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Abstract: In this paper, we investigate the stochastic stabilization problem for a
class of bilinear continuous time-delay uncertain systems with Markovian jumping
parameters. Specifically, the stochastic bilinear jump system under study involves
unknown state time-delay, parameter uncertainties, and unknown nonlinear deter-
ministic disturbances. The jumping parameters considered here form a continuous-
time discrete-state homogeneous Markov process. The whole system may be regarded
as a stochastic bilinear hybrid system which includes both time-evolving and event-
driven mechanisms. Our attention is focused on the design of a robust state-feedback
controller such that, for all admissible uncertainties as well as nonlinear disturbances,
the closed-loop system is stochastically exponentially stable in the mean square,
independent of the time delay. Sufficient conditions are established to guarantee the
existence of desired robust controllers, which are given in terms of the solutions to a set
of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities.
Copyright © 2002 IFAC
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1. INTRODUCTION

A lot of dynamical systems have variable struc-
tures subject to random abrupt changes, which
may result from abrupt phenomena such as ran-
dom failures and repairs of the components,
changes in the interconnections of subsystems,
sudden environment changes, modification of the
operating point of a linearized model of a nonlin-
ear systems, etc. The hybrid systems, which in-
volve both time-evolving and event-driven mech-
anisms, may be employed to model the above
problems. A special class of hybrid systems are
the so-called Jump Linear Systems (JLSs). The
jump linear system has many operation modes,

I Partially supported by the University of Kaiserslautern
of Germany and the Alexander von Humboldt Foundation
of Germany. E-mail: Zidong.Wang@coventry.ac.uk.

and the system mode switching is governed by
a Markov process. The parameter jumps among
different modes may be seen as discrete events.
The control of JLSs has been a research subject
and attracted a lot of interest since the mid 1960’s.
The optimal regulator, controllability, observabil-
ity, stability and stabilization problems have been
extensively studied for JLSs, see (Shi et al., 1999)
and references therein.

It has been recognized that the time-delays and
parameter uncertainties, which are inherent fea-
tures of many physical processes, are very often
the cause for instability and poor performance of
systems. In the past few years, considerable atten-
tion has been given to the robust and/or He, con-
troller design problems for linear uncertain state
delayed systems. A great many of papers have
appeared on this general topic, see (Niculescu



et al., 1998) for a survey. As for the JLSs with
parametric uncertainties, the issues of stability,
stabilization, Hy control, Hy control, Hs/Hx
control, Kalman filtering have been well inves-
tigated, and recent results can be found in (de
Farias et al., 2000; Shi et al., 1999) and references
therein. In (Mao et al., 2000), the exponential
stability analysis problem for a general class of
linear /nonlinear stochastic jumping delay systems
has been intensively studied, and a number of
useful stability criteria have been established. In
particular, for the linear case in (Mao et al., 2000),
the exponential stability can be easily tested by
checking the existence of the solution to a linear
matrix inequality. Unfortunately, the parametric
uncertainties and the nonlinear exogenous distur-
bance have not been considered in (Mao et al.,
2000) for stabilization problem.

On the other hand, bilinear systems have been
of great interest in the past three decades, since
many real-world systems can be adequately ap-
proximated by a bilinear model. The applica-
tion areas include nuclear, thermal, chemical pro-
cesses, biology, socio-economics, immunology, etc.,
see (Mohler and Kolodziej, 1980). In particular,
the stochastic bilinear systems, also called state-
dependent noise systems or multiplicative noise
systems, have been dealt with by many authors.
Among them we quote (Bernstein and Haddad,
1987; Skelton et al., 1991; Yaz, 1992; Wang and
Burnham, 2001). However, a literature search re-
veals that the issue of stabilization of jump bilin-
ear systems with or without uncertainty and time-
delay has not been fully investigated and remains
important and challenging. This situation moti-
vates the present study on the robust stabilization
of bilinear continuous time-delay jump systems.

It is now worth pointing out that the essential dif-
ferences between the Jump Linear System (JLS)
which has been extensively studied as mentioned
above and the Jump Bilinear Stochastic System
(JBSS) which is to be considered in this paper.
For JLS, every mode corresponds to a determin-
istic dynamics, that is, when the mode is fixed,
the system state evolves according to the corre-
sponding deterministic dynamics. However, the
JBSS can be regarded as the result of several
stochastic systems (systems with multiplicative
noises) switching from one to the others according
to the movement of a Markov chain. For JBSS,
every mode corresponds to a stochastic dynamics.
Obviously, the JLS is a special case of the JBSS.

