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Abstract: This paper presents a standard Heo controller design for singularly perturbed systems with
frequency domain by unified approach using the delta operators. Decomposition of the singularly
perturbed systems into the fast and slow subsystems is shown. And the delta operator approach is
implemented to improve a finite word-length (FWL) characteristics. The delta operator systems have
the better FWL characteristics over the shift operator systems. The result is shown in the example.
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1. INTRODUCTION

Singularly perturbed systems are decomposed into the
fast and slow subsystems. In the continuous time and
discrete time domains (Chang, 1974; Kokotovic, 1975;
Chow and Kokotovic, 1976; Kokotovic et al., 1986) and
Naidu (1988) made valuable contributions in the
systems decomposition by matrix block diagonalization,
respectively. Luse (1985 and 1986) studied systems
decomposition in the frequency domain. It is noted that
A. Tikhonov, A.B. Vasileva, L. Fridman, and V.F.
Butuzov studied the singularly perturbed systems
mathematically. Their papers are too many to list in the
reference.

It is shown that the unified approach using the
delta operators has improved finite word-length (FWL)
characteristics by reducing round off errors where
compared with the discrete systems. Middleton and
Goodwin made fundamental studies on the unified
approach using the delta operators (Middleton and
Goodwin, 1986 and 1990). Shim and Sawan (2001 and
2002) studied LQR design and State Feedback Control
design for the singularly perturbed delta operator
systems.

The shift (g) operators are used to write the discrete
systems. But, these systems are inconvenient to use since
they are chopped and lengthy compared to the continuous
systems. Their resolution of the stability circle is coarse
especially where the system poles gather near 1+0j

singularly perturbed systems,

delta operator, finite word-length

point at small sampling interval. They have lager round-
off errors.

The delta operator approach alleviates the problems
of the discrete systems especially at higher sampling
period. It unified both the continuous and the discrete
systems; thus, the discrete system is handled and solved
like the continuous one.

Zames (1981) first studied Heo control in the frequency
domain. Doyle et al. (1989) showed the state space
formulations of the Hoo method. Zhou et al. (1995)
introduces comprehensive descriptions of the robust
control with the optimal sense. Stoorvogel (1992)
worked for Heo control for the discrete systems. Guillard
et al. (1996) describe sufficient conditions for the
existence and the construction of a feedback law that
imposes a prescribed level of disturbance attenuation
with internal stability. Loescharataramdee studied a
standard Hoeo controller design for two-time-scale
continuous systems (1997). Collins and Song (1999)
developed a method to directly design discrete-time Hoo
controllers, represented using the delta operator.

In this paper, the authors extend
Loescharataramdee (1997) by implementing a unified
approach using the delta operators.

2. DELTA OPERATOR APPROACH

According to Middleton and Goodwin (1990), the delta



operator is defined as follow:
(9-1
o=——. 2.1
A (21)
The shift and the delta operators have the following
relations as
ax(k) Ox(k +1),

(k) - (k) —x(k) 2.2)
A

where A is the sampling interval. Now, consider a linear,

time-invariant continuous system

dx

ot = Ax(t) + Bu(t). (2.3)

where x is state vector with n by 1 and u is control
vector with r by 1 dimensions. A has n by nand B has n
by r matrices. The corresponding sampled-data system
with zero-order hold and sampling interval A is then
given by

x(k +1) = Agx(k) + Bgu(k),

y(k) =Cgx(k), (2.4)

A
where A, =e*4, B, :IeA(A'T) BdT.
0

Eq. (2.4) is rewritten using the relation between q and o
operators as,

(k) = Asx(k) + Bsu(k), (2.5)

(A, -1) B

where Az = ,Ba-:Tq,Ca-:Cq.

Egs. (2.3) - (2.5) are written as a comprehensive form as,

Px(1) = A, X(T) +B,u(T), y(T) =C,X(T). (2.6)
OA O o /dtO aad
where APZEAq%P:Eq Htime: E
HsH Ho H aia

The upper and lower rows denote continuous-time
systems and discrete-time systems, respectively. When
A - O then A; - A, B; — B. This means that,
when the sampling time goes to zero, the discrete-like
delta expression becomes that of continuous system.

