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Abstract: Model based observation of carbon dioxide (CO2) in a burning process is dis-
cussed. The described model structure is a combination of fuzzy Takagi-Sugeno (TS) 
models and operation regime based modelling approach. The selection of local model-
ling regions and input variables is based on general combustion theory. Recursive sto-
chastic gradient method is employed to model training. Simulations with experimental 
data are analysed to verify the validity of the discussed combustion observation ap-
proach. Performance is further compared to neural and linear models. Results indicate 
that the presented model has good generalisation properties and it is capable to capture 
systems behaviour. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Burning in a fuel layer is a series of thermal reac-
tions. The main principles of burning in a small-scale 
wood combustion process are co-current and counter-
current flow. In the former case, fuel feed and com-
bustion gases are both moving into the same direc-
tion whereas in the latter case the solid and gaseous 
streams come across (Koistinen, 1989). Although 
principles are different, burning stages are similar. 
Depending on the current state of the process, three 
main phases can be specified: ignition, burning and 
charring. The ignition phase includes drying and en-
dothermic part of the wood pyrolysis. In the burning 
stage, oxidation reactions are dominating. Charring is 
burning and gasification of the remaining charcoal. It 
is usual that these phases overlap during combustion 
(Aho, 1987). 
 
Observation of combustion is essential in order to 
optimise the wood burning process. It plays an even 

more important role in small-scale energy produc-
tion, where the quality of the fuel and burning condi-
tions are continuously changing. The amount of car-
bon dioxide (CO2) in combustion gases is one of the 
main variables that have to be observed. Concentra-
tion of CO2 is usually measured with different types 
of gas analysers. Unfortunately, present monitoring 
methods are only designed for large power plants. 
Thus, the need for alternative methods is evident. 
One possibility is to model the CO2 concentration 
using inferential measurements. This paper describes 
a fuzzy modelling approach for approximating the 
CO2 concentration in a wood burning process. 
 
Modelling of carbon dioxide is a non-linear identifi-
cation problem. It is difficult to apply linear models 
with fixed structure to this kind of time variant case. 
Generalisation capabilities and an adaptive model 
structure are needed to cope with the changing com-
bustion conditions. In addition, modelling is gener-
ally based on measurements, which contain uncer-
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tainty and vagueness. For these reasons adaptive, 
fuzzy logic (Zadeh, 1965) based methods can be con-
sidered when defining the structure of the CO2 -
model. 
 
Fuzzy models of different types have been developed 
for modelling complex systems (Babuska, 1997). The 
strength of fuzzy modelling is that the prior knowl-
edge can be easily incorporated into a model. On the 
other hand, performance of the fuzzy model can 
strongly depend on the level of expert’s knowledge. 
Good modelling results have been reported with a 
model structure suggested by Takagi and Sugeno 
(1985). TS-model is relatively simple, with a conse-
quent part that can be represented by linear equa-
tions. By using equations in the consequent part, the 
number of fuzzy rules can be kept quite small in 
many applications (Johansen, et al., 2000). However, 
it’s not always easy to interpret TS-model when ap-
plied to transient operation regimes (Shorten, et al., 
1999). 
 
Continuously changing conditions in combustion 
clearly show the need of the CO2 model that can 
adapt itself to different operation regimes. Many lo-
cal model structures have been proposed for this kind 
of difficult identification problems. For example in 
(Chen and Weigand, 1992) and (Feng and Jin, 1993) 
several neural networks were used in sequence to 
form a global model. In addition, linear and non-
linear multimodel structures have been introduced 
together with operation regime based modelling 
method (Johansen and Foss, 1993; Johansen, 1994). 
Common features of local and fuzzy modelling are 
discussed in (Foss and Johansen, 1993). 
 
In this paper the operation regime based modelling 
method and fuzzy TS-model structure are combined 
and employed to the modelling task of CO2. Combi-
nation is logical, because TS-model itself contains a 
set of local models and interpolating technique for 
models (Babuska, 1997). This can result in a simple 
structure, yet capable to adapt. In addition, learning 
methods can be used to estimate the parameters of 
the TS-model. Theory of the adaptive CO2 -
modelling approach is presented. Motivation for the 
selected adaptation mechanism is discussed briefly. 
Simulation results based on measured data from a 
burning process are analysed and compared with 
neural network models and linear models. 
 
