
  

1. INTRODUCTION 

Although fuzzy logic controller (FLC) was proposed 
almost three decades ago, and were successfully 
applied in many applications, but the accuracy of 
this  controller depends on number of membership 
functions for input variables. That is,  large number 
of membership functions usually guarantee small 
steady state error. On the other hand, large number 
of membership functions results in enormous 
number of fuzzy rules, which is referred to as the 
curse of dimensionality. This makes the design and 
application of the fuzzy controllers very 
cumbersome. In this paper a combined control law 
will be presented which has two modes: fuzzy-
sliding mode and state-feedback mode. This 
combined control law takes advantage of both the 
fuzzy sliding and the state feedback. That is, High 
speed response due to the fuzzy-sliding part and 

small steady state error because of the state-
feedback part. This controller works as follows: 
when the states are far from the desired states (or 
from the sliding surface) the fuzzy-sliding law is 
used, and when the states are near them,  the control 
law uses the state feedback law. The reminder of 
this paper is organized as follows. Section 2 
discusses the characteristics of the nonlinear 
magnetic ball suspension system (MBSS). In section 
3 the classical sliding-mode controller will be 
designed for MBSS. In section 4 the fuzzy  sliding-
mode controller, with two different number of 
membership functions, will be given and the results 
will be compared with the classical sliding-mode 
controller. The combined controller (fuzzy-sliding 
and state feedback) is presented in section 5.  
Simulation results show the superiority of the 
proposed method as compared to the fuzzy sliding 
and the classical sliding-mode controllers. 
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2. MAGNETIC BALL SUSPENSION SYSTEM  
 
The magnetic ball suspension system (MBSS) is 
shown Fig.1. The problem considered here is to 
stabilize the steel ball to the desired position, with 
different initial conditions, by controlling the 
magnetic levitation. The dynamic equations of the 
MBSS are as follows. The magnetic force equation 
can written as 
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where i is the winding current, c is a positive 
constant and y is the vertical distance from the steel 
ball to the edge of  the core, as are shown in Fig. 1. 
The motion equation is 

fMg
dt

yd
M −=

2

2

 

where M is the mass of the ball and g is the 
gravitational acceleration (9.81 m/s2). The electric 
circuit equation can be written as 

uiR
dt

di
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where R is the resistance of the winding, u is the 
volatge applied to the winding and L is the 
inductance of the winding, which is equal to 
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in which L0 is a constant Defining the state variables 
as ixyxyx === 321 ,, � , the state equations of 

MBSS can be written as: 
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In the simulations m=1 kg, R=1.2 Ω and L0=10 mH 
(Hwang, et al., 1993). Ιn the next section, the 
sliding-mode control law for the MBSS will be 
derived. 
 
 
 

3. CLASSICAL SLIDING-MODE CONTROL 
 
The set of equations in (1) can written in the 
following vector form: 

 
( ) ( ) uxgxfx +=�                     (2) 

where 

 
 
 
 
     
 
 
 
 
 
Fig. 1.  Schematic diagram of MBSS. 
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By using a suitable transformation as 
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the set of equations (1) becomes one dimensional  

uzzzqzzzpz ),,(),,( )2(
1

)1(
11

)2(
1

)1(
11

)3(
1 +=       (5)  

where 

( )

( )gz
m

c

L
q

z
L

R

z

z
gzp

+=














++−=

)2(
1

1
1

)1(
1)2(

1

2

22

           (6) 

Now  p in Eq. (6) can be written as 
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where )( 1zp is the known part, and )( 1zp∆ is the 

disturbing part of )( 1zp , and where the control gain 

q  (possibly time varying or state dependent) is 

unknown but its bounds (themselves possibly time-
varying or state-dependent) are assumed to be 
known  

maxmin0 qqq ≤≤<                     (8)   

Since the control input enters multiplicatively in the 
dynamic equation of the system, it is natural to 
choose the estimate of gain g as the geometric mean 
of the above bounds 
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Therefore, bounds (8) can be written in the 
following form: 

ββ ≤≤−
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where     
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It can be shown (Slotine, 1991) that the control law 
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 satisfies the sliding condition 
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The above control law is used to control the MBSS. 
The simulation results show that the steady state 
error is zero but the speed of response is not 
satisfactory. In next section the fuzzy sliding  mode 
control will be studied .    

