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Abstract: We study classical and higher infinitesimal symmetries of control
systems. Defining equations for classical external symmetries are obtained in the
general and affine cases. For computing higher symmetries we suggest a simple
procedure involving algebraic operations and differentiation but not integration.
Relations between classical symmetries and first integrals of control systems are
established. An example is considered to illustrate our methods.
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1. INTRODUCTION

Consider a nonlinear control system

ẋ = f(t, x, u), (1)

where x = (x1, . . . , xn) ∈ IRn is the state, u =
(u1, . . . , um) ∈ IRm is the control input, f : E =
IR1×IRn×IRm → IRn is a smooth (C∞) function,
ẋ ≡ dx/dt. Let rank(∂f/∂u) = m. Following
(Aranda—Bricaire et al, 1995) and (Fliess et al,
1995) we regard system (1) as an underdetermined
system of ordinary differential equations. This
viewpoint allows to consider system (1) in the
framework of geometrical theory of differential
equations (see Krasil’shchik et al, 1999).

In this framework, system (1) is naturally re-
lated to two manifolds (E and E∞ below) with
two distributions. The first manifold (E) is finite-
dimensional, the second one (E∞) is infinite-
dimensional. Both distributions are called the
Cartan ones. A map from one of these manifolds
to itself is called a symmetry of system (1) if the
map preserves the corresponding Cartan distribu-
tion. In the first case (E), a symmetry is called
classical. In the case E∞, it is called higher. Any
classical symmetry generates a higher symmetry.

Any symmetry of system (1) takes each solution
of (1) to a solution again.

An infinitesimal version of the above construc-
tion leads to the concepts of infinitesimal classical
and higher symmetries. If two control systems are
static feedback equivalent, then the Lie algebras of
their classical infinitesimal symmetries are isomor-
phic. Similarly, an equivalence by endogenous dy-
namic feedback generates an isomorphism of the
corresponding Lie algebras of higher infinitesimal
symmetries.

This paper is devoted to methods for calculation
of classical and higher infinitesimal symmetries
of control systems. To find classical infinitesimal
symmetries, one needs to solve some system of
partial differential equations. We give this system
in the general (see Theorems 1 and 2) and affine
(see Theorems 5 and 2) cases. Our method for
calculation of higher infinitesimal symmetries is
based on the infinitesimal Brunovsky form intro-
duced in (Aranda—Bricaire et al, 1995). We assign
a higher symmetry to an arbitrary collection of m
functions and a classical symmetry of some system
of ordinary differential equations (see Theorem 7
for details).
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The results exposed in this paper were applied
by the authors to the decomposition problem for
control systems (Kanatnikov et al, 1994) and the
flatness problem (Chetverikov, 2001).

The paper is organized as follows. Classical sym-
metries are studied in Sections 2–5. The method
for calculation of higher infinitesimal symmetries
is presented in Sections 6–8. In Sections 2 and
6 we give the two geometric interpretations of
control systems (E and E∞ respectively). The
conditions for classical infinitesimal symmetries
are obtained in Section 3 in the general case and in
Section 5 in the affine case. A relationship between
classical symmetries and first integrals of control
systems is discussed in Section 4. In Section 7
a construction introduced in (Aranda—Bricaire et
al, 1995) is generalized to the nonautonomous
case. This generalization is used in Section 8,
where higher infinitesimal symmetries of control
systems are described. Finally, Section 9 contains
an example of calculation of classical and higher
infinitesimal symmetries.

