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Abstract: This paper describes an approach based on Receding Horizon (RH) control
for the solution of the state-feedback H, con trol problem for discrete-time nonlinear
systems. The control law is obtained through the solution of a finite-horizon dynamic
game and guarantees robust stability in the face of a class of bounded disturbances

and/or parameter uncertainties.
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1. INTRODUCTION

This paper is motivated by the problem of design-
ing closed-loop controllers ensuring robust stabil-
ity in the face of bounded disturbances and/or
parameter uncertainties for discrete-time non-
linear systems. A classical w ayto address this
problem is to resort to Hs, con trol,see (Wei
and Byrnes, 1995), (Lin and Byrnes, 1996), (Lin
and Xie, 1998), (Basar and Olsder, 1995) and
(James and Baras, 1995), where a solution is
presented for the state, the full-information, and
the output-feedback case. The deriv ationof the
H., control law, ho wever, calls for the solution
of a Hamilton-Jacobi-Isaacs equation (Lin and
Byrnes, 1996); this is a difficult computational
task which hampers the application to real sys-
tems. In order to overcome this problem, at least
partially, the Receding Horizon (RH) paradigm
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appears to be a promising approach. In an H,
setting, RH schemes were first introduced in
(T admor,1992) and (Lall and Glover, 1994) for
linear unconstrained systems and w ererecen tly
studied in (Chen et al., 1998) and (Scokaert and
Mayne, 1998) for constrained linear systems, while
in (Chen et al.,, 1997) and (Magni et al., 2001b)
H.-RH con trol algorithms for nonlinear cotin-
uous time systems have been proposed. The basic
ingredients of these nonlinear RH controllers are
an auxiliary controller #(z) (typically obtained by
linearization techniques) and a computable inv ari-
ant set (%), inside which the auxiliary controller
k(z) solvesthe H,, problem. The design of the
RH con troller is motiwted by the desire to ensure
the solution of the H,, problem in a set QFH
larger than Q(&).

In this respect, the approach proposed in (Chen
et al., 1997) does not guarantee that Q7 C
Q(%) because only open-loop sequences are con-
sidered in the optimization problem, while this
is ensured by the methods described in (Scokaert



and Mayne, 1998), (Magni et al., 2001b) where
closed-loop strategies are used. As a matter of
fact, guaranteeing that Q% D Q(&) is still not
completely satisfactory. In fact, (&) is just an
easy-to-compute invariant set associated with the
auxiliary controller %, and could be consider-
ably smaller than the largest region of attraction
QM (&), where the auxiliary controller solves the
H, control problem.

In the present paper we propose a new solution
to the Hy-RH control problem so as to obtain
QFH 5 OQM(g) without a substantial increase
of complexity. This is achieved by introducing
flexibility in the problem formulation, i.e. by using
different control and prediction horizons. The use
of two horizons has been already discussed in the
context of nonlinear RH control in (Magni et al.,
2001a), where it has been shown that it leads to
significant improvements in terms of performance,
domain of attraction and computational burden.

The organization of the paper is as follows. In
Section 2, the problem is formulated, while in
Section 3 the RH control solution is introduced
with the main result. Section 4 contains some
conclusions.

2. PROBLEM FORMULATION

Consider the nonlinear discrete-time dynamic sys-
tem

where x € R", u € R™, w € 0,([0,T], R?),
for every positive integer T, z € R®, f and
h are known C? functions with f(0,0,0) = 0,
h(0,0,0) = 0 and z(0) = =o.

Assumption Al: Given a non-empty set (Q,
containing the origin as an interior point, the
system (1) is zero-state detectable in Q, i.e., Vxg €
Q and Vu(-) such that z(k) € Q, Vk > t, we have

2(k) yeo =0, VE>t= klim z(k) =0

— 00

In this paper we want to synthesize a state-
feedback controller that ensures robust stability
in the face of all disturbances w satisfying the
following assumption:

Assumption A2: Given a positive constant ya,
the disturbance w is such that

lwB)I* <R N7, k>t (2)

The space of admissible disturbances will be de-
noted by W(vy,)- |

As is well known, equation (2) also represents
a wide class of modeling errors, with respect to
which robust stability is desired. To this end, we
consider the H,, control problem defined below.

