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1. INTRODUCTION

The implementation of intelligent control algo-
rithms such as real-time parameter adaptation,
model predictive control and on-line learning al-
gorithms become easier with the progress in com-
puter technology, which makes computation faster
and cheaper. However, the algorithms impose
some assumptions on the plant that could limit
the range of application of the algorithm. The
typical adaptive control problems assume the fol-
lowing four assumptions (Ioannou and Sun, 1996;
Narendra and Annaswamy, 1989): i) a plant is
LTI minimum phase system, and ii) an upper
bound for plant order, iii) the relative degree of
the plant and iv) the sign of the high frequency
gain are known. While ii) is used to choose the
order of the controller and iii) to set up a reference
model, i) and iv) are required to prove global
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stability. However, as pointed out in (Narendra
and Annaswamy, 1989), adaptive control is most
needed in the cases where these assumptions do
not hold. There have been lots of researches try-
ing to relax the assumptions. The assumptions
ii), iii) and iv) can be relaxed at the expense of
additional complexity in the control and adaptive
laws (Åström, 1980; Goodwin et al., 1981; Good-
win and Sin, 1981; Morse, 1985; Nussbaum, 1983;
Praly, 1984).

Universal controllers were proposed that require
less prior information than the aforementioned
(Fu and Barmish, 1986; Martensson, 1985). They
plugged one controller in closed-loop and ob-
served the behaviour of the resulting system.
They searched over a dense set of controllers
(Martensson, 1985) or a finite set of controllers
(Fu and Barmish, 1986) while the observed be-
haviours violate a performance specification. How-
ever, they assumed the plant to be linear time-
invariant although it is less restrictive than i),
ii), iii) and iv). Safonov et al. (Safonov and
Tsao, 1997) proposed a method called unfalsified
control theory to build a controller satisfying a
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given performance with measured data from the
plant without assuming LTI plant and showed
some design studies (Brugarolas et al., 1998; Jun
and Safonov, 1999; Tsao and Safonov, 1999).
While it is similar to universal controllers by (Fu
and Barmish, 1986; Martensson, 1985) in the as-
pect that it checks violation of given performance
specification and switches to a good one once it
observes violation, it does not do time-consuming
controller search.

However, the practical problem in the unfalsified
control theory is that there is no systematic way
to determine an appropriate initial controller set
K. The authors admits it is essential that it begin
with a sufficiently rich class of ideas for candidate
controllers K if the theory is to lead to a non-
empty set of unfalsified controllers. For instance,
if one starts with a small candidate controller set
K, he can eliminate the controllers violating the
performance specification without much computa-
tional load. However, it is more probable that all
controllers get falsified before the system reaches
steady state and stability cannot be characterized.
On the other hand, if one starts with a large
candidate controller set, initial computation load
is too big although it has more probability to reach
steady state without having all candidate falsified.
In this paper, a method to combine unfalsifica-
tion concept and controller parameter adaptation
based on gradient method dispensing with candi-
date controller set K is proposed.

This paper is organized as follows: Preliminary
theoretical background will be briefly covered in
Section 2. The problem to be solved in this paper
will be formulated in Section 3. The main results
will be provided in Section 4. Brief discussion on
the result will be given in Section 5 and some
numerical examples will be presented in Section 6.
Final remarks will conclude the paper in Section 7.

2. PRELIMINARIES

In this section, a brief overview of unfalsified con-
trol theory is described. For further details about
unfalsified control theory, refer to (Safonov and
Tsao, 1997) and references therein. The formal
definitions of unfalsification and falsification are
as follows:

Definition 1. (Safonov and Tsao, 1997) A con-
troller is said to be falsified by measurement in-
formation if this information is sufficient to de-
duce that the performance specification (r, y, u) ∈
Tspec ∀r ∈ R would be violated if that controller
were in the feedback loop. Otherwise, the con-
troller is said to be unfalsified.

With the definitions of unfalsification and falsi-
fication one can state the following theorem in
order to solve unfalsified control problem. Let the
symbol K denote the set of triples (r, y, u) that sat-
isfy the equations that define the behavior of con-
troller. Denote by Pdata the set of triples (r, y, u)
consistent with past measurements of (u, y) – cf.
(Safonov and Tsao, 1997).