2. THE FIRST GEOMETRIC
INTERPRETATION

System (1) determines the trivial bundle π: E →
IR1, π(t, x, u) = t. Consider the 1-jet space J1π
of this bundle (see Krasil’shchik et al, 1999). Let
(t, x, u, p, q) be local coordinates on J1π with
p = (p1, . . . , pn) corresponding to ẋ(t), q =
(q1, . . . , qm) corresponding to u̇(t). System (1) can
be written as p = f(t, x, u). Therefore it can be
interpreted as the submanifold

E = ©(t, x, u, p, q) ∈ J1π| p− f(t, x, u) = 0ª
of codimension n in J1π. Each section (x(t), u(t))
of the bundle π has a prolongation onto J1π as a
curve lxu of the form t 7→ (t, x(t), u(t), ẋ(t), u̇(t)).
A section (x(t), u(t)) is a solution of (1) if and
only if lxu ⊂ E .
The Cartan distribution on J1π is determined by
the 1-forms ωi = dxi − pidt, τj = duj − qjdt,
i = 1, 2, . . . , n, j = 1, 2, . . . ,m. The curves lxu
are integral curves of the Cartan distribution. Let
π1: J

1π → IR1 be the natural projection, i. e.,
π1(t, x, u, p, q) = t. It is known (see Krasil’shchik
et al, 1999) that if a one—dimensional integral
submanifold of the Cartan distribution is locally
maximal, then it locally coincides with a curve lxu
(except for singular points of the map π1: lxu →
IR1). These manifolds are called R-manifolds. We
shall call R-manifolds contained in E generalized
solutions of system (1). The restriction of the Car-
tan distribution on J1π to E is called the Cartan
distribution on E . Generalized solutions are locally
maximal integral curves of this distribution.

A diffeomorphism from J1π to itself is called a
Lie transformation if it preserves the Cartan dis-
tribution. Lie transformations of J1π send any R-
manifold to an R-manifold again. If a Lie trans-
formation translates the submanifold E into itself
(and consequently any generalized solution to a
generalized solution again), then it is called a
(classical external) symmetry of (1). It can be
proved (see Krasil’shchik et al, 1999) that in the
case n +m > 1 each Lie transformation is lifted
from J0π = E.

One stated above is transferred on one—parameter
groups of Lie transformations. These groups are
connected with their infinitesimal generators –
vector fields named Lie fields. In our case, when
Lie transformations are lifted from the manifold
E, Lie fields are also obtained as lifting of vector
fields on E. Namely if a vector field X on E has
the form

X = ξ(t, x, u)
∂

∂t
+

nX
i=1

ηi(t, x, u)
∂

∂xi

+
mX
j=1

ϑj(t, x, u)
∂

∂uj
, (2)

then its lifting X(1) on J1π is the vector field

X(1) = X +
nX
i=1

ζi(t, x, u, p, q)
∂

∂pi

+
mX
j=1

εj(t, x, u, p, q)
∂

∂qj
, (3)

where ζ = (ζ1, . . . , ζn) and ε = (ε1, . . . , εm) are
obtained by formulas

ζ = Dη − pDξ, ε = Dϑ− qDξ, (4)

with η = (η1, . . . , ηn), ϑ = (ϑ1, . . . ,ϑm), and

D =
∂

∂t
+

nX
i=1

pi
∂

∂xi
+

mX
j=1

qj
∂

∂uj

being the total derivative with respect to t on J1π
(see Krasil’shchik et al, 1999).

If Lie field (3) is tangent to the submanifold E ,
then Lie transformations of its one—parameter
group translates E into itself. In this case the
vector field is called an (infinitesimal classical
external) symmetry of system (1). The condition
necessary and sufficient to field (3) being tangent
to E is the relation

X(1)(pi − fi)|E = 0, i = 1, 2, . . . , n, (5)

where (f1, . . . , fn) = f .



3. DEFINING EQUATIONS FOR CLASSICAL
SYMMETRIES

Using (2)—(4) relation (5) in coordinate terms
reduces to

ξ
∂f

∂t
+

∂f

∂x
η +

∂f

∂u
ϑ− ∂η

∂t
− ∂η

∂x
f − ∂η

∂u
q

+ f

µ
∂ξ

∂t
+

∂ξ

∂x
f +

∂ξ

∂u
q

¶
= 0, (6)

the latter being valid for all (t, x, u, q). System (6)
is linear with respect to q and therefore decom-
poses into two subsystems

ξ
∂f

∂t
+

∂f

∂x
η +

∂f

∂u
ϑ− ∂η

∂t
− ∂η

∂x
f

+ f
∂ξ

∂t
+ f

∂ξ

∂x
f = 0, (7)

∂η

∂u
− f ∂ξ

∂u
= 0. (8)

We shall call equations (7)—(8) the defining equa-
tions for classical infinitesimal symmetries of sys-
tem (1).

