
A FLEXIBLE SIMULATION APPROACH FOR MULTIROBOT SYSTEMS

A. Cruz, V. F. Muñoz, A. García-Cerezo

Dpto. De Ingeniería de Sistemas y Automática, Universidad de Málaga.
Plaza El Ejido s/n, 29013 Málaga, Spain.

Phone: (+34) 5 213 14 06 Fax: (+34) 5 213 14 13
E-mail: {anacm,victor,agcerezo}@ctima.uma.es

Abstract: A significant advantage of multirobot simulation lays on the fact that their
physical features and environment can be simulated, and hence, difficulties that spring
when managing them are avoided. This paper shows a flexible method for simulating
multirobot systems. It provides a simple and non proprietary structure of classes, that can
be used as the backbone of complex developments, adapted to every multirobot system
needings. The approach is based on discrete events systems, so it can simulate the inherent
concurrency associated to multirobot systems. The paper presents results obtained when
this solution is implemented using MATLAB, a numeric computation tool. Copyright ©
2002 IFAC

Keywords: autonomous mobile robots, discrete event systems, vehicle simulators,
concurrency, trajectory planning.

1. INTRODUCTION

A multirobot system can be defined as an
environment inhabited by some robotic elements,
such as mobile robots, manipulators, or any kind of
robotic mechanism. Elements of a multirobot system
can cooperate in doing some task, they can compete
for resources in the environment, they also can be
independent from the rest of elements, or they can
communicate with them... The common point is that,
whenever a multirobot system is designed or
developed, not only isolated features for every
component must be taken into account, but possible
interactions among them have a weighty role in the
whole system behaviour.

Working with a real multirobot system demands
several conditions: an environment with all the
required functionality (for example, a conveyor
between manipulators, carrying some kind of
material), a set of robots ready to do their job, maybe
communications between them... To sum up, a set of
potentially complicated features, that makes

developing a multirobot system not always easy or
comfortable. In these cases, simulation seems to be
the way to do things, as long as it makes feasible to
work with the system without having all its elements
physically available, in an simpler and friendly
setting.

Multirobot systems have a particularity: they are
concurrent systems. This means that maybe a few
actions happen at the same time (e.g., a mobile robot
moves towards a conveyor while a manipulator picks
a piece of wood up from this conveyor). Thus, any
simulation model for a multirobot system should
reflect this concurrency aspect.

This paper proposes a general approach for simulating
multirobot systems; though it is designed for running
on a non multitask processor, it keeps the concurrency
constraint previously commented. It does not intend
to be a closed or complete solution. Several
commercial, shareware or freeware tools can be
currently found: Webots, Kephera Simulator,
JavaBots/TeamBots (Balch and Ram, 1998),

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Rossum’s Playhouse RP1, Mission Lab, and some
others. However, using a standard solution is not
always straightforward, since it is very difficult that
fits to every single feature of a physical multirobot
system. The simulation approach presented in this
paper is flexible, because offers the possibility of
integrate different elements depending of the
multirobot system to be simulated. Furthermore, it is
a non proprietary solution, and then it is not bound to
a programming language or a software/hardware
platform. The method is a general and simple
solution, developed using OO techniques, that can
adapt to a number of situations; it can be seen as the
basis for generating more complex systems, for those
cases when adapting to a concrete way of working,
such as a standard application, is not as effective as
building a particular solution.

The plan of the paper is as follows. Section 2
describes the multirobot system that has given rise to
the proposed method. Section 3 analyses some
important aspects and features of the solution.
Finally, experiments performed with a MATLAB
implementation of the method, and final conclusions,
are presented on section 4.

2. A MULTIROBOT SYSTEM

The purpose of this section is to present a real work
situation that can require a simulation tool as the
proposed one. This system is composed of several
mobile autonomous vehicles that travel inside a
common environment. Thus, navigation is the main
point to be considered. The approach by Muñoz, et. al
(1999) has been used for solving it, and it is explained
along this section.

Muñoz (1999) defines navigation as the methodology
of driving the course of a mobile robot while it
traverses the environment, with the main goal of
guiding the vehicle safely, i.e., without crashing into
anything. For this navigation task, the motion control
system of the mobile robot uses the position and
speed references (trajectory) computed by a global
planner, that takes into account the problem
specification and a map of the world, so this
trajectory should be the one to be secure.