Theorem 2. (Safonov and Tsao, 1997) A control
law K is unfalsified by measurement informa-
tion set Pdata if, and only if, for each triple
(r0, y0, u0) ∈ Pdata ∩ K, there exists at least one
pair (u1, y1) such that

(r0, y1, u1) ∈ Pdata ∩ K ∩ Tspec (1)

Fictitious reference signals occupy an important
position in unfalsified control theory. Given mea-
surements of plant input-output signals u and
y, there may correspond for each candidate con-
troller, say Ki, one or more fictitious reference
signals r̃i(t). The r̃i’s are hypothetical signals that
would have exactly reproduced the measured data
(u, y) if the candidate controller Ki had been in
the feedback loop during the entire time period
over which the measured data (u, y) was collected.
Because the data (u, y) may have been collected
with a controller other than Ki in the feedback
loop, the fictitious reference signal r̃i is in general
not the same as the actual reference signal r(t).
A candidate controller Ki is called causally-left-
invertible if unique past values for its fictitious
reference signal r̃i(t) are determined by past val-
ues of the open-loop data u(t) and y(t).

3. PROBLEM FORMULATION

Suppose that the control laws K ∈ K are linearly
parameterized by an unspecified vector θ ∈ Rn

and

K(θ) = {(r, y, u) | u = K(θ)(r − y)}. (2)

Furthermore, assume that all control laws in K
are causally-left-invertible. Therefore, there exists
unique fictitious reference signal r̃ such that

r̃(t) = y(t) + K(θ)−1u(t). (3)

Suppose that at each time t, the performance
specification set Tspec consists of the set of triples
(r, y, u) satisfying an integral performance in-
equality of the form

J(τ)
4
= −ρ(τ) +

∫ τ

0

Tspec(r(ξ), y(ξ), u(ξ))dξ

≤ 0, ∀ τ ∈ [0, t] (4)

where ρ(τ) ≥ 0 and Tspec(·, ·, ·) are chosen by
the designer. By Theorem 2, the i-th candidate



controller Ki ∈ K is unfalsified at time t by plant
data u(τ), y(τ), (τ ∈ [0, t]) if, and only if,

J̃(θ, τ) ≤ 0, ∀ τ ∈ [0, t] (5)

where

J̃(θ, τ)
4
= −ρ(τ) +

∫ τ

0

Tspec(r̃i(θ, ξ), y(ξ), u(ξ))dξ.

(6)
u(ξ) and y(ξ), (ξ ∈ [0, t]) are measured past plant
data, and r̃i(θ, ξ) denotes the fictitious reference
signal for the i-th controller Ki.

The condition (5) requires all past plant data
and memory space for it grows as time increases.
Therefore, the condition (5) is relaxed for finite
time window with maximum length T , that is, the
i-th candidate controller Ki ∈ K is unfalsified at
time t by plant data u(τ), y(τ), (τ ∈ [t0, t]) if, and
only if,

J̃(θ, τ) ≤ 0, ∀ τ ∈ [t0, t] (7)

where t0 = max(0, t− T ).

In order to achieve the performance given in
Eq. (7), controller parameters should be adjusted
so as to make the performance specification J̃(θ, t)
negative. In other word, controller parameters
should be adapted so as to lead the performance
specification J̃(θ, t) to decrease when it is positive.
The problem to be solved in this paper can be
stated as follows:

Problem 3. Given K(θ) and J̃(θ, t), find a con-
troller parameter adaptation rule which drives the
value of performance specification (5) to decrease
when it is positive.