 

2. MODELLING APPROACH 
 

2.1 Input Variables of the CO2 -Model 
 

The selection of input variables is based on wood 
combustion theory. Restrictions caused by small-
scale burning environment have to be considered as 
well. According to combustion theory, temperature is 
related to the formation of CO2. It is also simple to 
measure and measuring devices usually have fast 

responses. The second variable selected as input for 
the model is the mass of fuel. Changes in the weight 
may be used for indicating the progress of burning. 
 
 
2.2 Adaptation to Operation Conditions 
 
Adaptation to different burning phases is achieved by 
modelling CO2 concentration locally at three opera-
tion regimes. Progress of burning is described with a 
proportional value mn(t) of the fuel weights as 
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where mpa(t) is the current mass of the fuel layer and 
mpa(t0) is the mass at the start-up. Value of mn(t) is 
now used in decomposing the process into separate 
operation regimes. Local regions are defined by 
fuzzy sets because of uncertain information in (1). 
Three burning phases are approximated with fuzzy 
sets ignition, burning and charring. The membership 
functions of the presented fuzzy sets apply the cur-
rent value of mn(t). The location of functions is per-
manent, because mn(t) stays between one and zero 
(Fig. 1). For example, when the current value of mn(t) 
is near one, the burning phase according to the fuzzy 
sets is mostly ignition. At the same time, it is possi-
ble that the burning phase belongs a little bit to the 
fuzzy set burning. The membership functions of the 
burning phase define the validity of the local TS-
models for the current operation regime. Local mod-
els can be now constructed for these regimes and 
scheduled using the membership functions. Member-
ship values are acting as weights for the local TS-
models. The global model is composed as the sum of 
weighted local models. 
 

 
 
Fig. 1. Examples of membership functions for three 

burning phases. 
 
 
2.3 Model Structure 
 
Many techniques have been introduced for the selec-
tion of TS-model inputs, for example (Tanaka, et al., 
1995; Kim, et al., 1997; Sugeno and Kang, 1988). In 
this case, the temperature and mass of the fuel are 



 

chosen as inputs. These variables are selected on the 
basis of combustion theory, reasoned to have a partial 
relationship to the occurrence of carbon dioxide. 
 
In the premise part, two fuzzy sets are defined for the 
temperature: low and high. Membership functions of 
fuzzy sets are in the form of Zadeh’s S-function (Dri-
ankov, et al., 1996). By using only two membership 
functions for the temperature, the accuracy of the TS-
model may decrease but generalisation capabilities 
are better. Next, the membership functions of the 
burning phases are added into premise parts. As the 
model is now developed for three local regimes with 
burning phase-membership functions, the adaptation 
to different burning conditions is achieved. This re-
sults in six fuzzy rules with two temperature levels 
for every burning phase. 
 
The structure of the TS-model consists of fuzzy rules. 
Membership functions appear in the premise, where 
as the consequent part contains the linear equation. 
Fuzzy rules represent linear local input-output rela-
tions of the system. TS-type fuzzy rules used for CO2 
modelling are of the following form 
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where x1 (t) is the value of mn (t), x2(t) is the current 
temperature of the combustion, ai and bi are parame-
ters, x is the vector of variables in the consequent 
part, Ai1 (x1(t)) is the membership function of current 
burning phase, Ai2 (x2(t)) is the membership function 
of the temperature and iŷ (t) is an output of the ith 
rule. The crisp global output kŷ (t) of the model can 
be formed using a simplified method (Tanaka, et al., 
1995) as  
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where wi is the product of membership values used in 
the premise part of the ith rule, 
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For parameter identification of the model, criterion 
function EM is defined as follows 
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where yk(t) is the real value of CO2. Error between 
the real value and model output is minimized by es-
timating parameters of each rule. This is done by 
partially differentiating criterion function with re-
spect to consequent parameters of the model (2) 
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and after that modifying each parameter recursively 
using (6) as 
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whereε  is the learning factor. Subscript m denotes 
the ordinal number of parameter-input variable pairs 
in the consequent part. Parameter estimating method 
(7) is a logical selection for this purpose, because 
learning now occurs locally, concerning only cur-
rently validated models. 
 
Preliminary there are four a parameters in consequent 
parts together with four variables: current and past 
two temperature values with current value of the out-
let temperature. Verification values of the CO2 con-
centration are needed in order to estimate the pa-
rameters of the model. For this, measurements of the 
gas analyser are used in the criterion function. The 
data for parameter identification and model valida-
tion were obtained from wood combustion experi-
ments described in the following section. 
 