Any symmetry (2)—(3) of a control system is uni-
quely determined by its components ξ, η1, . . . , ηn
(see (4) and (10)). Let

H = ξ
∂

∂t
+

nX
i=1

ηi
∂

∂xi
, F =

∂

∂t
+

nX
i=1

fi
∂

∂xi
.

Denote by Fu the distribution generated by
fields Fj = [∂/∂uj , F ], j = 1, . . . ,m. Note that
dimFu = rank(∂f/∂u) = m.

Theorem 1. (Kanatnikov et al, 1994) System (1)
possesses a symmetry X of the form

X = H +
mX
j=1

ϑj(t, x, u)
∂

∂uj
(9)

if and only if the vector field [F,H] − F (ξ)F lies
in the distribution Fu and system (8) holds. In
this case, the components ϑ1, . . . ,ϑm of X are
uniquely determined by the condition

[F,H]− F (ξ)F =
mX
j=1

ϑjFj . (10)

Theorem 2. (Kanatnikov et al, 1994) If a vector
field X (2) is a symmetry of system (1) and
rank(∂f/∂u) ≥ 2 everywhere on E, then the
components ξ, η1, . . . , ηn of X are independent of
u and system (8) is trivial.

4. FIRST INTEGRALS OF CONTROL
SYSTEMS AND SYMMETRIES

A first integral of system (1) is a function α(t, x, u)
which is constant along any solution (x(t), u(t))

of the system. In other words, a first integral is
a function α with its time—derivative α̇(t, x, u)|(1)
according to system (1) being equal to 0. Hence

∂α

∂uj
= 0, j = 1, . . . ,m,

and

F (α) =
∂α

∂t
+

nX
i=1

fi
∂α

∂xi
= 0.

First integrals of system (1) form a ring under the
standard addition and multiplication.

Theorem 3. (Kanatnikov et al, 1994) If a vector
field X is a symmetry of system (1) then for each
first integral α the field αX is also a symmetry of
system (1). The set of all symmetries of system (1)
is a module over the ring of first integrals.

Theorem 4. (Kanatnikov et al, 1994) The family
of all symmetries X of system (1) of the form (2)
with ξ being a first integral, is involutive.

5. AFFINE SYSTEMS

Affine control system

ẋ = a(t, x) +
mX
j=1

bj(t, x)uj , (11)

where a, b1, . . . , bm: IR
1×IRn → IRn are smooth

functions, corresponds uniquely to vector fields

A=
∂

∂t
+

nX
i=1

ai
∂

∂xi
,

Bj =
nX
i=1

bij
∂

∂xi
, j = 1, . . . ,m,

with (a1, . . . , an) = a(t, x), (b1j , . . . , bnj) =
bj(t, x). The field F has the form

F = A+
mX
j=1

ujBj .

Denote by B the distribution generated by fields
B1, . . . , Bm.

Theorem 5. (Kanatnikov et al, 1994) Let the com-
ponents ξ, η1, . . . , ηn of a vector field H be inde-
pendent of u. A vector field X of the form (9) is a
symmetry of system (11) if and only if the vector
fields

[A,H]−A(ξ)A, [Bk,H]−Bk(ξ)A (12)

for k = 1, . . . ,m lie in the distribution B. The
components ϑ1, . . . ,ϑm of X are uniquely deter-
mined by the conditions



ϑk = ϑ
(0)
k (t, x) +

mX
j=1

ϑ
(1)
kj (t, x)uj − F (ξ)uk,

[A,H]−A(ξ)A =
mX
j=1

ϑ
(0)
j Bj , (13)

[Bk,H]−Bk(ξ)A =
mX
j=1

ϑ
(1)
jk Bj , k = 1, . . . ,m.