4. CONTROLLER PARAMETER
ADAPTATION

4.1 Adaptation Rule

Since our objective is to adjust controller pa-
rameters so as to satisfy the given performance
specification (7), controller parameters should be
adjusted in direction that the performance speci-
fication J̃(θ, t) decreases, viz.,

θ̇ = −γ∇J̃(θ, t) (8)

where

∇J̃(θ, t)
4
=

[
∂J̃(θ, t)

∂θ1

∂J̃(θ, t)
∂θ2

· · · ∂J̃(θ, t)
∂θn

]T

is the gradient of J̃(θ, t) with respect to θ and
γ > 0 is an arbitrary design constant. From
Eq. (6), ∇J̃(θ, t) can be evaluated as

∇J̃(θ, t) =∫ t

0

∂Tspec(r̃(θ, ξ), y(ξ), u(ξ))
∂r̃

· ∇r̃(θ, ξ)dξ (9)

where

∇r̃(θ, ξ) = −K(θ)−1∇K(θ) ·K(θ)−1u(ξ),

∇K(θ)
4
=

[
∂K(θ)
∂θ1

∂K(θ)
∂θ2

· · · ∂K(θ)
∂θn

]T

since u(t) = K(θ)(r̃(t)− y(t)).

Therefore, controller parameter adaptation rule
can be expressed as

θ̇ = γ

∫ t

0

∂Tspec

∂r̃
K(θ)−1∇K(θ) ·K(θ)−1u(ξ) dξ.

(10)

If the Eq. (7) is convex with respect to θ, controller
parameters converge to the value that achieves
global minimum of J̃(θ, t) if the step size γ is
sufficiently small. However, our objective is not
to find the controller parameter which lead to the
global minimum of J̃(θ, t) but to find a controller
parameter which provides the given performance,
that is, leads to the condition (7). Therefore,
we stop controller parameter adaptation when J̃
is negative. Our controller parameter adaptation
rule can be summarized as follows:

Controller Parameter Adaptation Rule:

θ̇ =





γ

∫ t

0

∂Tspec

∂r̃
K(θ)−1∇K(θ) ·K(θ)−1u(ξ) dξ,

if J̃(θ, τ) > 0, ∃ τ ∈ [t0, t]

0, if J̃(θ, τ) ≤ 0, ∀ τ ∈ [t0, t]

.

(11)

where t0 = max(0, t− T ).

The following is a simple example of parameter
adaptation law for proportional gain controller.

Example 4. Let Tspec = (r̃ − y)2/2, ρ(τ) = 0 and
K(θ) = θ > 0. Then, we have

J̃(θ, τ) =
1

2θ2

∫ τ

0

u(ξ)2 dξ (12)

Therefore, from Eq. (10), controller parameter
adaptation rule can be said

θ̇ =





γ

θ3

∫ t

0

u(ξ)2 dξ, J̃(θ, τ) > 0, ∃ τ ∈ [t0, t]

0, J̃(θ, τ) ≤ 0, ∀ τ ∈ [t0, t]
.

(13)
In this example, we can notice that Eq. (12) is
convex with respect to θ regardless of the value of
measured data u(t). So, we can say that controller
parameter converges in the steady state with the
adaptation rule (13) if there exists a controller
parameter that satisfies the given performance
specification.

Remark 5. Another performance specification with
different structure from Eq. (6) can be used. For
example, if

J̃(θ, τ)
4
= −ρ(τ) + Tspec(r̃i(θ, τ), y(τ), u(τ)) (14)



is used, then the adaptation rule without integral
applies.

4.2 Convergence

Usually typical adaptive control problems such
as model reference adaptive control (MRAC) and
self-tuning regulator (STR) put some assumptions
on the plant such as LTI minimum phase plant or
known information on relative plant order and so
on in order to guarantee convergence of parame-
ters or global stability. On the other hands, goal
of unfalsification disables us for claims about the
plant’s future behaviour, e.g., asymptotic stabil-
ity (Safonov, 1996).

Some assumptions on the measured plant input-
output data and performance specification are
imposed for convergence issue. For convergence,
the set

Θ(t) =
{
θ | J̃(θ, τ) ≤ 0, θ ∈ Rn, τ ∈ [t0, t]

}
(15)

should not be empty for all t ∈ R. However,
this condition is not a priori condition since the
future behaviour of the plant is not known, thus,
it cannot be checked without measured plant data
since the basis of this paper lies in unfalsifica-
tion concept but such limits on our powers of
clairvoyance would seem to be inherent in any
unprejudiced scientific analysis of feedback control
problems based solely on data.