Now, the stability regions for various operators are
introduced. For continuous system, operator is d/dt,
transform variable is s and stability region Re{s}< 0.

For discrete systems, operator is g, transform variable is
z and stability region |z| <1. For unified system, operator
is o, transform variable is yand stability region is

%|y|2+ Re{y} <0. .7

As A closes to zero, Eq. (2.7) is identified to that of the
continuous system.

Remark 2.1:
When truncated power series is used to evaluate the
matrix exponential as,

N (AQ)*
a g & (AD*

2 (2.8)

e

selection of the sampling time A as in || AA||, should

not be close to 1 because of numerical difficulty for
computing this finite power series.

3. SINGULARLY PERTURBED SYSTEMS
3.1 Two-Frequency-Scale Systems

One can describe a system by a transfer function
matrix H(s,e) where € is a small parameter. If there
exists an integer m and function f analytic at € = 0 such
that

g(e)=f(e)/e™, gO0O,. (3.1)
H(s,) is required to be rational in s over the field O,.
Also notations are described in (Luse and Khalil ,1985).

Definition 3.1:
A matrix H(s,g) rational in s over the field 0O, is two-

frequency-scale (TFS) if,

(i) H(s,€) is proper in s, (ii) H(s,0) is defined and

proper, (iii) H(B,s) is defined and proper, (iv)
£

=0
the following relations hold.

sp(e) = S beld,
=

s, (£) :% Shiele, by #0.
j=0
where a,(€)s" +...+a,(€)s+ay(g) =0.

(3.2)

It is noted that (3.2) has Re(b,)<O for stability of
H(s,€).



Corollary 3.1:
If H(s,e) is two frequency scale, then
Hs () = H (0) and

O p 0

He) O =He).,  G3)

B p=e Q:o

S and F denote the slow and the fast, respectively. Time
scale expression of the systems are transformed in the
frequency domain as a unified transfer matrices as

Hs(vs) =Cg (V5! = Ag) " Bg + Dg,
Ht(Vp) =Coa(Vpl = Asza) 'Bss + Dy (3.4)

Note that y, =&y, as high frequency variable.

Proof:
See (Luse and Khalil, 1985).

Lemma 3.1:
H(s,€) is a stable two-frequency-scale transfer function
matrix if and only if its subsystem matrices H(y,)

and H¢(y,) are stable, all lost poles are stable too.

While performing system approximation, some poles are
lost due to order reduction.

Robustness and sensitivity results for linear feedback
systems typically involve properties of stable rational
matrices along the imaginary axis. The following
theorem shows that under certain stability conditions, the

values of H(y,) and H (y,) along the imaginary axis
determine a uniform O(g) approximation of H(s,€) along
the imaginary axis. If such a rational matrix represents a
signal gain, then H,(jw) and H;(jew) are
approximate signal gains for low and high frequency

sinusoidal inputs. The reciprocal of singular value graphs
used for robustness evaluation can be approximated

from H(ys)and Hy (yp)

Theorem 3.1:

Let H(s,e) be a two-frequency-scale rational matrix.
Suppose that Hg(s) and Hg(p) have no pure
imaginary poles and that H(s,&) has no pure
imaginary lost poles. Then

SUp|H(s,€) = Hs (s) —Hg (5) +W| = O(e).
s

(3.5)

where W =Hg () =H(0) holds and |.|| is some
matrix norm, and D is the imaginary axis.

Proof:
See (Luse and Khalil, 1985).

Theorem 3.1 gives an approximation as

H(s,&) OHs (s) +HE (p) —Hg (). (3.6)

3.2 Two-Time-Scale Systems

Singularly perturbed systems with noise input are
given as,

Oy (t) = A1y Xy (1) + Asga X, (1) + G5y Wy (1) + Bgg U(t),
£, (1) = Ago1Xq () + AspaXo (1) + Gy (1) + By u (t),
y(t) = CysX (1) +Cys0Xo (1) + Wy (1),

[H 51X, (1) + H 5o %, (1) O

= 3.7
0=y 5 (37)

where X; and X, are the slow and fast state vectors. € is

called a singular perturbation parameter. w is
disturbance input, z is performance variable, u is
control input, and y is measurement used for feedback.
For the standard Heo control diagram, y and u are used
input and output in the controller design.