P1 H, control problem: Design a state-
feedback control law

u = r(z) 3)

guaranteeing that the closed-loop system (1)-
(3) with input w € W(v,) and output z has
a finite Ly — gain < 7 in a finite positively
invariant set (2, that is, Vxo € (,
i) (k) € Q, Vk > 0;
ii) there exists a finite quantity [(zo),
B(0) = 0, such that VT > 0,

T ) T )
Z 2@ < 7* Z lw(@)]* + B(xo)

for any nonzero w € W(y,). |

Once such a control law is applied, it follows
from the small-gain theorem that the closed-loop
system (1)-(3) will be robustly stable in Q for all
uncertainties w € W(y,) provided that ya <
1/7, see (van der Schaft, 1996).

A partial result is derived in (Lin and Xie, 1998)
where it is shown that, under some regularity
assumptions, a nonlinear H,, control problem is
locally solved by the linear H., control law syn-
thesized on the linearization of (1). The main lim-
itation of this result is that the invariance of the
region () is not established, but it is only shown
that the condition (7i) holds for all disturbances
w € 1[0, 00) such that the state trajectory of the
system (1)-(3) does not leave ). Unfortunately,
for a general nonlinear system it is not possible to
guarantee the invariance of the finite set () with-
out imposing some limitations on the disturbance
w. Among the few results presented in literature,
we recall (Lu, 1995) where the construction of
invariant subsets of the state space for nonlinear
systems with persistent bounded disturbances is
investigated.

Hereafter, given a controller u = k(z) that solves
P1, the symbol Q(k,y,va) will denote the invari-
ant set 2 mentioned in the statement of P1.

Following (Lin and Xie, 1998), it can be shown
that, under Assumption A2, if the H., control
problem for the linearized system is solvable, then,
there exists a finite region Q(K*,~,ya) where
the linear Ho, control law u = K*°(z) = Kz is
a solution for the nonlinear Hy, control problem
P1. In this respect the following assumption is
introduced.

Assumption A3: The constant v is such that
problem P1 for the linearized system is solvable.
|



Note that, the computation of the largest invari-
ant set QM (K ~,ya) is in general, an impos-
sible task, so that only a smaller invariant set
Q(K*>,v,va) can be supposed to be known.

Starting from an available auxiliary control law
u = k(z) (for example u = K*°(z) = Kz) with
an associated invariant set (%,7,ya), we want
to obtain a control law u = x&fH(z) and an
associated invariant set Q(k v, ya) such that:

(a) Q™ y,74) 2 AR, 7,74);

(b) Q(kfH ~ yA) tends to QM by a proper
choice of the design parameters, where Q™
denotes the largest domain of attraction
achievable by a control law that solves P1.

3. RECEDING HORIZON CONTROL LAW
3.1 Problem statement

The derivation of the RH control law is based on
the solution of a finite-horizon zero-sum differen-
tial game, where w is the input of the minimizing
player (the controller) and w is the input of the
maximizing player (”the nature”). More precisely,
the controller chooses the input u(k) as a function
of the current state (k) so as to ensure that the
effect of the disturbance w(-) on the output z(-) is
sufficiently small for any choice of w(-) made by
"nature”.

In the following, according to the RH method, we
will focus on a finite time interval [¢, t+ N, —1]. At
a given time ¢, the controller will have to choose a
vector of feedback control strategies k¢ ¢4 n.—1:=
[0 (2(8))s -, fin, -1 (2(t + N — 1))] where fi(-)
R" — IR™ will be called policy and N, is the
control horizon. At the end of the control horizon
an auxiliary state-feedback control law v = #(x) is
used. The sequence of disturbances chosen by ”the
nature” will be denoted by wy ¢4 n, 1:=[w(t), ...,
w(t + N, — 1)], where N, > N, is the prediction
horizon.

Differently from the standard RH approach, in
this case it is not convenient to consider open-
loop control strategies since open-loop control
would not account for changes in the state due
to unpredictable inputs played by ”the nature”
(see also (Scokaert and Mayne, 1998)). Hence, at
each time ¢, the minimizing player optimizes his
sequence k¢4 n.—1 Of policies, i.e. the minimiza-
tion is carried out in an infinite-dimensional space.
Conversely, in open-loop it would be sufficient
to minimize with respect to the sequence [u(t),
u(t+1),...,u(t+N.—1)] of future control actions,
a sequence which belongs to a finite-dimensional
space.