The trajectory calculated by the global planner can be
seen as the composition of a spatial plan, or path, and
a temporal plan, or speed profile. Both references can
be used by the robot’s motion control system for
tracking the trajectory. Next subsections show how
such references are obtained.

2.1 Computing the spatial plan.

The goal of the spatial planner is to work out a free
obstacle path, with special geometric properties, from
a starting location to an ending one: a spatial plan. In
this way, this path must prove the mobile robot non-
holonomic restriction and avoid discontinuities in the
vehicle’s steering. For solving these questions, the

planner considers two separate stages: the route
planning and the path generation.

A route is defined as a set of subgoals which must be
reached sequentially by the robot, in order to achieve
the final location. Two consecutive subgoals are
always visible (Latombe,1991) and the whole route
builds a obstacle-free path which does not
contemplate the physical limitations of the vehicle to
follow it. However, these limitations have a
significant influence for the ability of the robot’s path
tracking system to follow the route. Many different
techniques can be used for planning a route by
modelling the robot’s environment, such as a
configuration space, a Voronoi diagram, or cell
decomposition. Afterwards, the planner applies a
heuristic search for coming to the goal location by
minimising a certain criterion (such as the smallest
route length).

A continuous curvature curve is fitted to the
computed route and sampled into a stream of robot
postures in order to obtain a spatial path with the
desired geometric properties for path execution. This
process is named path generation and uses a planned
route as entry. There are several methods which
provide continuous curvature paths but have the
disadvantage of lacking a closed-form expression,
causing their computational requirements to be
unfeasible for real time applications. However,
generation methods based on β-Splines have
demonstrated their efficiency when a smooth and
continuous curvature path is needed, with a small
computational cost.

This spatial planner returns, as a path Q, a set of
postures qi={xi,yi,θi,κi,si}; every posture in the path is
defined by a pair of spatial components (xi,yi), an
orientation component θi, a curvature component κi,
and a distance component si.

2.2 Computing the speed profile

Most of path planning methods assume that the robot
executes the path at a low and constant speed. This
assumption means that the vehicle’s dynamic features
do not affect the precision of the path tracking
algorithm when the vehicle is following the path.
However, a speed profile definition along the path is
necessary in many applications. There are some
methods that generate a speed profile that also eludes
mobile obstacles (Kant and Zucker, 1986), that could
be used in the multirobot case, but they do not take
into account the vehicle’s dynamics, so avoidance is
not completely guaranteed. Thus, in order to obtain
the final speed profile, three stages are applied:

• First, a speed planner process assigns a speed
value to certain main points of the path
provided by the path planner. This value is
obtained from the set of speed restrictions
that act on the vehicle (mechanical,
cinematic, dynamic and operational
constraints).

• The second stage is in charge of verifying
the possibility of crashing into another
mobile obstacles running in the environment,
and if such situation happens, solve it by
changing speed values obtained in the
previous stage.

• Finally, using information provided for both
precedent steps, the speed profile is
generated as a continuous function. From
this profile, acceleration and temporal
components can be calculated almost
directly.

So, the final trajectory is built by adding speed values
to every path posture acquired from the path planner.
In other words, a trajectory Q’ is composed by
postures q’

i=(xi,yi,θi,κi,si,vi,,ai,ti), where vi, ai and ti

components are taken from the generated speed
profile.

3. MULTIROBOT SIMULATION APPROACH

This section deals with the main features and
questions related to the implementation of the
proposed solution. It is divided into three subsections:
first one is devoted to the concurrency aspects that the
simulation method must take into account; second
subsection explains why an object-oriented approach
has been chosen, and which are the benefits of this
election; finally, third one describes the structure of
the simulation method.

3.1 Concurrency

As it was stated in section one, any multirobot
simulator must cope with the concurrency that is
inherent to multirobot systems. The proposed
approach solves this problem by means of a discrete
events system; this kind of sytems are briefly
presented in this subsection (Muñoz, 1998).

