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Abstract: A general framework for function approximation from finite data is presented
based on reproducing kernel Hilbert spaces. Key results are summarised and the normal and
regularised solutions are described. A potential limitation to these solutions for large data
sets is the computational burden. An iterative approach to the least-squares normal solution
is proposed to overcome this. Detailed proofs of convergence are given.
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1. INTRODUCTION

Approximating functions given only finite data on the
function is a problem common to system identifica-
tion, nonlinear time series prediction and nonlinear
predictive control. Neural networks and the NAR-
MAX methodology are commonly used in these ar-
eas (Chen and Billings, 1992). Motivated by recent ac-
tivity in kernel methods (Vapnik, 1998) we propose an
alternative approach based on the idea of reproducing
kernel Hilbert spaces (RKHS).

Basic definitions and results on RKHS can be found in
the papers by Aronszajin (1950) and Wahba (1990) .
Additional useful references on RKHS include the
papers of Parzen (1961) and Kailath (1971) who
focus on linear time series analysis. For function ap-
proximation, RKHS are equivalent to the method of
potential functions (Aizerman et al., 1964) for which
iterative solutions based on stochastic approximation
are well known (Fu, 1968). More recently support
vector machines and Gaussian processes have been
introduced (Vapnik, 1998; Williams, 1999) which can
be considered as particular examples of approximation
in RKHS.

Our main contribution is an iterative solution to ap-
proximation in RKHS with finite data including de-
tailed proofs of convergence. The solution and as-

sumptions for convergence are well known (Frei3 and
Harrison, 1999) but this is the first time, to the authors’
knowledge, they have been presented for RKHS with
finite data. The proofs are presented in detail unlike
the basic assumption in Bertero (1988) which takes
results from the continuous operator case and applies
them to the finite data case without detailed proof. The
iterative approach presented in Section 5 uses the ba-
sic formulation for general Hilbert spaces (Bertero et
al., 1985; Bertero et al., 1988) and adapts the solution
and proof for continuous operators in RKHS (Weiner,
1965). The latter only considers the time series case
and not the more general function approximation
problem addressed here.

In Section 2 the general problem of approximation
in Hilbert spaces with finite data is described and
specialised to RKHS in Section 3. The normal and
regularised least-squares solutions to approximation
in RKHS are then given in Section 4. The iterative ap-
proach to the normal solution is described in Section 5
together with detailed proofs of convergence. Finally,
an illustrative system identification example is given
in Section 6.



2. APPROXIMATION IN HILBERT SPACES

We assume that we have some unknown function f of
interest but that we are able to observe its behaviour.
The function belongs to some Hilbert space ¥ defined
on some parameter set X. This set can be considered as
an input set in the sense that for x € X, f(x) represents
the evaluation of f at x.

A finite set of observations {z;}}, of the function is
made corresponding to inputs {xi}iN:l. It is assumed
that the space of all possible observations is a metric
space Z (to permit the quantification of the effects of
errors). Neglecting the effects of errors, the observa-
tions arise as follows

zi =L;f Q)

where {Li}N, is a set of linear evaluation functionals,
defined on ¥, which associate real numbers to the
function f. We can represent the complete set of
observations [zy,...,zn]" in vector form as follows

N

NoLf= _Z(Li f)ei )

where g; € RN is the ith standard basis vector.

In general L; permits indirect observation (e.g. via
derivatives of f), but we are concerned with the case

Zi = f(Xi) (3)
leading to the exact interpolation problem.

The approximation problem can then be formulated
as follows (Bertero et al., 1985): given a class F
of functions, and a set {z}N, of values of linear
functionals {Li}iN:l defined on &, find in F a function
f which satisfies Eq. 1.

By assuming that ¥ is a Hilbert space, and further,
the {L; }\; are continuous (hence bounded), it follows
from the Riesz representation theorem that we can
express the observations as (Akhiezer and Glazman,
1981)

Lif:<f,L|Ji>5r, i=1,...,N 4

where (-,-)# denotes the inner product in F. The
{Wi}N, are a set of functions each belonging to # and
uniquely determined by the functionals {Li}i’\‘:l.