This paper is concerned with the stochastic sta-
bilization problem for a class of bilinear continu-
ous time-delay uncertain systems with Markovian
jumping parameters. We aim at designing a robust
state-feedback controller such that, for all admissi-
ble uncertainties as well as nonlinear disturbances,

the closed-loop system is stochastically exponen-
tially stable in the mean square, independent of
the time delay. We show that the analysis problem
can be tackled in terms of the solutions to a set of
linear matrix inequalities (LMIs), see (Gahinet et
al., 1995), and the associated synthesis problem
can be dealt with by solving a set of coupled
quadratic matrix inequalities. Due to space limi-
tation, we omit the numerical simulation example.

Notation. The notations in this paper are quite
standard. R” and R"*™ denote, respectively, the
n dimensional Euclidean space and the set of all
n X m real matrices. The superscript “T” denotes
the transpose and the notation X > Y (respec-
tively, X > Y') where X and V" are symmetric ma-
trices, means that X — Y is positive semi-definite
(respectively, positive definite). I is the identity
matrix with compatible dimension. We let h > 0
and C([—h,0];R") denote the family of continu-
ous functions ¢ from [—h,0] to R” with the norm
[lell = sup_p<p<o l@(8)|, where || is the Euclidean
norm in R?. If A is a matrix, denote by |A]|
its operator norm, i.e., |[A|| = sup{|Az| : |z| =
1} = VAmax(AT A) where Apax(c) (respectively,
Amin (+)) means the largest (respectively, smallest)
eigenvalue of A. l5[0,00] is the space of square
integrable vector. Moreover, let (2, F, {F; }¢>0. P)
be a complete probability space with a filtration
{Fi}+>0 satisfying the usual conditions (i.e., the
filtration contains all P-null sets and is right con-
tinuous). Denote by L% ([—h, 0]; R") the family of
all Fop-measurable C([—h, 0]; R")-valued random
variables & = {£(0) : —h < 6 < 0} such that
SUpP_p<p<o ElE(0)|P < oo where E{-} stands for
the mathematical expectation operator with re-
spect to the given probability measure P. Some-
times, the arguments of a function will be omitted
in the analysis when no confusion can arise.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

Let {r(t), t > 0} be a right-continuous Markov
process on the probability space which takes val-
ues in the finite space S = {1,2,.--, N} with
generator II = (v;;) (4,5 € S) given by

P{r(t +A) = jlr(t) =i}
where A > 0 and lima_,00(A)/A =0, v > 0
is the transition rate from i to j if ¢ # j and
Vii = = Doy Vii-
In this paper, we consider the following class of

bilinear uncertain continuous-time state delayed
stochastic systems of the Ito type



dz(t) = [A(r(t)) + AA(t,r(t)]z(t)dt

+ Y JTi(r(t)a(t)dwy (2)
k=1
+ [Aa(r(@®)z(t — h) + B(r(t))u(t)
+D(r(t) f (x(t,r(t)))]dt, (1)
z(t)=o(t), r(t)=r(0),te[-h 0 (2

where z(t) € R" is the state, u(t) € R™ is
the control input, f(-) : R* — R is an un-
known nonlinear exogenous disturbance input,
h denotes the unknown state delay, o(t) is a
continuous vector valued initial function. Here,
w(t) = [wi(t) wa(t) - wy(t)]’ € R™ is an
m-dimensional Brownian motion, and it is as-
sumed that the Markov process r(-) is indepen-
dent of wg(-) (k = 1,2,---,m). For fixed sys-
tem mode, A(r(t)), Ji(r(t)) (k = 1,2,---,n),
Aa(r(t)), B(r(t)), D(r(t)) are known constant ma-
trices with appropriate dimensions. AA(t, r(t)) is
a real-valued matrix function representing norm-
bounded parameter uncertainty.