A discrete events system (DES) is a simulation
method designed to solve systems with non
deterministic behaviour due to random components.
Its main characteristic lies in the fact that, for every
step of the simulation, time increases arbitrarily.

A generic DES is conformed of the following
elements:

• Entities: system components, like machines,
pieces, customers,... They can be classified
into permanent or temporaries.

• Attributes: entities features, that distinguish
one from another.

• Sets: a collection of entities, usually
temporary ones. If they are related to a
permanent entity, they are called resources.

• Activities: they model changes on the
system, so it could be said that system
function depends on a proper modelling of

its activities. An activity is defined by a set
of instantaneous happenings or events.

• State: attributes values, used to choose the
next activity to be launched.

• Scheduler: it acts as a clock that marks what
must be done at the current time; this means
that activities are executed depending on
scheduler values.

System run is simulated by the scheduler, according
to the algorithm pictured in Figure 1. As the algorithm
shows, every loop iteration corresponds to an event
execution. Therefore, it is the events sequence who
decides when changes happen. So, if events are
properly ordered, concurrency can be verified.

In this way, the simulation method translates real
multirobot functionality into a discrete event system,
so concurrency aspects can be correctly simulated.

Fig. 1 Discrete Event System algorithm

3.2 Object-oriented programming

For analysis and design stages of this simulation
method, an object-oriented approach has been used.
Advantages of this methodology relay on the fact that
it enables building quality software. Software quality
can be measured through five main issues:
correctness, robustness, extendibility, reusability and
compatibility (Meyer, 1988):

• Correctness and robustness assure that the
developed program fits to its specification,
and that it also works in situations that
requirements did not take into account. Both

Yes

No

End of Simulation?

Initialize: scheduler, system state

Get next event from events list

Execute event

Update system state

Generate next events and update

Close simulation

Initialize: events list

concepts are usually joined under the term
“reliability”.

• Extendibility is reached if software can be
easily adapted to changes on its
specification.

• Reusability makes possible to reuse code in
some other application.

• Compatibility means that the software can
work along with other programs.

Object-oriented programming provides a set of
techniques for writing code that verifies extendibility,
reusability and compatibility. Correctness and
robustness can be achieved using analysis and design
methodologies that can be combined with the object-
oriented approach.

A complementary tool to object-oriented
programming is the Unified Modelling Language
(UML). UML is a graphical language that helps the
analysis and design phases, providing a set of
diagrams that capture static and dynamic aspects of
the system being developed. In other words, every
diagram shows a different perspective of the system,
which enhaces the general system overview. The
approach presented in this paper has been developed
using UML, and some of the generated diagramans
will be shown in next subsections.

Furthermore, object-oriented programming features
and UML also lead to a better project development
(Cantor, 1998), which can be very important in case
of building complex systems, or coordinating a team
of developers.

3.3 Multirobot simulation structure

This subsection shows the structure of the simulation
approach, after the analysis and design phases. It is
explained via two UML diagrams: context level
diagram, and class diagram. First one, pictured on
Figure 2, shows relations among the elements of the
multirobot system (a system monitor, and the robots),
and some external agents, as the trajectory generator
explained in section 2, or a user interface that helps to
handle the system (other agents are feasible too,
depending on the features of the multirobot to
simulate). This means that the multirobot simulator
will be composed of a number of robots and a
monitor that controls the system; and it will have
some kind of relationship with the trajectory
generator, and the user interface.

One step beyond context-level diagram, the class
diagram arises. The class diagram contains
information about all the classes that conforms the
whole system, and relationships between them. Figure
3 shows a class diagram for the multirobot simulator,
that due to space constraints includes just the main
classes of the system, i.e., those who are included into
multirobot system package shown in context-level
diagram.

A more detailed explanation of this classes is
presented in the following:

Fig. 2 Context-level diagram

Fig. 3 Class diagram

• DES: discrete events system, that acts as the
backbone of the simulation. Its properties are
a time, a list_of_events, and a current_event.
It is generated by the Monitor, who
initializes these properties. This class
includes operations that control how the DES
moves forward and finishes.

• EventsList: this class represents the ordered
list of events included in the DES. Its
operations are related to updating and
obtaining events from the list.