 

3. EXPERIMENTAL 
 
The burning process under consideration consists of a 
small fireplace designed for heat production. The 
furnace of the combustion device is equipped with a 
grate. Air is supplied into the combustion chamber 
from two points, which are located at the level of the 
grate. The amount of combustion air is controlled 
manually. Temperatures of fuel layer and flue gas 
were measured with K-type thermoelements. The 
mass of the fuel was weighted by a load cell con-
nected to the grate. Data from measurement devices 
were recorded using a computer based data acquisi-
tion system. At the same time, a separate infrared gas 
analyser measured the values of CO2 in dry flue gas. 
The sampling period was set to five seconds. Identi-
fication data were obtained from one experiment, in 
which two batches of chopped firewood were burnt 
sequentially yielding 720 data points. Five random-
ised experiments were then performed to collect vali-
dation data, resulting in total 4885 data points. Num-
ber of batches was 15. Fuel batch size was between 
1,2 - 2 kilograms of birch and aspen wood. Moisture 
of the wood was nine percent, except in one batch 
with moisture content of 30 percent. Recorded values 
for the model identification are shown in Fig. 2. 



 
 

Fig. 2. Identification data set. 
 
The data recorded for model validation was typically 
similar to Fig. 2. The model structure was pro-
grammed to software using HiQ script language. 
Simulations were performed with software that made 
use of the collected data. 
 
 

4. MODELLING RESULTS 
 
4.1 Model Identification 
 
Parameters of the models were identified with data 
set shown in Fig. 2. To achieve a real time modelling 
capability, time lag of 25 seconds was removed from 
measured values of CO2. The lag was caused by dry-
ing of flue gas for the analyser. Locations of mem-
bership functions low and high temperature were 
spaced uniformly between zero and 900 K, the 
maximum value in the identification data set. In (1) 
moving average of mass was used, because the 
measurement of weight was found to be noisy. The 
time history of temperature values in the consequent 
part was discovered long enough by using a partial 
autocorrelation function. Input variables of the model 
were scaled between zero and one using maximum 
identification data set values of each variable. Initial 
values of the consequent parameters were set to 0,1.  
 
Preliminary model identification results showed a 
moderate deviation between model outputs and 
measured values. Error was caused by an outlet tem-
perature variable in the consequent part of fuzzy 
rules. The deviation removed as the outlet tempera-
ture was changed to the proportional value of mass 
(1). After final training, the performance of the iden-
tified model was tested with the validation data set. 
 
 
4.2 Model Performance 
 
In this section an example of model performance is 
given. Results were obtained through simulations 
with the validation data set. Outputs of the identified 
model were compared with the measured values of 
CO2 as seen in Fig. 3. 

 
Fig. 3. Validation of the CO2 -model. Dashed line: 

model outputs, solid line: measured CO2 concen-
tration. 

 
Modelling results are satisfactory. Although the vali-
dation data set contains many different situations in 
the burning process compared to identification data 
set, fuzzy model is quite capable to generalise train-
ing data. There are two notable error situations near 
measurement points 800 and 2700. In these cases, the 
model performance is deteriorated by the temporary 
failure of the weight measurements. 
 
Fig. 4 shows an analysis of the modelling error. Time 
lag has been removed from the CO2 measurements 
before the calculation of errors. 
 

 
 
Fig. 4. Modelling error analysis. 
 
Run sequence plot in Fig. 4 a) shows a constant loca-
tion of errors over the validation data set. Autocorre-
lation plot of the error is presented in Fig. 4. b). From 
it can be concluded that randomness assumption of 
the error holds. Some seasonality in error values oc-
curs in figures, and this is due to the fixed maximum 
values of the input variables. These values were same 
as in the model identification. Histogram in Fig. 4 c) 
and normal probability plot in d) indicate that errors 
of the model are nearly normally distributed. With 
normal distribution and randomness assumptions 
made, sample mean of the error with confidence in-
tervals is 0,11±0,03 vol.-% at confidence level 99 %. 
Standard deviation of the error is 0,84 vol.-%. Root 
mean square and mean absolute percentage errors are 
0,81 vol.-% and 15 % respectively. Additionally, test 
results of the presented model were compared with 
neural and linear models. 



