fzfT  is given by  
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Note: The proof in the discrete system is not done in 
this paper.  
 
The controller’s equation is given by  
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where ,fffu ξκ= and fdff ξκω =1ˆ  is the estimate 

of the fast disturbance f1ω .  It is needed to find the 

feedback gain ,fL the observer gain dfκ and             

disturbance estimate gain .fκ  Replacing the estimate 
with the estimate error, in order to de-couple the 
equation associated with feedback and observer design 
in the later stage, results in the following closed-loop 
fast sub-system: 
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The ARE for the system (4.4) is given by 
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Block (1,2) and (2,1) of (4.5) is written as  
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The (2,2) block of (4.5) is expressed as  
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4.2 The Slow Subsystem 
 
If (iv) of theorem 4.1 for the slow sub-system is 
satisfied, γ≤zswsT   is guaranteed.  
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The  transfer matrix of the controller  )(sKs  is found 
from (4.9). sy  is the output and  su  is the input.  
From the two-frequency-scale property, the following 
identities hold as .)0()( ∞==∞ KKK fs  With all 
necessary parameters, all admissible slow controllers 
can be written using the lower Linear Fractional 
Transformation (LFT), .lF         
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)(sM sδ  is a transfer function matrix associated with 

.,,, ssss DMCMBMAM δδδδ  Q(s) is a stable rational 
transfer function holding the relation .)( γ≤∞sQ Thus 
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If ∞== KKsQ f )0()( is chosen, ∞==∞ KKK fs )0()(ˆ  
is verified. So, such a simple choice of Q(s) results in 
the slow H∞ controller satisfying the constraint at 
infinity.   

 
4.3 The composite controller 
 
Adding up the strictly proper part of the slow 
controller composes a stabilizing composite controller.  
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The closed-loop original system has the follwing 
inequality as 
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5.  EXAMPLE 
 
Consider the two-time-scale-system given as  
 

,)0(, 011211 xxuBzAxAx =++= δδδδ  
,)0(, 022221 zzuBzAxAz =++= δδδεδ         (5.1) 

.21 uDzCxCy δδδ ++=  
 

The parameters with ε = 0.1 are given as   
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According to Eq. (3.5), the H-infinity norms are 
obtained as  
 
(I) For the continuous-time systems: 
 

8544.7)(,8465.7)( == −∞−∞ SlowContExactCont sHsH  
 

0.2)0(,9981.1)( === −∞−∞ FastContFastCont pHpH  
 
Here, error of Eq.(3.5) is 0.006 that is within O(ε). 
 
(II) For the delta operator systems: 
 

8482.7)(,8400.7)( == −∞−∞ SlowDeltaExactDelta sHsH  
 

09726.2)0(,0860.2)( ===
−∞−∞ FastDeltaFastDelta pHpH  

 
Here, error of Eq.(3.5) is 0.003 that is within O(ε). 
 



                                                   
 

6. CONCLUSION 
 
In this paper, the system decomposition in the 
frequency domain was succesfully done. It is shown 
that the delta operator systems have an improved finite 
word-length characteristics than those of the 
continuous systems. Continuous systems have less 
error than the discrete systems in the numerical 
computation. Therefore, the delta operator systems 
have few errors than the discrete systems.  
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APPENDIX 
 
Linear Quadratic Regulator Design in the delta 
operating systems, for example, is introduced as  
 
 
 
 
 
 
 
 
 
 
Note the equations in the delta form are too lengthy to 
come up with the 6 pages limit in this paper.  
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