 
 

4. FUZZY SLIDING-MODE CONTROL 
 
Consider a single input nth order nonlinear system 

with the form of Eq. (2), where T
nxxx ]...[ 21=x  is 

the state vector, and u is the control input, which is 
determined by a Fuzzy Logic Controller (FLC). The 
ith fuzzy IF -THEN rule, in the fuzzy rule base, has 
following form: 
 
    Rule i: IF 1x is 1iX  AND 2x is 2iX  AND... 

                           AND nx is inX THEN )(xiuu =  

 
where ),,1( njX ij �= is a fuzzy set defined on the 

jth input applied to the FLC. Also, )(xiu is the 

control output of the ith rule, which can be single 
valued or a function of the state variable x. A degree 
of membership ]1,0[∈iµ is obtain for each rule i . It 

is assumed that for any x in the universe of 
discourse X , there exists at least one iµ among all 

rules that is not equal to zero. By applying the 
weighted sum defuzzification method, the overall 
output of the FLC is given by (Wang, 1997) 

 

 
 
 
 
 

Fig. 2. Membership functions for the fuzzy sets of 
the ith input variable applied to the FLC. 
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The sliding surface is defined as 

   wx=s                                (15) 

where w is a real and positive vector. A control law 
can be obtained by considering 

0== xw ��s  

Using Eq. 2, the above equation can be written as 

0)()( =+ uxgwxfw  

Hence, the sliding input to the plant is 

)())(( 1 xfwxgw −−=u  

in order to satisfy the sliding condition (13) an extra 
term must be added to u  (because of the uncertainty 
on dynamics f ) 
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and kd is a constant. In order to show the effect of 
the number of membership functions on the 
performance of the FLC, first, three membership 
functions, and then five membership functions are 
defined for every input variable )3,2,1( =ixi . Fig. 

2 shows these membership functions for ix . Then, 

using  Eqs. (14) and (16), the fuzzy-sliding-mode 
control law can be written as 
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The same procedure is repeated for the case of five 
membership functions for every input variable to the 
FLC. The simulation results are shown in Fig. 4. As 
the graphs show, the fuzzy-sliding-mode controller 
with five membership functions has considerably 
less steady state error than the three membership 
functions. Moreover, the fuzzy-sliding-mode 
controller has a faster response as compared to the 
classical sliding-mode controller. In order to 
overcome the shortcomings of the fuzzy-sliding-
mode controller, it will be combined with a state-
feedback controller, which is explained in the next 
section. 

 

 
5. STATE-FEEDBACK CONTROL 

 
If the state equations of MBSS are linearized around 
the operating point (i.e. the desired position of the 
ball), then the dynamic equations are 
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If the desired output is shown with dy , the error can 

be designed as  

yye d −=  

Then, the goal of the state-feedback control law is to 
minimize the following performance index, which is 
in vector-matrix form (McLean, 1990): 
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where S, Q, and R are constant matrices with 
appropriate dimensions. McLean (1990) has shown 
that the optimal command control can be obtained 
as 

))()((1
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where P is a row vector and is the solution of the 

following Ricatti equation 
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in which 

TT BBRFCQCV 1and −==  
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d
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In the next section, a combination of  the fuzzy-
sliding-mode controller and the state-feedback 
controller will be developed. 

 
 
 
 
 

 
Fig. 3. Membership functions for the fuzzy set s (the 

sliding surface). 
 
 
 

6. THE COMBINED CONTROL LAW 
 
Now, a combination of the fuzzy-sliding and state-
feedback (FSSF) controller  will be presented. The 
fuzzy IF-THEN rules for the FSSF are defined as 
follows: 
 