Assumption 1. The uncertain matrix AA(t, r(t))
satisfies

AA(L,r(t)) = M(r@)F (&, ()N (r(t)  (3)

where for fixed system mode, M(r(t)) € R
and N(r(t)) € R*™ are known real constant
matrices which characterize how the deterministic
uncertain parameter in F'(¢,7(t)) enters the nom-
inal matrix A(r(t)); and F(¢,7(t)) € R>J is an
unknown time-varying matrix function meeting

FT(t,r(t)F(t,r(t)) <I,¥Vt>0;r(t) =i € S.
(4)

Assumption 2. For fixed system mode, there ex-
ists a known real constant matrix H(r(t)) € R**"
such that the unknown nonlinear vector function
f () satisfies the following boundedness condition

[f (@t r@)| < [H(r@)z(®)], V¥ a(tr() € R".

()

Assumption 3. For all § € [—h,0], there exists a
scalar o > 0 such that |z(t + )| < o|z(t)].

Remark 1. Tt is noted that, in the system model
(1)-(2), there are two kinds of uncertainties act-
ing on the nominal matrix A(r(¢)), that is, the
deterministic uncertainty AA(t,r(t)) which can
be regarded as the energy-bounded noise, and
the stochastic perturbation Y ,° , Ji(r(t))dwy ()
which is the multiplicative noise with known
statistics. Both kinds of uncertainties have been
extensively studied in the literature. If the multi-
plicative noise disappears and there are no time-
delay and nonlinear exogenous disturbance, the
system model (1)-(2) will be reduced to the usual

jump linear system which has received consid-
erable attention. Note that when the mode is
fixed, the system (1)-(2) corresponds to a bilinear
stochastic time-delay uncertain system.

Remark 2. The parameter uncertainty structure
asin (3)-(4) has been widely used in the problems
of robust control and robust filtering of uncer-
tain systems, see, e.g., (Wang and Huang, 2000).
We point out that the exogenous nonlinear time-
varying disturbance term f(z(t,r(t))) in the sys-
tem model (1)-(2) has not been taken into account
in the research literature concerning jump sys-
tems. Such kind of disturbance may result from
the linearization process of an originally highly
nonlinear plant or may be an actual external non-
linear input. Also, as mentioned in (Cao amd Lam,
2000), Assumption 3 is not restrictive as the scalar
o > 0 can be chosen arbitrarily.

Observe the system (1)-(2) and let xz(t;€) de-
note the state trajectory from the initial data
z(0) = £(0) on —h < 0 < 0 in L% ([=h,0); R™).
Clearly, the system (1)-(2) admits a trivial solu-
tion z(t;0) = 0 corresponding to the initial data

€=0.

We now introduce the following stability concepts.

Definition 1. For the uncertain time-delay bi-
linear jump system (1)-(2) with u(¢) = 0 and
every £ € L% ([—h,0]; R"), the trivial solution is
exponentially stable in the mean square if there
exist scalars a > 0 and 8 > 0 such that

Elz(t;&)> < ae P sup EE@)>.  (6)
—h<0<0

Definition 2. We say that the system (1)-(2) is
exponentially stabilizable in the mean square if,
for every £ € L%_—O ([=h,0]; R™), there exists a linear
state feedback control law u(t) = G(r(t))z(t)
(the feedback gain G(r(t)) is constant for each
fixed mode) such that the closed-loop system is
exponentially stable in mean square.

In this paper, we assume that all jump states
r(t) =i € S (t > 0) and the system states z(t)
(t > 0) are accessible, i.e., they are measurable for
feedback.

The purpose of this paper is to design a delay-
independent memoryless state feedback controller
of the form

based on the state x(¢) and the system mode r(t),
such that the following closed-loop system of (1)-
(2) with G(r(t))



+2Jk

[Ad(r( ))z(t — h)
+ D(r(t)) f(z(t,r(t))]dt (8)

is exponentially stable in the mean square.

dwk( )

3. MAIN RESULTS AND PROOFS

Lemma 1. Let M, N and F' be real matrices of
appropriate dimensions with FTF < I. Then for
any scalar p # 0, we have

MFN + NTFTMT <1 2MMT + y2NTN.

Recall that the Markov process {r(t), t > 0} takes
values in the finite space S = {1,2,---,N}. For
the sake of simplicity, we write

A(’L) = Ai, Ad() = Adi; (Z) Bi,

Jk(l) = J]“', D( ) D,, M(Z) Mi,

N(i):=N;, H(i):=H;, G@i):=G;, YVieS.
and
Aci = A(i) + B(i))G(i) = Ai + B;G;,  (9)

and then for the mode r(t) = 4, the closed-loop
system (8) becomes

dz(t) = [Aa- + M;F(t,i)N;]z(t)dt
+ Z Jrix(t)dwy (¢

+ [Adi (t —h) + Dif(x(t,i))ldt. (10)
In the following theorem, we establish the analysis
results, i.e., for a given controller, we derive the
sufficient conditions under which the closed-loop
system (10) is exponentially stable in the mean

square.