By taking matrix block diagonalization, the slow
subsystem (3.7) and the fast subsystem (3.8) are
obtained as below.

s (1) = Ag Xs (1) + Boys W (1) + Boys U (1),
Z5 (1) = Cs X (1) + Disp1s W (1) + DsypsUs (1),
Ys (t) = Cge X (t) + Dgoas Ws (t) + D05 Us (1) (3.8)
where Ax = As11— A512A3.%2 Asa1r Bays = [Gas 0]
Baus = Bour ~ Aaleg%zBan, Gg =Ga1 — A512A3.%2G52
HsO

Css =Cs1~Cs2A59As21: Cos =
&s = Co1 ~Ca2As522As211 Cos EOE

_ -H,A;2,Bs, 0
He :Hél_HJZAcS%ZAéle Ds12s :5 62?522 625

O-H,,ALG,, 00 _
D =0 527622952 0 Dy =—C,A 1B
d1ls E 0 OE 22s 27222

- H 5% ()0
Ds21s :l‘cazAaézeaz |J- Zf(T):E U o



X ¢ (T) = Aspo X ¢ (T) +GgpWy s (T) + ByoU ¢ (7),

Y (1) =CgpaXs (1) + Wy (7). (3.9)

where 17 =t/¢.

A Y

u y

Fig. 4.1 Standard Heo Control Diagram

4. Hoo DESIGN
4.1 The Fast Subsystem

Theorem 4.1:
From Eq. (3.3), suppose (i) (As,,Hs,) is detectable.

(if) There exist X; 20, Y; 20 which satisfy the
following Algebraic Riccati Equation (ARE),

A5 X + X Asyy +Y 72X (G5,G5, X ¢
=X BapBio Xt +HgHs, =0,

4.2)
AsaYt +Y 1 Adzy +y 2Y HiaH 55Y 4

—Y¢ ngzC@sz +G4,G5y =0.

(iii) The spectral radius is p(X ;Y ) < y?, (iv)
Asyy +y 2G1,Gsy X+ —BgaBaa X ¢ is Hurwitz, then

a dynamic controller that stabilizes the system (3.3)
and guarantees the disturbance attenuation level,

ITMf ||sy is given by
381 =(Asz2 *Y 265252 X ~BgaBgia X ¢
—LCq2)¢s +L1 Yy,
Up =-BgpX &, (4.2)
Ly = _V_ZYfo)_lYngiyz-

Note: The proof in the discrete system is not done in
this paper.

The controller’s equation is given by

08t =(Asa2 +BajaK ¢ +GaaKgt —L1Cg0)é ¢
+Leys.
where u; =k &¢,and @; =k 4 & is the estimate

(4.3)

of the fast disturbance v, . It is needed to find the
feedback gain L;, the observer gain kg and
disturbance estimate gain « ;. Replacing the estimate

with the estimate error, in order to de-couple the
equation associated with feedback and observer design
in the later stage, results in the following closed-loop
fast sub-system:

Ko = FgeXte +GaeWs

Z; =HgeXte- (4.4)
X O Leo s O
where xfe:% 0 w; = O ef =& —X;,
f 0 21 [
_ Pyp + ByyoK ¢ BouoK ¢ a
Féfe_ _ O
0 GesoKar Asz +GsaK g —LiCqpag
_0Gs, 00 Hs;, 00O
G&e _D_G L U Hg =0 O
0 “Ys2 f 0 oKt KiQ

The ARE for the system (4.4) is given by

Ft;frexfe +xfeF6fe +y_2XfeG¢5feGgfeXfe (4 5)
+HEHgY =0.

X; 00O .
where X, =[ ~ [ The (1,1) block of (4.5) is
obtained as

(As22 + Bk 1) X ¢ + X ¢ (Agp +BgyoK 1)

[Hj,0 (4.6)
+Y?X 1G52G50X ¢ +[Hg2 KfT]D *2g=0,
oK+ O
Kf :_B;;ruzXf.
Block (1,2) and (2,1) of (4.5) is written as
~ X (Bg,BL, X +K1LGL X
f Pouz2Pau2 /™ f df PYo2/™ f (4.7)

_y_ZXchSZG;SFZ)Zf +>szszng>zf =0,

Kg =Y G X .