The approximation problem can now be stated as
follows: given the Hilbert space of functions ¥, the
set of functions {Wi}N, C # and the observations
{zi}N,, find a function f € # such that Eq. 4 is
satisfied. This is an inverse problem, the solution of
which is given in Section 4. We now address the case
where F isa RKHS.

3. REPRODUCING KERNEL HILBERT SPACES

Formally a RKHS is a Hilbert space of functions on
some parameter set X with the property that, for each

X € X, the evaluation functional L;, which associates
f with f(x;), Lif — f(x), is a bounded linear func-
tional (Wahba, 1990). The boundedness means that
there exists a scalar M such that

ILif] = |f(xi)| < M|/ f||¢ forall finthe RKHS

where || - || is the norm in the Hilbert space. But to
satisfy the Riesz representation theorem the L; must be
bounded, hence any Hilbert space satisfying the Riesz
theorem will be a RKHS.

We use Kk(xi,-) to refer to j; (i.e. the evaluation of
the function k(xj,-) = W at xj is k(xi,x;)). The inner
product (k(xi,-),k(Xj,))# must equal k(x., j) by the
Riesz representation theorem. This leads to the follow-
ing important result: k(x;, ;) is positive definite since,
forany Xq,...,Xn € X, &,...,an € R,

Za.aJ Xi.X Za.aJ (xi,-),k
:HZai Xi,',“;;ZO

where || - || # is the corresponding norm in the RKHS.
The following is then a standard theorem on RKHS.

XJJ')>7

Theorem 3.1.  (Aronszajin, 1950) To every RKHS
there corresponds a unique positive-definite func-
tion (the reproducing kernel) and conversely given a
positive-definite function k on X x X we can construct
a unique RKHS of real-valued functions on X with k
as its reproducing kernel.

We then have a more common definition for RKHS.

Definition 3.1. (Parzen, 1961) A Hilbert space ¥ is
said to be a reproducing kernel Hilbert space, with re-
producing kernel k, if the members of F are functions
on some set X, and if there is a kernel k on X x X
having the following two properties; for every x € X
(where k(-,x2) is the function defined on X, with value
at xq in X equal to k(x1,X2):

(1) k(-,x2) € F; and
) (f,k(-,x2)) 7 = F(x2)

forevery f in .

We can then associate with k(-,
of functions of the form

-) a unique collection

L

()—i; k(xi, ) ()

for L € Z* and ¢; € R. A well defined inner product
for this collection is (Wahba, 1990)

<zaik(xi, ), ijk(xj, -)> =

F

Za. K(xi, ), K(xj, )y = S aibjk(xi ;).
]



For this collection, norm convergence implies point-
wise convergence and we can therefore adjoin all lim-
its of Cauchy sequences of functions which are well
defined as pointwise limits (Wahba, 1990). The result-
ing Hilbert space is then a RKHS.

Suppose that k(x1,x2) is continuous and
//k (X1,X2)dx1dxp < o0 (6)

then there exists an orthonormal sequence of contin-
uous eigenfunctions {@ };>; in L, (X) with associated
eigenvalues A; > A, > - .- > 0 such that (Wahba, 1990)

/Xk(xl,xz)(ﬂ(xz)dxz=7\i(ﬁ(xl)a i=12,... (7)
It can then be shown that if we let
fi= [ f(9@00ax, ®)
then f € 7 if and only if (Wahba, 1990)

Z—<oo 9)

and
9] f2
191 = 3 5 (10)
Expanding f in a Fourier series
X) = z fig(x). (112)
I

For proofs of the foregoing results see Wahba (1990) .

4. NORMAL AND REGULARISED SOLUTIONS

Considering still the error free case, returning to the
approximation problem of solving for f € ¥ in Eq. 4,
we now assume that 7 is a RKHS and therefore the
i are given by k(xj,-). The problem then is to find
a function in the RKHS of the form, Eqg. 5, which
satisfies the data at the corresponding points. The
solution will not be unique since we can only derive
a finite number of values of f from the observations.
Assuming that the k(x;, -) are linearly independent we
can form a finite dimensional space Fn, a subspace
of F. We can add to any solution in Fy any function
orthogonal to this space to obtain a new solution.