• Events: as it was mentioned in the previous
subsection, events are the translation of the
actions that happen during the multirobot
system life into the simulator. They have
been implemented as a class with three
properties: robot, that stands for the robot
that originates the event; action, that points
which kind of action represents the event;
and time, that marks the instant when the
event occurs in the system (this attribute is
used as a criterion for ordering EventsList).
Different kinds of Events can be

User InterfaceTrajectory Gen.

Monitor Robot

Multirobot System Simulator

implemented, depending on the
particularities of the system being
developed.

• Robot: the class that represents any robot in
the system, including their main features.
There should be an instance of the class for
every robot in the system. If the multirobot
system is composed of several kinds of
vehicles, the Robot class should be an
abstract one, so differences between robots
could be taken into account through class
inheritance. As it can be seen, the design of
the Robot class depends heavily on the
concrete multirobot system to be developed.

To sum up, the function of the whole simulator is
controlled by the Monitor, that generates the DES
using the information extracted from the robots. In
every step of the DES, an event is analysed, and
depending on its action property, an action is taken by
the system.

Trajectory generator, user interface, or any other
external agent are out of the scope of this section.
They admit different solutions, and this election must
be done upon the needs of the multirobot system that
is going to be simulated. This means that the design is
extensible, since it allows the designer to add
different agents to the initial design. Furthermore,
some other utilities classes, as file handlers and so on,
have been implemented too.

4. EXPERIMENTS AND CONCLUSIONS

Previous section presented the structure of the
simulation approach proposed in this paper. This
subsection goes further and faces the final step of the
whole process: the implementation of the design into
a particular programming language.

Codification was done in a PC under Windows2000
using MATLAB 6 R12, the language for numeric
computation; this software tool was chosen because it
gives results in a fast and easy fashion, including
good graphical utilities. However, any other object-
oriented programming language (Java or C++), under
different platforms (Linux, Windows, Lynx...) could
be also used.

MATLAB 6 R12 allows object-oriented
programming. A class is a set of M-files grouped
under a directory that must have the same name as the
class name. Every method in the class is implemented
via an M-file. The class needs a constructor method,
that initializes the class, and it is also desirable to
implement the set (updating class properties), get
(retrieving class properties) and display (printing
class info and properties) methods. Main OO-
programming features, such as overloading and
inheritance are also supported.

An example of simulation using the proposed solution
is commented. The experiment shows how two
mobile robots (RAM-2 and Auriga-α, both developed

at System Engineering and Automation Department),
navigate simultaneously in the same environment.
The task the physical system executes must be studied
before the simulator is implemented: it has a relevant
influence on the implementation, since it defines
concrete key aspects of the simulator that cannot be
fixed at the designing phase. In this example, since
navigation is the task to be developed, every robot in
the system should follow the previously computed
trajectory: their motion control systems receive
information extracted from the trajectory, and they
follow these references. Every reference must be kept
a certain time, depending upon the vehicle’s features,
in order to assure that the motion control system is
able to reach it. Whenever any of these situations
arises (moving to a new reference, or following a
reference), it will have attached a time coordinate.

The simulator will be able to reflect both situations
through the Events class. Then, Events belonging to
this system will have these properties:

• robot will be set to “ram” or “auriga”,
depending on which robot is related to the
event.

• action will be set to “follow”, if the robot
has received a new trajectory reference, or
“move”, if it is trying to reach a reference
sent to the motion control system.

• time will be extracted from the trajectory
postures, if action is “follow”, or from the
motion control system, if action is “move”.

Once the requirements of the simulator have been
studied, the implementation of the classes begins.
Most of the cases need to write the Monitor and
Robot classes; furthermore, in this example, due to
the nature of the task to simulate, a
TrajectoryGenerator class must be implemented. Next
paragraphs describe how these classes have been
developed.

The TrajectoryGenerator class must provide a
trajectory, i.e., a set of references the robot can follow
in order to reach its goal position. In this example,
trajectories have been calculated using the
methodology explained on section 2. Any other way
of generating the references for the vehicle is valid;
the only condition to verify is that such references
must be understood by the robot when the trajectory
is tracked.