Theorem 1. Let the controller gain G(r(t)) be
given. If there exist a positive scalar y > 0 such
that the following N matrix inequalities

N
ALP + Pidci + Z TP+ Y 7P,
j=1
+P;(Aqi AL + D DT + 2 MM P
+uANIN;+ HIH; +1<0 (11)
have positive definite solutions P; > 0 (i € S),

then the system (10) is exponentially stable in the
mean square.

Proof. First, we let C**(R" x Ry x S;R;) denote
the family of all nonnegative functions Y (z,t,1)

on R* x Ry x & which are continuously twice
differentiable in z and once differentiable in ¢.

Fix ¢ € L% ([-h,0;;R") arbitrarily and write
z(t;&) = z(t). Define a Lyapunov function can-
didate Y (z,t,i) € C>'(R" x Ry x S;R;) by

. t
(t)Pix(t) + /tih zT(s)x(s)ds.
(12)

By Ité’s formula (see, e.g., Mao 1997), the stochas-
tic derivative of Y along a given trajectory is
obtained as

Y(z(t),t,i) =z

dY (z(t),t,i) == ,cy( (t),t,i)dt + 227 (1) P;

Z J]“ dwk ) (13)

where

LY (z(t),t,9) =2 ) [(Ae; + AA(, )T P

+ Pi(Aci + AA(, 1))
m N
+ Z JiiPidri + Z'Yijpj
k=1 =1
+ I] (t) + 27 (t — h)AG; Pia(t)

t)PiAgiz(t — h)
)

T (
a () PD; f(x(t,7))
+fT($(t i))D{ Pix(t)
— 2T (t = h)z(t - h). (14)

Note that AA(t,i) = M;F(t,i)N; and FTF < I.
Lemma 1 shows that, for any scalar pu > 0,

Pi(AA(t,9) + (AA(t, i) Py
= (P;M;)F(t,i)N; + NI FT(¢t,i)(P;M;)T
< pPPM;M}PP; + p > NIN;. (15)

Moreover, it results from (5) and the inequality

(" (x(t,i)) — =" (t)P:D;)

that

e (t)PiDif (x(t,4)) + [ (x(t,i)) D] Pa(t)
S (@ (t,0) f(x(t,0) + 2" (1) PiD;iD{ Pix(t)
2T (t)(H] H; + P,D;D] P;)x(t). (16)

0;:= AL P, + PiAc; + > P;M; M P,

m N
+p 2NIN; + Z JiiPidvi + Z’Yijpy
k=1 J=1

+H!H; + P,D;D}'P, + 1, (17)



0; PiAdi] (18)

Sii= [Ag;Pi —1
Then, substituting (15)(16) into (14) results in

LY (2(t),t,1) < 2T (1)Ox(t) + 2 (t — h) AL Px(t)
+ 2T (t) P Agiz(t — h)
— 2T (t — h)z(t — h)
=[27(t) 2"t -h)] S

: [w(f(_t)h)] (19)

From the Schur Complement Lemma, we know
that S; < 0 if and only if

0;+ P ALAL P <0 (20)

which is the same as the inequality (11). There-
fore, we have LY (x(t),t,i) < 0.

Note that |z(t)] < |z.(t)], Si < 0, and P; >
0. Then, based on LY (z(t),t,7) < 0, following
Assumption 3 and the line of the proof of Theorem
1in (Cao and Lam, 2000), we can prove that, the
uncertain time-delay bilinear jump system (10) is
asymptotically stable in the mean square.

With the inequality (19), the exponential stability
(in the mean square) of the system (10) can

be proved as follows by using the techniques
developed in (Mao, 1997; Mao et al., 2000).

Define

Ap I?ea:SX)\mam( Z)a As I}élg( )\max(sz)a
where P; > 0 is the solution to (11) and S; is

defined in (18). Let d be the unique root to the
equation

S(Ap + he®™) = \g + min(1, Age™).
To prove the mean square exponential stability,

we modify the Lyapunov function candidate (12)
as

Yy (2(t),t,4) = e (27 (t)Pix(t) + /t . |z(s)|*ds).
* (21)

Along the similar line for the proof of Theorem
3.1 in (Mao et al., 2000), we can show that

" NElz()] < (Ap + h(1+")EJ¢]?,
or
li 11 Elz(t,)|?) < =6
Jim sup ~ log(Elz(t,§)") < —d.