We must then solve the following linear system

Kc =2z (12)
where K is the kernel Gram matrix with elements
Kij = (k(xi, ), k(xj, -)) 5 = k(Xi, ;).
This solution is the “normal” solution, f*, and is
guaranteed to exist and be unique as, within the set of

solutions, there will always be one of minimal distance
from the null element of .

It can be shown that the solution depends continuously
on the data in the sense that, for a variation AzN in zN
and corresponding variation Af* in £, ||[Af*]| — 0

when ||AzN||z — 0 (Bertero et al., 1985). In the strict
mathematical sense then, the problem of determining
f* is well-posed. For large data sets, where the Gram
matrix will have many small eigenvalues, much of
the data does not effectively add any independent
information about the function. In the presence of
errors the problem will therefore be ill-conditioned.

If the functions k(xi, -) are effectively dependent and
the data z; are affected by errors then, in general, the
normal solution no longer exists. Instead we must find
a solution by minimising the norm of the errors in Z,
i.e. findan f € ¥ such that

_§\||f(xi)—zi||zzminimum. (13)

However, this may still be ill-conditioned so we use
instead, a solution corresponding to the minimiser of

N
dalfl= 3 106 2%+l @0

where p € RT is known as the regularisation parame-
ter. We can rewrite Eq. 14 in terms of Egs. 10 and 11

N 2 2
figix) -z +pY - (19)

iZ\ Z 2 2)‘]
Considering the case where Z= Ly, i.e.||-||z=]|"]|2

then to minimise Eqg. 15 we minimise w.r.t. the f;. The
solution for c is then given by

(K+ple=2" (16)
and
N
f(x) = _Zcik(x,xi). (17)

5. ITERATIVE SOLUTION

Consider now the case where we wish to compute the
solution iteratively. The adjoint operator of L, L*, is
defined through

(L, 2Ny = (f, LMY (18)

and transforms the observation vector zN into an el-
ement of F, or more precisely the finite dimensional
subspace #n. The adjoint operator in a RKHS is de-
termined by (Appendix A)

N
= .Zk(xi, )zi (19)

and also we show that
N N

L=LL*= k(xi,xj)ejel 20
leiz (xi, Xj)eje (20)

which is equivalent to the kernel matrix K. We can re-
express Egs. 16 and 17 as

f(x) = L*(LL* +pl) 712N (21)
In the case where p = 0 the solution is the minimum of

|ILf —2zN||z which is given by the solution of L*Lf =
L*zN. We denote this solution by f.



Consider now an iterative solution for T, then, defin-
ing a sequence of estimates as { f"}};_,, the method of
successive approximations estimates f™* in terms of
fMas
L LRV (22)
where f0 ¢ 7, y, € Rt and f"is the residual
fr— L — LN, (23)
In practice the iterations must be made on finite di-
mensional objects. Returning to the basic solution in

RKHS, Eqg. 17, f" can be expressed, using the adjoint
operator, as a linear combination of the ¢;

£ = L (24)
where ¢" = [c],...,cq]T. Also
fr=L*e", &"=LL*c"—2N. (25)

The method of successive approximations estimates
the coefficients as

n+1 — Cn _ yné'n (26)
where the y;, are chosen as below. The function at each
iteration is determined by f" = L*c" = ZJ 1C7K(Xj, ).

To complete the iterative scheme we need to define a
schedule for the parameters y, and together with this
prove convergence in the sense that || f"||> — 0 when
n— oo,

erN ¢

Theorem 5.1. Let {yn}n, satisfy:

(1) 0 < ¥n < 2/Amax, VN, Where Apux is the largest
eigenvalue of LL* = K; and

(2) Yran=0

Define the iteration f" =
gether with 0 € # (i.e. c®

Lren = 5N, k(s ) to-
€ RN) arbitrary, ¢! =

c"—yne", €M = LL*c" —zN, then
An|(2
1715 = ILenf —o.
asn — o,
Proof.