Consider an auxiliary control law u = &(z) that
solves the problem P1, with a domain of attrac-

tion Q(%,~,va) whose boundary is assumed to be
a level line of a positive (storage) function V(z)
such that

Vel @) w) - Vele) (@)
<=5 (=1 =+ llwl?)

Vo € Q(I%7777A)7 Yw € W(’YA)

and Vz(0) = 0. A practical way to compute & and
Vi is by means of a linear H, controller (which
exists in view of A3) for the linearized system
and an associated quadratic storage function as
described in (Lin and Xie, 1998).

Finite-Horizon Optimal Dynamic Game (FHODG):
Minimize with respect to k¢ ¢4+ n.—1, and maximize
with respect to w1 n,—1, the cost function

J (@, Kt 4 No—1, We 4N, -1, Ney Np)

t+N,—1
=2 3 [P 22 @I} + Vit + )

subject to (1) with z(t) = Z, and
z(t + Np) € Q(R,7,7a) C R"

o kice(z(@)), t <i<t+ N,
u(i) = { R(z(i), t+N.<i<t+N,

In the previous definition, =y is a constant, which
can be interpreted as the disturbance attenuation
level.

For a given initial condition Z € R", we denote by

o
Kt t+N.—1
=arg min max

Kt,t4+Ne—1 Wt,t4Np—1

and

o
Wi t4+N,—1

_ = o
= max J(Z,K{ 44 N.—1>Wtt+N,—1, Ne, Np)

Wi, t+Np—1

the saddle point solution, if exists, of the zero-sum
FHODG.

According to the RH method, we obtain the value
of the feedback control law as a function of Z by
solving the FHODG and setting

kU (7) = K§(2) ()

where k(%) is the first column of wf, n
=[r§(x(t)), - .., K}, 1 (x(t + N —1))].

J(Z, Kt t4N.—1, Wt t4N, 1, Ne, Np)



3.2 Algorithm Proof:

i) If z € QFH(N,, N,), there exists a policy
Kt t+N.—1 € K(@, Ne, Np). Then, Rep1 48, =
[Ktt1,04Ne—1, R(2(t+ Ne))] € K(f (2, 65 (),

In summary the implementation of the proposed
RH controller consists of the following steps.

Off-line computations: Computation of #(z), w(t)), Ne, Np), Yw satisfying Assumption A2,
Q(%,7,7va), and Vi (x) according to (Lin and Xie, so that f(z, s (z),w(t)) € QP (N, N,)
1998). that is QFH (N,, N,) is a positively invariant

set for L7 Moreover VT € Q(&,,va) there

On-line computations: exists the policy kiiyn.—1 = [R(z(2)),. .-,

(1) At each time instant ¢ compute ¢, n | by R(z(t+ N.—1))] such that starting from Z, it
solving the Finite-Horizon Optimal Dynamic results z(t + Np) € Q(&,7,va) for every dis-
Game; turbance wy i N, -1 € W(Z, K14N, 1, Np) 50

(2) Apply the control action u(t) = &f(z(t)) that QB2 (N, N,) D Q(&,7,7a), YNe, Np >
where % is defined in (5). 0 and the origin is an interior point of

QRH(N,, N,) YN.,N, > 0.
ii) Given Wy ¢4 n, 1 =0, for every k¢ syn, 1
3.3 Properties J(Z, Kt t+No—1, Wt 44N, 1, Ne, Np)
t+N,—1

In order to establish the closed-loop stability _ 1
properties of the RH controller, we first introduce - Z 92 {HZ( il } Va(z(t+N)) 20
the following definitions. =t

so that
Definition 1. : Let K(z, N.,N,) be the set of all
policies kt¢4n.—1 such that starting from z, it V(x’NC’Np)(ﬁ)
results z(t+N,) € Q(&,7,va) for every admissible > J(Z, Kt t4N,—1,We,t+N, 1, Ney Np) >0
disturbance sequences w4 N, —1- VE € QORH (N., N,)

The monotonicity property V(z, N.+1, Np+
1) < V(&, N, N,) is now proven. For ease of
notation, define

1 . .
S(zw) = 5 {7* vl - |21}

Definition 2. (Vincent and Grantham, 1997) Let
QFH (N, N,) be the set of initial states Z such
that K(Z, N, Np) is nonempty.