The Robot class gathers the features of the robots
belonging to the system. It can be developed under
two different points of view. If robots in the system
are similar, the idea would be to build a single class
that contains the attributes and methods that
characterizes the robots’ function. On the other hand,
if robots are quite different, an abstract Robot class
would be generated, and for every robot in the system,
an instantiation would be created. In this example, the
first approach has been chosen. The developed Robot
class contains a set of attributes (name, size,
maximum velocity and acceleration, and control
motion system information), and a set of methods

mainly devoted to the motion control system. These
methods are able to interpret the references provided
by the TrajectoryGenerator.
At last, the Monitor gets the information of each robot
and generates, for every robot, two EventsList: one
composed of “follow” Events, and another one of
“move” Events; after that, it will merge both
EventsList in a single one. Then, the Monitor will
join all the robots EventsList objects in order to
obtain a common EventsList, and it will initialize a
DES with it. Then simulation will start, and it will run
until the DES finishes.

Figure 4 presents the initial situation, with robots in
their starting postures (RAM-2, the light grey
octagon; Auriga-α, the dark grey ellipse). The paths
they have to follow are drawn in light grey and dark
grey, respectively. As it can be seen, both paths elude
some static obstacles, pictured as rectangles, but there
is a crossing between them in one point. However,
speed profiles of the robots will not allow any
collision.

-9 -8 -7 -6 -5 -4 -3 -2 -1

2

4

6

8

10

12

14

Multirobot

Y

X

RAM-2
Auriga

Fig. 4. Initial situation.

-9 -8 -7 -6 -5 -4 -3 -2 -1

2

4

6

8

10

12

14
Multirobot Simulation

Y

X

RAM-2
Auriga

Fig. 5. Moving forward.

How both vehicles move forward along their paths is
depicted in Figure 5. Figure 6 illustrates the crash
avoidance, as RAM-2 reaches the crossing point
before Auriga comes near it. At last, Figure 7 shows
both robots in their final positions.

Finally, to set the conclusions of the described work,
this paper presents a simulation approach for
multirobot systems that offers some useful features: it
is a general, flexible, simple and non-propietary
method, based on a discrete events system in order to
keep concurrency constraints, and designed usign
object oriented programming techniques. It is

intended to be the basis of more complex simulators
that adapts as much as possible to the physical
systems being simulated. This solution has been
succesfully tested in the simulation of a multirobot
system composed of RAM-2 and Auriga-α robots,
both designed and built at the Systems and
Automation Engineering Department, at Málaga
University.

-9 -8 -7 -6 -5 -4 -3 -2 -1

2

4

6

8

10

12

14

Multirobot Simulation

Y

X

RAM-2
Auriga

Fig. 6. Avoiding the collision.

-9 -8 -7 -6 -5 -4 -3 -2 -1

2

4

6

8

10

12

14
Multirobot Simulation

Y

X

RAM-2
Auriga

Fig. 7. Final posture reached.

REFERENCES

Balch, T. and A. Ram (1998). Integrating Robotic

Technologies with JavaBots. Working Notes on
the AAAI 1998 Spring Symposium, Standford,
CA.

Cantor, M. (2000). Object-oriented Project
Management with UML. John Wiley & Sons.

Kant, K. and S. Zucker (1986). Toward Efficient
Trajectory Planning: The Path-Velocity
Decomposition. The International Journal of
Robotics Research, Vol. 5 No. 3.

Latombe, J. C. (1991). Robot Motion Planning,
Kluwer Academic Publishers.

Meyer, B. (1998). Object-oriented Software
Construction. Prentice Hall.

Muñoz, V. F. (1998). Sistemas de Eventos Discretos.
Class notes for Ph. D. Course “Técnicas de
modelado y computacionales, y de análisis en
ingeniería”, System Engineering and Automation
Department, Málaga University.

Muñoz, V. F., García-Cerezo A., Cruz A. (1999).
Smooth Trajectory Planning Method for Mobile
Robots. Special issue on Intelligent Autonomous
Vehicles of the Journal of Integrated Computed-
Aided Engineering, Vol. 6 No. 4, IOS Press,
Netherlands