6. THE SECOND GEOMETRIC
INTERPRETATION

For system (1), the diffiety (or infinitely prolonged
system) is an infinite-dimensional manifold E∞
with coordinates

(t, x, u(0), u(1), . . . , u(l), . . .), (14)

where u(l) denotes the vector variable correspond-
ing to the lth order derivative of u with re-
spect to t. The Cartan distribution on E∞ is one-
dimensional and is determined by the vector field

D =
∂

∂t
+ f(t, x, u(0))

∂

∂x
+ u(1)

∂

∂u(0)

+ . . .+ u(s+1)
∂

∂u(s)
+ . . . , (15)

which is called the total derivative with respect to
t on E∞. The Lie derivative along D is simply
the time—derivative according to system (1). We
denote by Dω the Lie derivative of the form ω
along D.

A smooth function on E∞ is a function smoothly
depending on a finite (but arbitrary) number of
coordinates (14). By F(E) denote the IR—algebra
of smooth functions on E∞. Differential forms on
E∞ are finite sums, whereas vector fields may be
given by infinite sums with coefficients in F(E)
(see, for example, (15)).

A vector field of the form hD, h ∈ F(E), is
called horizontal. A vector field on E∞ without
a term ∂/∂t is called vertical. A vertical field X
on E∞ is called a higher (infinitesimal) symmetry
of system (1) if [X,D] = 0.

A motivation of the last definition is the following.
A vector field on E∞ is called integrable if it pos-
sess a one—parameter group of diffeomorphisms (a
flow). Since E∞ is an infinite-dimensional man-
ifold, vector fields on E∞ are not usually inte-
grable. Nevertheless let us first consider an inte-
grable field Y . Suppose all diffeomorphisms of its
flow take each solution of (1) to a solution again.
Since solutions of (1) are integral curves of the
field D, we have

[Y,D] = aD (16)

for some function a on E∞. Consider now an
arbitrary (may be nonintegrable) vector field Y on

E∞ satisfying (16). It is uniquely represented as
the sum of a vertical field X and a horizontal field
hD for some function h on E∞, i. e., Y = X+hD.
Condition (16) means that [X,D] = 0 and h is an
arbitrary function on E∞. Thus the set of all fields
satisfying (16) is split in equivalence classes and
each class contains a higher symmetry.

7. INFINITESIMAL BRUNOVSKÝ FORM
FOR NONAUTONOMOUS SYSTEMS

Here we remind some concepts from (Aranda—
Bricaire et al, 1995) and simultaneously generalize
them to the nonautonomous case.

Let C1Λ(E) be the F(E)—module of differential
1—forms on E∞ belonging to the codistribution
corresponding to the Cartan distribution, i. e.,

ω ∈ C1Λ(E) ⇔ ω(D) = 0.

Define the operator dC : F(E) −→ C1Λ(E) by the
rule f 7→ df −D(f)dt. The operator dC possesses
many properties of the differential d. In particular,

dCf(x, u, . . .) =
X
i

∂f

∂xi
dCxi+

X
j

∂f

∂uj
dCuj + . . . .

However dCf = 0 iff f is a function of t.

Obviously, in coordinate system (14) the module
C1Λ(E) is generated by forms
dCx1, . . . , dCxn, dCu

(0)
1 , . . . ,

dCu(0)m , . . . , dCu
(l)
1 , . . . , dCu

(l)
m , . . . .

Denote by H0 the F(E)—submodule of C1Λ(E)
generated by forms dCx1, . . . , dCxn. By definition,
put

Hk+1 = {ω ∈ Hk|Dω ∈ Hk}, k ≥ 0.
The dimension of some submodule H ⊂ C1Λ(E)
at a point θ ∈ E∞ is the dimension of the space of
covectors {ωθ|ω ∈ H}. A point θ ∈ E∞ is called
Brunovský—regular (or shortly B—regular) if in a
neighborhood of θ one has rank(∂f/∂u) = m and
for any k > 0 the dimensions of Hk and Hk +
D(Hk) are constant.