Rule 1: IF s is P, THE dkuu 1
FSSF ))(( −+= xgw  

Rule 2: IF s is Z, THEN SFCFSSF uu =  

Rule 3: IF s is N, THEN dkuu 1
FSSF ))(( −−= xgw  
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Fig. 4. Simulation results of four controllers applied 
to the MBSS. (a) Initial position of the ball at 
0.5. (b) Initial position of the ball at 0.05. The 
ball is initially at rest. 
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where s (i.e. the sliding surface) has been defined as 
a fuzzy variable in the above fuzzy IF-THEN rules. 
The membership functions for the fuzzy sets for s 
(P ≡ Z ≡ N ≡
been shown in Fig. 3. In the first and third rules, the 
states of the plant are far from the desired states. 
Hence, the fuzzy-sliding-mode controller is being 
used, due to its fast response. In the second rule, the 
states of the plant are near the desired ones. 
Therefore, in order to have a small steady state 
error, the state-feedback controller is being called. 
Fig. 4 shows the simulation results. It is clear that 
the combined controller has a very fast response. 
Moreover, the steady state error is negligble. 
 
 

7.   STABILITY ANALYSIS 
 
The idea of stability analysis is to break down the 
problem of analyzing the stability into analyzing the 
stability analyzing of the fuzzy subsystems 
individually. The complexity of the analysis is 
drastically decreased as it is easier to check whether 
every fuzzy subsystem can give a negative-definite 

V� for a given Lyapunov functionV . However, the 
condition that all fuzzy subsystems have a negative-

definite V� does not directly imply that the whole 
fuzzy logic control system yields a negative-

definiteV� as well. In other words, if the whole 

system has a negative-definiteV� , then the system 
stability has been proved by Lyapunov stability 
theorem. The sufficient conditions that make this 
implication valid are stated in the following theorem 
(Wang, et al., 2001) and  (Wang, et al., 1998). 
 
 Theorem 1: Consider a combined fuzzy logic 
control system as described before. If 

1) there exist a positive-definite, continuously 
differentiable, and radially unbounded scalar 

function xPxTV =  where P  is an nn × constant 

positive-definite matrix, and 

2) every fuzzy subsystem gives a negative-

definite V� in the active region of the corresponding 
fuzzy rule, and  

3) the weighted-sum defuzzification method is 
employed, which for any input, the output u of the 

FLC lies between pu  and qu  such that 

qp uuu ≤≤ , then according to the Lyapunov 

theorem, the equilibrium point at the origin is 
globally asymptotically stable.  
 
Therefore, to guarantee the system stability, we 
need to find a suitable Lyapunov function V and 
ensure that every fuzzy subsystem gives a negative-

definite V� in the active region of corresponding 
fuzzy rule. 

7.1 SMC Subsystem 
 

Defining a Lyapunov function 2

2

1 µ=V , where µ  

is a new sliding plan, defined as 

)( dxxwwe −==µ  

results in a new sliding control law as follow: 
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Hence, according to Lyapunov stability theorem 
SMC subsystem is stable. 
 
 
7.2 SFC Subsystem 
 
By linearizing system (2) around the equilibrium 
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So, the linear system is ubAxx +=�  and the 
proposed control law (18) can bring the state 
variables near ex . Now, by choosing dxxe −= the 

dynamic equation of error is  

                      du AxbeAe ++=�                      (19) 

It can be shown that if 0=dxA , and if the state 

variables of the new system (19) converge to zero, 
then the state variables of system (17) will converge 
to dx . Kirk (1970) has shown that the following 

state feedback control law can drive the states of 
(19) to zero 
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where� is a negative-definite matrix, and for the 
ball suspension example in this paper, the following 
numerical entries apply: 
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So, we have  

                       0<= e�eTV� (21) 

Hence SFC subsystem is stable, and according to 
discussed theorem the stability of proposed fuzzy-
sliding and state feedback (FSSF) controller is 
proved. 
 
 

8.  CONCLUSIONS 
 
A combination of the fuzzy-sliding-mode and the 
state-feedback control laws were used to control a 
nonlinear magnetic ball suspension system. This 
new control law has the advantages of both control 
methods. That is, the high speed response of fuzzy-
sliding-mode and the small steady state error of the 
state-feedback approach. In this way, the number of 
the membership functions for the input variables to 
the fuzzy controller can be reduced significantly. It 
has been shown with simulations that the proposed 
fuzzy controller has a quite fast response as well as 
negligble steady state error. It Has also been shown, 
anlitically, that the proposed control method (i.e. the 
FSSF control law) is stable. 
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