 

5. COMPARISON WITH OTHER MODELS 
 
Comparisons with other models were performed with 
the same identification and validation data sets ob-
tained from experiments. Neural nets containing one 
hidden layer were applied to the modelling task. Dif-
ferent combinations of input variables and the 
amount of hidden nodes were tested in order to 
maximise the performance of the neural models. Ac-
tivation function was hyperbolic tangent and hidden 
nodes included a bias. Backpropagation and conju-
gate gradient methods were used as learning algo-
rithms. Neural model simulations were run with 
NNModel -software. 
 
The performance of different neural model structures 
were first analysed with the identification data set. 
Measured values of CO2 were used in the objective 
function. Best results were obtained with the same 
input variables as in the consequent part of the pre-
sented fuzzy model. Modelling performance with 
identification data set was accurate at both learning 
algorithms with five hidden nodes included. For this 
reason, two trained neural nets using above-
mentioned learning algorithms were chosen to model 
validation. The neural net with backpropagation algo-
rithm was trained in 300 epochs where as the neural 
net with conjugate gradient method needed 250 ep-
ochs to minimise the training error. 
 
At the training phase, both neural nets performed 
better than the presented fuzzy adaptive model. 
However, the validation of the models showed oppo-
site results. Especially the backpropagation network 
was not capable to generalise information from the 
training data. The neural model trained using conju-
gate gradient method is more comparable with the 
modelling results of the fuzzy model. This indicates 
that the fuzzy model has learnt more local interac-
tions of variables in the burning process. 
 
Different linear model structures were also tested. 
These included Box-Jenkins model, “black-box” 
state space model, ARMAX- and ARX-models. 
Simulations using linear models were performed with 
MATLAB -identification toolbox. Best results were 
obtained with the ARMAX-model that included the 
same input variables as in the preceding models. The 
training algorithm was an iterative prediction error 
method. The linear model fails to model the CO2 
concentration after ignitions. Modelled outputs stead-
ily decrease while the real values are usually altering, 
and error is large at the charring phase. 
 
Performance comparison between models is shown 
in Table 1. Three error measures were calculated: 
Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE) and Mean Percentage Er-
ror (MPE). Error calculation was based on modelling 
results with the validation data set. 
 

Table 1. Modelling error comparison, validation data 
set. 

 
Model /   RMSE MAPE MPE 
Identification method [vol-%] [%] [%] 
Neural net,  1,69 36 44 
Backpropagation 
Linear ARMAX-model, 1,22 45 42 
Prediction error method 
Neural net,  1,05 21 9 
Conjugate gradient 
Fuzzy adaptive model, 0,81 15 4 
Gradient method 
 
Comparison shows that the presented fuzzy model 
has the lowest modelling error compared to other 
models. Neural net with conjugate gradient method 
performed somewhat worse. ARMAX-model and 
neural model with backpropagation algorithm gave 
high modelling errors and are not capable to ap-
proximate CO2 concentration with selected meas-
urements. 
 
 

6. CONCLUSIONS 
 
A fuzzy, adaptive modelling approach for approxi-
mating the carbon dioxide concentration of a burning 
process is presented. The effectiveness of the model 
is verified through simulations with data obtained 
from process measurements. The described model 
structure consists of fuzzy local models on different 
operation regimes. Fuzzy methodology makes it pos-
sible to incorporate a prior knowledge and uncertain 
information into a model. On the other hand, decom-
position of the modelling task provides an adaptation 
capacity and a way to tackle with non-linearity. 
 
Adaptation mechanism to operation conditions is 
based on recognition of three different combustion 
regimes: ignition, burning and charring. These re-
gimes are described by three fuzzy membership func-
tions that are applied to define the validity of local 
models. For each burning phase, two TS-type fuzzy 
models are constructed. The selection of model input 
variables is based on combustion theory and it is an 
important part of the model development. A gradient 
method and supervised learning is used for identifica-
tion of the consequent parameters. 
 
Modelling results showed that the presented model 
has a good capacity to approximate CO2 concentra-
tion of highly changing burning process. A real-time 
output was achieved by training the model with un-
delayed measured values of CO2. Compared to tested 
models, the performance of the fuzzy model was 
superior due to an adaptation mechanism that also 
enabled a robust and simple structure. Small size of 
training data and the non-linear process limited per-
formance of other models, while local learning and 



generalisation capabilities of the presented model 
compensated for these disturbing factors. 
 
The discussed model has been implemented as a part 
of the real-time combustion optimisation system. 
Further development focuses on utilising prediction 
capabilities of the model as well as synthesis of re-
cursive on-line filtering. 
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