(a) Monotonicity.
ff'l—l—l L* ff'l—l—l L*ZN

but fH1 = L*¢™1 and ¢™1 = ¢" — yue"
fHL = L*(c" — yn&") from which

, therefore

frH—l L* LL*( Vné‘n) _ L*ZN

=L L — LN — L L
Define
en-1112
A % = 11715 = 1 1%
= |15 = 1" = yaL* L1
and thus

A N5 = 1% — 105 — VAL, L™
+2yn(f”,L*Lf Y3
:2Vn<Fn;L*Lfn>}'_Vr21<L*LFn;L*LFn>}'
= 2yn(L ™, LM 5 — A(LL* L L") 5
using Eg. 18. Now
(L LEm
(LL*Lfn LM 5

D=k
a Z’j\l:l( M2\
where A;j is the jth eigenvalue of LL* = K. Eq. 27
therefore satisfies
2(Lfn LfM 25N (fm? 2
(LLALF LM 2 = Nax 3000 (F1)2 7 A

(27)

But by assumption yn < 2/Anax therefore
A% = 2yn(L " LT 5 —3(LL LT LT, > 0

O
(b) Convergence.

It was shown above that the residuals satisfy

frHl = LU — ALy 7 — L*2N
hence
fHl = 1yl L " = (1 — ypL*L) 7
n n
(1= yiL*L) (I-wL"L)g
=1 =1

where g = f° ¢ F which can be expanded as (c.f.
Eq. 11)

g=> g@(Xx) (28)
and

L'Lg =) gidia(x) (29)

where A now refer to the eigenvalues of L*L .

We can then write
n n
| — kl-* 1 Vk)\
I =2l
and hence

n
1726 = | [0 - Wl

(c.f. Eq. 10). Using the assumed inequality on yy

2\
1- L <l-yAi<l=(1-yN)2<

max

1 Note that L*L has the same positive eigenvalues as LL* with
the same multiplicity. We therefore use the same notation to refer
to the eigenvalues of each, although strictly L*L possesses more
eigenvalues. The main result applies only to Ayax Which is common
to both (Bertero et al., 1985).



Then forany L € Z+

15 <3 9 Aot s &

7_i;}‘ik:1 < iZL)‘i.

For fixed L, let n — oo, and since ${2,yi = o (by
assumption) and (1 — yiAi)? < 1 the first term tends
t0 0. Now let L — ©, g € F = $2,9%/Ai < o, and
therefore the second term is the tail of a convergent
series and therefore tends to 0.0

Defining further c® = 0 (and therefore fO = 0) then
for any n, || "||¢ < ||f™1||# and therefore || f")| 7 <
IIfT)|# (Bertero et al., 1988). It follows that the
method of successive approximations defines a regu-
larisation scheme where the inverse of the number of
iterations plays the role of the regularisation parame-
ter.

6. EXAMPLE

As an example of the application of the iterative
RKHS approach consider the discrete-time nonlinear
dynamical system (Billings and Voon, 1986)

y(t) =0.5y(t— 1)+ 0.3y(t— Lyu(t—1)
40.2u(t — 1) +0.05y*(t — 1) 4 0.6u%(t — 1)

with the observations generated as z(t) = y(t) + £(t)
where £(t) ~ N(0,0.1) (note that this is a very noisy
signal with a signal-to-noise ratio of approximately
30%). In identifying the system the data were gener-
ated from an initial condition of y(1) = 0.1 and the
control input was sampled as u(t) ~ N(0.2,0.1). The
RKHS approach was then applied to estimate a model
of the form y(t) = f(y(t —1),u(t—1)) (in practise the
exact model structure would normally be determined
from the data).