Definition 3. Given the initial state £ and a pol-

icy vector kiqn.—1 € K(Z,Ne, Np), the set of Suppose now that £, y , is the solution of
admissible disturbances w1 n,-1 is denoted by the FHODG with horizon N,, and consider
W(Z, Kt ,t4+N.—1, Np)- u the following policy vector for the FHODG

with horizon N, +1

In the following, the optimal value of the FHODG ~ _ RN t<k<t+N.-—1
will be denoted by V (2, Ne, N,,), i.e. V(z, N, Np) := RGN = R(z(t + )) k=t+N.
J(@, K7 41 n.—1 WY e N, —1> Nes Np). Now, the main

result can be stated. then, letting u(k) = &(x(k)) in (1), it results

that

Theorem 1. Consider two positive constants -y

. J(Z, Rk w N.+1,N,+1
and ya with yay < 1, and the closed-loop system (&, Byt ves Wity Ne 1, Np +11)

t+N,
SRH . { ok +1) = f(a(k), r (2 (k)), w(k)) =-> 5 )+ Va(z(t + Np + 1))
" 2(k) = h(z(k), & (2(k)), w(k) i=t
=Vi(z(t+ Np +1)) = Vi(z(t + Np))
Then, under Assumptions A1-A2-A3, —S(z(t+ Np),w(t + Np))
i) QB2 (N, N,) is a positively invariant set BNy 1
for B2 and QFH(N,, N,) D Q(%,7,7a), Z S(z (1)) + Vi(x(t + Np))
VN¢, Np > 05
ii) L is internally stable and has L-gain less so that, in view of (4),
than or equal to 7, in Q®H (N,, N,);
iii) QFH(N.+1,N,) D QFHE (N, N,) and limn, 0 J(Z, B t4-No we 4N, Ne + 1, Np + 1)
QRE(N,, N,) = QM where QM denotes the t+Np—1
largest domain of attraction achievable by a Z S(z (0)) + Vi (z(t + Np))

control law solving P1.
iV) VN. > 0, limNPHOOQRH(NC,Np) D) QM(I?L,’)/,’)/A). which implies



V(Z,N.+1,N,+1)

< max
Wi, 1+ Np EW(Z,Rt,t4 N, Np+1)

J(Z, Rt t4Nes Wi t4N,, Ne + 1, N, + 1)

< max

Wt t+Np—1 GW(@vat_*_NC_pr)
t+Np—1

Zs

() + Vi (2(t + Ny)) (7)

=V(Z, N, Np)
which holds for all z € QF(N,, N,). Note
that in view of (6) and (7)

so that V(0, N., N,) = 0. Moreover, in view
of (7) and the definition of V(z, N., N,), it
follows that vz € QFH(N,., N,), and for a
generic w(t) € W(Z, k¢ 4 N1, Np):

V(Z,N., Np)
= J(z, H?,t—i—Nc—l:wg,t+Np—17NcaNp)
> V(f(ivﬁRH(i)aw(t))aNc - 17Np - 1)

2 {Inte @, we) | - o))
Z V(f(iv KRH(i)aw(t))aNﬁNp)

E)]” = oI}
®)

Setting w = 0 in (8), by Assumption Al
and the continuity of f and h, it follows
immediately from LaSalle’s Invariance prin-
ciple (LaSalle, 1986) that z = 0 is locally
asymptotically stable when w = 0. Finally,
with reference to L% with initial condition
xz(t) = Z, from (8) it follows that Vz €
QR (N,,N,)

+
N | =
—
=
8

jusl

=
&

g

V( (t+T+ ) Nc;Np)_

< —Z I+ D1 =72 e+ 11}

and by (6)

V(Z, N, Np)

0<V(z(t+T+1),N., Np)

B

< —

{0+ I =22 (e + )17}

+V(Z, N, Np)

1
2

<.
i
o

which implies that

T

S 2l + il

i=0

T

1 112

<2*3 Slhule+ )]
i=0

+V(Z, N¢, Np)