The (2,2) block of (4.5) is expressed as



X (Asz +Y G565, X ¢ —Lg Cs2)
+(As2 +Y 2G 5265, X 1 —L(Cpp)' X ¢
+if(Gang2Xf +LfLTf)§(~f

+X {BgpBgp X =0.

(4.8)

4.2 The Slow Subsystem

If (iv) of theorem 4.1 for the slow sub-system is

satisfied, |[T g[Sy is guaranteed.

5‘55 = (Ads + y_ZG}sGds Xs ~Bas B;JS Xs

- Lscéys )Es +LgYs,

Ug :_B;Jsxs‘fs' (4.9)

L = (1 =y Y X ) Y Chs.

The transfer matrix of the controller K(s) is found
from (4.9). y, is the output and ug is the input.
From the two-frequency-scale property, the following
identities hold as K () =K (0)=K,. With all

necessary parameters, all admissible slow controllers
can be written using the lower Linear Fractional
Transformation (LFT), F.

K4 (8) = F (M (5), Qq(5)) = Tyeys (5) (4.10)

Let
AM 5 = Az +y ?GzGx X ~BgsBgs Xs ~LCos.
BMés:lLs (I_y_zYsXs)_lB&Jsl
gl x.O o 10
CMg=0 28 SDDM&:H O
B-Css B 0g
Ms11(8) Mgpp(s)O

M =
(9) 521(8) Msp (S)E

M 5 (s) is a transfer function matrix associated with
AM 5, BM 5,CM 5, DM &. Q(S) is a stable rational
transfer function holding the relation |[Q(s)| , < y. Thus

Ks =Mg11(8)

4 (4.11)
+M12(8)Q(S)(1 =M 522 (8)Q(S)) "M 52:1(S)

I£Q(s) = K (0) =K., is chosen, K () =K (0) =K.,
is verified. So, such a simple choice of Q(s) results in
the slow Hoo controller satisfying the constraint at
infinity.

4.3 The composite controller

Adding up the strictly proper part of the slow
controller composes a stabilizing composite controller.

K(s,€) =K (p) +K,(s) - K. (4.12)

The closed-loop original system has the follwing
inequality as

ITz0., sy +0OCe). (4.13)

5. EXAMPLE
Consider the two-time-scale-system given as

EX = A511X + A5122 + Bélur X(O) = XO’
€07 = Asp X+ Asppz +Bsou, 2(0) =25,  (5.1)
y=Csx+Csy2+Dsu.

The parameters with € = 0.1 are given as

+1 10 ao
A= B=(pC=[ 2 D=1
b 2307 got A

According to Eq. (3.5), the H-infinity norms are
obtained as

(1) For the continuous-time systems:

"H (S)"eoCom—Exact = 7'8465’ "H (S)"eo(:ont—slow =7.8544

"H (p)"mCont—Fast =1.9981, "H ( p= O)"ooCont—Fast =20

Here, error of Eq.(3.5) is 0.006 that is within O(g).

(I For the delta operator systems:
"H (S)"ooDelta—Exact =1.8400, "H (s)"ooDelta—Slow =17.8482
"H ( p)"ooDeIta—Fast =2.0860, "H ( p= 0)||ooDeIta—Fast =2.09726

Here, error of Eq.(3.5) is 0.003 that is within O(g).



6. CONCLUSION

In this paper, the system decomposition in the
frequency domain was succesfully done. It is shown
that the delta operator systems have an improved finite
word-length  characteristics than those of the
continuous systems. Continuous systems have less
error than the discrete systems in the numerical
computation. Therefore, the delta operator systems
have few errors than the discrete systems.
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APPENDIX

Linear Quadratic Regulator Design in the delta
operating systems, for example, is introduced as

0=KA+ATK +%+AAT KA-G' (%+ABT KB)G,

G(e) = (%+ABT K(£)B) TBTK(I +AA),
U(T)opt =-G(&)X(1).
3 =352 {Ix" 2" @] QIx" (0)z" (1)]
+u(r)" Ru(r)}dr.

Note the equations in the delta form are too lengthy to
come up with the 6 pages limit in this paper.
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