5. DISCUSSION

The proposed controller parameter adaptation al-
gorithm does not require the plant to be minimum
phase and relative plant degree to be known while
the adaptation rule in MRAC or STR adaptive
control problems do. Furthermore, such assump-
tions were relaxed without additional complexity
in the control and adaptive law. Our adaptation
rule is very simple and easy to implement. How-
ever, there is loss by relaxing assumptions on the
plant. It is that there is possibility that the given
performance might not be achieved in the steady
state. In other words, we cannot guarantee con-
vergence of controller parameters before practice
as mentioned in previous section. The undesirable
situation – divergence of controller parameters –
can be cured by changing the controller structure
K(θ) or performance specification J̃(θ, τ) not by
imposing impractical assumptions on the plant.

The idea to use gradient tuning when the per-
formance specification is not satisfied and to stop
adaptation when it is satisfied is not new. There
are many adaptation rules by gradient method.
However, the approach in this paper differs from
other gradient tuning algorithm in that the cost
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Fig. 1. Simulation results with θ(0) = 0.1 and J̃(θ, t) =

−e−1.5t +
∫ t

0

(r̃(ξ)−y(ξ))2

2
dξ.

function is a function of measured plant data, not
a function of some of plant parameters.

6. SIMULATION

In this section, two numerical examples will be
presented which show how the proposed controller
parameter adaptation rule (11) can be used.

Example 6. Consider the framework of the Exam-
ple 4. The followings are used in the simulation:
Tspec = (r̃ − y)2/2, K(θ) = θ > 0, γ = 5, T = 10
and ρ(t) = e−1.5t. Thus, the adaptation rule in
Eq. (13) is applied. The unknown plant is G(s) =

1
s2+2s and the initial value for θ(t) is θ(0) = 0.1.
The simulation results are in Figure 1. The right-
bottom plot shows switching signal that enables
adaptation when it is 1 and stops adaptation when
it is −1. The set Θ(t) is expressed by

Θ(t) = {θ | J̃(θ, τ) ≤ 0, θ > 0, τ ∈ [t0, t]}
=

{
θ

∣∣∣ 1
θ2

∫ τ

t0

u(ξ)2dξ ≤ e−2τ ,

θ > 0, τ ∈ [t0, t]
}

and it can be noticed that the set Θ(t) is depen-
dent on measured data u(t), thus, emptiness of
the set is dependent on it. The convergence of
controller parameter cannot be guaranteed even
though controller adaptation seems to converge to
177 approximately after t = 17 since the control
signal u(t) might have peaks at some time due to
perturbation of the plant or disturbance noise and
begin adaptation again.

Example 7. Consider the same plant as in the
previous example but use different performance
specification. The performance specification in
the form of Eq. (14) is used in this example.
The followings are also used in the simulation:
Tspec = (r̃ − y)2, K(θ) = θ > 0, γ = 3/2,
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Fig. 2. Simulation results with θ(0) = 0.1 and J̃(θ, t) =

−e−1.5t + (r̃(t)− y(t))2.

T = 10 and ρ(t) = e−1.5t. Our objective in this
example is to reduce error not cumulative error
as in Example 6. The initial value for θ(t) is
θ(0) = 0.1 which is the same value as in the
previous example. The simulation results are in
Figure 2. The simulation shows that no more
controller parameter adjustment happens after
about t = 6.7 and the resulting value of controller
parameter is θ = 2.77.

7. CONCLUDING REMARKS

In this paper, we proposed a new controller pa-
rameter adaptation rule in conjunction with un-
falsified control theory. The proposed algorithm
does not impose many assumptions on the plant.
A noteworthy feature of the algorithm is its flex-
ibility and simplicity of implementation. Conver-
gence of controller parameters is also discussed
with some assumptions on the performance spec-
ification and parameter set but not on the plant
although it cannot be checked a priori, which is
inherent in any unprejudiced scientific analysis of
feedback control problems based solely on data.
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