VT € QRH(NC,NP), vT > 0,Vw € W(z, K{ 44N>

N,). Hence, we conclude that 2 has L,-
gain less than or equal to 7, in QFH (N, N,,).

iii)

iv)

e In

If Rt t+N.—1 € K:(lf?,Nc,Np), then Rt,t-&-Nc =
e ne 1 Bt + No)) € K@, N, +1,N,)
so that QB (N, + 1,N,) D QBE(N,. N,),
VN. > 0. As N. — oo the problem becomes
an infinite horizon H,, control problem im-
plying that QFH (N, N,) — QM.

If 2 € QM (%,v,7a) then there exists a finite
N, such that the control sequence K 44N, —1
= [&(z(t)),..., &(z(t + N, — 1))] satisfies
z(t + N, — 1) € Q(R,7v,7a). This implies
that VN¢, keern.—1 = [R(z(t)),. .., R(z(t +
N, — 1))] € K(&,N.,N,) or, equivalently,
z € QFH(N,, N,).

3.4 Comments

Point (i) is essential in order to ensure that
it is worth replacing the auxiliary controller
& with the RH one xftY.

Point (i7) states that the RH controller is
indeed a solution to the H,, control problem
for the nonlinear system.

Point (iii) shows that, at the cost of an
increase of the computational burden associ-
ated with optimization, the domain of attrac-
tion can be progressively enlarged towards
the maximum achievable one. In other words,
N, is a tuning knob that regulates the com-
plexity /performance trade off.

Point (iv) shows that by suitably increasing
the prediction horizon, the RH controller
can be rendered better than the auxiliary
one, not only in terms of the nominal set
Q(k,7v,7a) (see (i)), but also in terms of
the actual domain of attraction. Remarkably,
this property holds irrespective of the value
of the control horizon N,. In particular, it is
possible to let N. = 1 in which case it is not
even necessary to optimize over policies in an
infinite dimensional space. In fact, z(t) =
is known and the first control move is just a
vector belonging to an m-dimensional space.
A major drawback of the approach proposed
in the present paper is of computational
type, since the implementation of the RH
controller calls for optimization within the
infinite dimensional space of control policies
(at least for N, > 1). A possible solution is
to resort to a finite dimensional parametriza-
tion (Mayne, 2000) (e.g. polynomial control
policies), at the cost of losing some flexibility.
In this respect it is worth observing that the
theoretical properties of the regulator remain
unchanged provided that the auxiliary con-
troller #(x) belongs to the same finite dimen-
sional class of control policies.

(Chen et al., 1997) optimization is per-
formed with respect to the sequence of future
control moves. This is a (computationally



cheaper) open-loop strategy but, due to the
action of disturbances, there is no guarantee
that Q#H D (&), so that the RH con-
troller may not improve on the auxiliary one.
Herein, we adopt a more effective closed-loop
strategy, guaranteeing that Q%H D Q(&).

e In (Magni et al., 2001b) the property QF#H D
(%) is achieved by resorting to a closed-loop
strategy (minimization with respect to po-
lices). Conversely, there is no guarantee that
QFH 5 QM (%), where QM (%) is the largest
invariant set where the auxiliary controller
k solves the H,, problem, unless the con-
trol horizon (which is equal to the prediction
one) is properly increased. Differently from
(Magni et al., 2001b), in this paper the use
of a control horizon N, shorter than the pre-
diction horizon N, allows us to ensure that
(by a proper choice of N,,) QD QM (&) for
any (short) control horizon, see point (iv) of
Theorem 1.

4. CONCLUSIONS

In this paper it has been shown that the RH
paradigm applied to the H,, control problem
for discrete-time nonlinear systems can improve
the domain of attraction provided by an avail-
able local solution, obtained for example through
linearization. In particular, the RH control can
enlarge the domain of attraction even for very
short control horizons (e.g. N. = 1) and at a
reasonable computational cost. The key points of
the algorithm are: (i) the adoption of a closed-
loop strategy involving the optimization of the
future control policies; (i7) the use of two distinct
horizons: a prediction horizon over which system
performance is evaluated, and a shorter control
horizon over which control policies are optimized.
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