Note that the dimension of Hk at any point
is finite and Hk+1 ⊂ Hk. It follows that in a
neighborhood of a B—regular point there exists
an integer k∗ such that Hk+1 = Hk = Hk∗
for k ≥ k∗. By ρ denote the dimension of Hk∗

in a neighborhood of a B—regular point under
consideration.

Remark 1. In the autonomous case we can con-
sider only functions, differential forms, and vector
fields that are independent of t. In this case,
dCf = df , E∞ is a manifold with coordinates
(x, u(0), . . . , u(l), . . .) (without t), C1Λ(E) is iden-
tified with Λ1(E∞). Also, all concepts and facts



from this section are transformed to concepts and
facts from (Aranda—Bricaire et al, 1995).

Theorem 6. In a neighborhood of a B—regular
point for system (1) there exist ρ functions
χ1, . . . ,χρ of t, x1, . . . , xn andm forms ω1, . . . ,ωm
from H0 such that
(1) {dCχ1, . . . , dCχρ} is a basis of the module Hk∗ ;
(2) the functions χ1, . . . ,χρ and their total deriva-
tives with respect to t satisfy a system of the form

{χ̇i = γi(t,χ1, . . . ,χρ), i = 1, . . . , ρ; (17)

(3) {dCχ1, . . . , dCχρ} ∪ {Dj(ωk)|k = 1, . . . ,m, j ≥
0} is a basis of the module C1Λ(E).

The proof is similar to that of the correspond-
ing theorem from (Aranda—Bricaire et al, 1995).
Moreover, the infinitesimal Brunovský form given
in the same work for the autonomous case can be
generalized to the nonautonomous case.

8. HIGHER SYMMETRIES OF CONTROL
SYSTEMS

By Theorem 6, it follows that in a neighbor-
hood of a B—regular point there exist functions
{gl,i, hl,k,j} on E∞ such that

dCxl =
ρX
i=1

gl,idCχi +
mX
k=1

rkX
j=0

hl,k,jD
jωk (18)

for any l = 1, . . . , n + m and some r1, . . . , rm,
where xl = ul−n for l = n+ 1, . . . , n+m.

Theorem 7. (Chetverikov, 1999) In a neighbor-
hood of a B—regular point any higher symmetry
of system (1) has the form

�ϕ =
nX
i=1

ϕi
∂

∂xi
+

mX
i=1

∞X
j=0

Djϕi+n
∂

∂u
(j)
i

, (19)

where

ϕl =

ρX
i=1

gl,iai +
mX
k=1

rkX
j=0

hl,k,jD
jψk, (20)

for l = 1, . . . , n+m, ψ1, . . . ,ψm are arbitrary func-
tions on E∞, a1, . . . , aρ are arbitrary functions of
t,χ1, . . . ,χρ such that

∂ai
∂t

+

ρX
α=1

γα
∂ai
∂χα

=

ρX
α=1

aα
∂γi
∂χα

, (21)

for i = 1, . . . , ρ.

The vector function ϕ = (ϕ1, . . . ,ϕn+m) is called
the generating function of symmetry (19).

Remark 2. The vector field

ρX
α=1

aα
∂

∂χα
(22)

is a symmetry of the system of ordinary differen-
tial equations (17). Condition (21) means that the
commutator of the fields (22) and

∂

∂t
+

ρX
α=1

γα
∂

∂χα

vanishes.

9. EXAMPLE

Find classical and higher symmetries of the con-
trol system 

ẋ1 = tx21
ẋ2 = x4u1
ẋ3 = u1
ẋ4 = u2.

(23)

In the case of classical symmetries, we use results
of Section 5. We have n = 4, m = 2, and

A =
∂

∂t
+ tx21

∂

∂x1
.

The distribution B is generated by fields

B1 = x4
∂

∂x2
+

∂

∂x3
, B2 =

∂

∂x4
.