This indicates that the trivial solution of the
system (10) is exponentially stable in the mean
square. This completes the proof of this theorem.

Remark 3. Theorem 1 provides the analysis re-
sults for the exponential stability in mean square
of the system (10). It can be seen from (11) that
we need to check whether there exist a positive
scalar y and N positive definite matrices P; > 0
(¢ =1,2--+, N) meeting the N coupled matrix in-
equalities. This may be done by converting the N
coupled nonlinear (on P; and p) inequalities into
the associated Linear Matrix Inequalities (LMIs),
and then we are able to determine exponential
stability of the system (10) readily by checking
the solvability of the LMIs (Gahinet et al., 1995).

Theorem 2. Let the controller gain G(r(t)) be
given. If there exist a positive scalar € > 0 and N
positive definite matrices P; > 0 (i € S) satisfying
the following LMIs

AP, -1 0 0 0

DI, 0 -1 0 0 |<0 (22

eN; 0 0 —eI O

MIP, 0 0 0 —eI

where A; is defined by

m
Ai = Agpl + PiAci + Z J]z;Pkaz
k=1
N
+ Z’}/ijpj +HEH,' + 1,

j=1

then the system (10) is exponentially stable in the
mean square.

Proof. To begin with, we let
Av; == [PAg; PiD; w ' N pPiM; |
and then rewrite (11) as
As + AAL <. (23)
If follows from the Schur Complement Lemma
that, the above inequality holds if and only if
Ai  PiAq P;D; pm'N] puPM;

ATP, -1 0 0 0

pre, 0 -1 0 0 <0.
p N0 0 T 0
pMIP, 0 0 0 -1

(24)

Note that (24) is not linear in u. Let ¢ :=
p~2. Pre- and post-multiplying the inequality (24)
by diag{I, 1,1, ‘I,u I} yield (22). The proof
follows from Theorem 1 immediately.

Remark 4. It is observed that the inequality (22)
islinearine and P; > 0 (i =1,2--- ) N), and thus
the standard LMI techniques can be exploited
to check the exponential stability of the closed-
loop system (10) when the controller is given. The



analysis result given in Theorem 3 is also useful
to determine the exponential stability of the free
system (1)-(2) (i.e., u(t) = 0).

Finally, the following result solves the addressed
stochastic stabilization problem of bilinear contin-
uous time-delay jump uncertain systems in terms
of quadratic matrix inequalities.

Theoremn 8. Consider the system (1)-(2) satis-
fying the Assumption 1 and Assumption 2. Let
p > 0 be a positive scalar. If there exist a scalar
e > 0 and N positive definite matrices P; > 0
(i € 8) such that the following quadratic matrix
inequalities

m N
AP+ A+ JEPTi + > i Py

k=1 j=1
+Pi(=2pB;B] + Ay AL + D;DT + > M; M) P;
+u ?NIN; + H'H;, + I <0 (25)

hold, then the uncertain time-delay jump system
(1)-(2) with nonlinear disturbances can be expo-
nentially stabilized (in the mean square) by the
memoryless state feedback controller of the form
(7) with the gain matrix

for all admissible parameter uncertainty.

Proof. The proof follows from Theorem 1 immedi-
ately by substituting (26) into (11).

Remark 5. If the matrices Ay4(r(t)) and B(r(t))
in system (1)-(2) contain parameter uncertainties,
say AAi(r(t)) and AB(r(t)), similar results to
Theorem 3 can also be obtained.

4. CONCLUSIONS

This paper has introduced an algebraic matrix
inequality approach to the robust stabilization for
a class of bilinear continuous time-delay uncertain
systems with Markovian jumping parameters. We
have focused on the design of a robust state-
feedback controller such that, for all admissible
uncertainties as well as nonlinear disturbances,
the closed-loop system is stochastically exponen-
tially stable in the mean square, independent of
the time delay. Sufficient conditions have been
derived to ensure the existence of desired robust
controllers, which are given in terms of the solu-
tions to a set of either linear matrix inequalities
(LMIs), or coupled quadratic matrix inequalities.
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