Throughout, the reproducing kernel used is the Gaus-
sian function, k(xi,Xj) = exp(—B||xi — j||3) where
B € RT. Ten different sets of training and testing data
with 500 samples each were used. In order to estimate
B and A for the static case a further 500 independent
validation data were used. An appropriate value of 3
was decided on as 0.1 and the A corresponding to the
minimum of the validation MSE was 0.02. A value of
yn of 0.002 was chosen which always ensured that the
conditions in Theorem 5.1 were satisfied.

Static and iterated models were then estimated for the
ten data sets, for the iterative models 10,000 iterations
were performed. An example prediction over the first
100 samples of one of the test sets for an iterative
model is shown in Figure 1. In all cases the static and
iterative models were very close as can be seen in Fig-
ure 2 which compares the estimated parameters. Note
that the static parameters are scaled by 0.3257 which
is necessary due to the effect of the regularisation.

The average MSE over the data sets for the static and
iterative solutions are 0.0011 and 0.0012 respectively

6 80 100
t (samples)

Fig. 1. Typical predicted output (‘-") for the iterative
solution and actual noise free true output (- -”).

10

0 20 40 . éO éO 100
|
Fig. 2. Example comparison of first 100 parameters

for iterative ("-") and static (’- -’) solutions. Note
the static parameters are scaled by 0.3257.

which compares favourably to the noise variance of
0.01. The average performance of the static solution is
marginally better than the iterative solution. However,
in four of the ten data sets the iterative solution was
better. This is a feature of the particular test sets used.

7. CONCLUSIONS

A framework for normal and regularised function ap-
proximation in the presence of finite data has been
presented based on the idea of RKHS. The function
of interest is treated as belonging to a RKHS, which
is uniquely determined by a positive definite function
called the reproducing kernel. In certain instances (e.g.
large data sets) it may be necessary to solve iteratively
for the function. An iterative approach to the least-
squares, normal solution was presented, including de-
tailed proofs of convergence, using the method of
successive approximations. The approach was demon-
strated using a system identification problem.
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Appendix A. PROOFS RELATING TO ADJOINT
OPERATORS IN RKHS

Consider the operator L : F — Z where Z is the
N dimensional Euclidean space with inner product

(9,h)z= 3N gihi, forg,h € z, then, for N € z, f €
F the adjoint operator L* is defined by

<LfaZN>Z: <f,L*ZN>5r (A1)

and transforms the observation vector z\ into an el-
ement of F or more precisely the finite dimensional
subspace 7n. In a RKHS the operator L acting on f
has the form Lf = N, (f,K(xi,-)) #-€i, where g; € RN
is the ith standard basis vector. The following results
apply to the operator L and its adjoint L*.

Theorem A.1. Given the operator L and its adjoint L*
defined by

<LfaZN>Z = <f,L*ZN>5r (A2)
then in a RKHS with Lf = SN (f k(x;,)) g - & the
adjoint L* is given by
N

LN = _Zzik(xi, ). (A.3)

Proof. Solving for the LHS of Eq. A.2
N N

<Lf’ZN>Z: Z<f,k(xi,')>5f'zi = Zf(xi)zi' (A4)

By assumption we set L*zN = SN zik(x;, -) and solv-
ing for the RHS of Eq. A.2

N N
(f,02Y) :<f, zik<xi,~)> = S a(f ki, ))
7=\ b)) =2 4
(A5)

the latter due to the linearity property of the inner
product. But this is simply equal to TN, z; f(x;).0

Theorem A.2. The operator LL* is equal to the kernel
(Gram) matrix K, i.e.

N N
LL* = k(xi,xj)ejef . (A.6)
J;i; i Xj)ejei

Proof. The operator LL* acting on zN can be ex-
pressed, using the previous results, as follows:

N
LL*Z2N =L ( zik(xi,-))

Il
Il z
=
Z _/\
Il z
N
=
—
’ <
~
=
P
_><
N
~——
X
L

I
Mz
N
S~
=
=
x
=
~
=
x
=
S~
\q
@

I
=

Il
T
E'Mz I

z

Zik(

x

Xj)ej

and therefore the operator LL* = Z’j\‘:l SN Kk(xi,xj)ejel .0