The corresponding codistribution is generated by
forms

α1 = dt, α2 = dx1, α3 = dx2 − x4dx3.
By Theorem 2, it follows that the components
ξ, η1, . . . , η4 of a desired symmetry X are inde-
pendent of u1 and u2. By Theorem 5, the defining
equations for symmetries can be expressed as

αi(Y ) = 0 (24)

for any field Y of the form (12) and i = 1, 2, 3.
Since equalities (24) are trivial in the case i = 1,
we obtain 6 differential equations for the compo-
nents ξ, ηi. Introducing the functions

z = η1 − tx21ξ, v = η2 − x4η3, (25)

these equations can be written as

A(z) = 2tx1z, B1(z) = 0, B2(z) = 0, (26)

A(v) = 0, B1(v) = η4, B2(v) = η3. (27)

Solving the system of equations (26), we get

z = a
³
t2 +

2

x1

´
x21,



where a is an arbitrary smooth function of one
variable. From the first equation in (27) it follows
that

v = b
³
t2 +

2

x1
, x2, x3, x4

´
,

where b is an arbitrary function of four variable.
Using the second and the third equations in (27),
we get expressions for η3 and η4. Finally, us-
ing (25), we find η1 and η2.

Thus any infinitesimal classical symmetry of sys-
tem (23) has the form

X = ξ
∂

∂t
+

4X
i=1

ηi(t, x, u)
∂

∂xi
+

2X
j=1

ϑj(t, x, u)
∂

∂uj

and is uniquely determined by functions a, b, and
ξ. The component ξ is an arbitrary function of
t, x1, . . . , x4. Besides,

η1 = tx
2
1ξ + a

³
t2 +

2

x1

´
x21,

η2 = v + x4
∂v

∂x4
,

η3 =
∂v

∂x4
,

η4 = x4
∂v

∂x2
+

∂v

∂x3
.

From (10) it follows that

ϑ1 = F (η3)− F (ξ)u1, ϑ2 = F (η4)− F (ξ)u2,
where F = A+ u1B1 + u2B2.

To obtain higher symmetries of system (23), we
use results of Section 7 and 8. In our case, any
element of H0 has the form

ω =
4X
i=1

fidCxi, fi ∈ F(E).

We get

Dω =
4X
i=1

DfidCxi + f12tx1dCx1 + f2(x4dCu1

+ u1dCx4) + f3dCu1 + f4dCu2. (28)
IfDω ∈ H0, then the coefficients of dCu1 and dCu2
in (28) vanish. Whence

f2x4 + f3 = 0, f4 = 0.

Therefore the moduleH1 is generated by dCx1 and
dCx2 − x4dCx3.
In the same way, the condition

D
³
f1dCx1 + f2 (dCx2 − x4dCx3)

´
∈ H1,

means that f2 = 0 and dCx1 ∈ H2. We see that
k∗ = 2 and dCx1 ∈ Hk∗ . Thus ρ = 1,χ1 =
x1, system (17) consists of the first equation of
system (23), and ω1 = dCx2 − x4dCx3 ∈ H1. The
1—form ω2 should be chosen such that

{dCχ1,ω1,Dω1,ω2}

is a basis of the module H0. We put ω2 = dCx3. In
this case, the set of B—regular points is {u1 6= 0}
and we obtain

dCx1 = dCχ1, dCx2 = ω1 + x4ω2,

dCx3 = ω2, dCx4 =
1

u1
Dω1 +

u2
u1

ω2,

dCu1 = Dω2, dCu2 = D (dCx4) .

Condition (21) has the form

∂a

∂t
+ tx21

∂a

∂x1
= 2tx1a.

Solving the last equation and using Theorem 7, we
get generating functions of all higher symmetries:

ϕ1 = x
2
1a
³
t2 +

2

x1

´
, ϕ2 = ψ1 + x4ψ2,

ϕ3 = ψ2, ϕ4 =
1

u1
Dψ1 +

u2
u1

ψ2,

ϕ5 = Dψ2, ϕ6 = Dϕ4,

where a is an arbitrary function of one variable,
ψ1, ψ2 are arbitrary functions on E∞.
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