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Abstract: In this paper a family of stabilizing boundary feedback control laws for a class
of linear parabolic PDEs motivated by engineering applications is presented. The design
procedure presented here can handle systems with an arbitrary finite number of open-loop
unstable eigenvalues and is not restricted to a particular type of boundary actuation. The
stabilization is achieved through the design of coordinate transformations that have the
form of recursive relationships. The fundamental difficulty of such transformations is that
the recursion has an infinite number of iterations. The problem of feedback gains growing
unbounded as grid becomes infinitely fine is resolved by a proper choice of the target
system to which the original system is transformed. We show how to design coordinate
transformations such that they are sufficiently regular (not continuous but L∞). We then
establish closed–loop stability, regularity of control, and regularity of solutions of the PDE.
The result is accompanied by a simulation study for a linearization of a tubular chemical
reactor around an unstable steady state.
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1. INTRODUCTION

Motivated by the model for the chemical tubular reactor,
the model of unstable burning in solid rocket propellants,
and other PDE systems that appear in various engineering
applications, we present an algorithm for global stabiliza-
tion of a broader class of linear parabolic PDEs. The result
presented here is a generalization of the ideas of Balogh
and Krstić (2001). The goal is to obtain an L∞ coordinate
transformation and a boundary control law that renders the
closed–loop system asymptotically stable, and additionally
establish regularity of control and regularity of solutions
for the closed–loop system.

The key issue with arbitrarily unstable linear parabolic
PDE systems is the target system to which one is trans-
forming the original system by coordinate transformation.
For example, if one takes the standard backstepping route
leading to a tri–diagonal form, the resulting transforma-
tions, if thought of as integral transformations, end up with
“kernels” that are not even finite. A proper selection of the
target system will result in a bounded kernel and the solu-
tions corresponding to the controlled problem are going to
be at least continuous.

The class of parabolic PDEs considered in this paper is
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where ε � 0 and B are constants, λ
�
x ��	 L∞

�
0 � 1 � and

f
�
x � y �	 L∞

���
0 � 1 ��� �

0 � 1 ��� , with initial condition u
�
x � 0 ���

u0 � x � , for x 	 �
0 � 1 � . The boundary condition at x � 0 is

homogeneous Dirichlet,

u
�
0 � t ��� 0 � t � 0 � (2)

while the Dirichlet boundary condition at the other end

u
�
1 � t ��� α

�
u
�
t ����� t � 0 (3)

is used as the control input, where the linear operator α rep-
resents a control law to be designed to achieve stabilization.
It is assumed that the initial distribution is compatible with
(2), i.e. u0 � 0 ��� 0.

Our interest in systems described by (1) is twofold. First,
the physical motivation for considering equation (1) is
that it represents the linearization of the class of reaction–
diffusion–convection equations that model many physical
phenomena. Examples are numerous and among others
include the problem of compressor rotating stall (Hagen et
al., 1999), and the linearization of an adiabatic chemical
tubular reactor (Hlaváček and Hofmann, 1970).

Second, from the perspective of control theory, systems
described by (1) are interesting since their discretization
appears in the most general strict-feedback form (Krstic et
al., 1995). Therefore, developing backstepping control al-
gorithms for such a class of problems is of great importance
as the first step in an attempt to fully extend the existing
backstepping techniques from the finite dimensional setup
to the infinite dimensional one.

We use a backstepping method for the finite differ-
ence semi–discretized approximation of (1) with Dirichlet
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boundary conditions to derive a boundary feedback control
law that makes the infinite dimensional closed loop system
stable with an arbitrary prescribed stability margin. We
show that the integral kernel in the control law resides in the
function space L∞

�
0 � 1 � and that solutions corresponding

to the controlled problem are classical. Our method can
be generalized for different combinations of the boundary
condition at x � 0 (Dirichlet or Neumann), and control
applied at x � 1 (Dirichlet or Neumann).

The prior work on stabilization of general parabolic equa-
tions includes, among others, the results of Lasiecka and
Triggiani (1983) who developed a general framework for
the structural assignment of eigenvalues in parabolic prob-
lems through the use of semigroup theory. The stabiliza-
tion problem can be also approached using the abstract
theory of boundary control systems developed by Fattorini
(1968) that results in a dynamical feedback controller (see
(Curtain and Zwart, 1995, Section 3.5)). The first result,
to our knowledge, where backstepping was applied to a
PDE is the control design for a rotating beam by Coron
and d’Andréa Novel (1998). They designed a nonlinear
feedback torque control law for a hyperbolic PDE model
of rotating beam with no damping and no control on the
free boundary. The scalar control input, applied in a dis-
tributed fashion, is used to achieve global asymptotic stabi-
lization of the system. In addition, authors show regularity
of control inputs. Backstepping was successfully applied
to parabolic PDEs in (Liu and Krstic, 2000; Bošković and
Krstić, 2000; Bošković and Krstić, 2001b; Bošković and
Krstić, 2001a) in settings with only a finite number of steps.

Our work is also related to results of Burns et al. (1996).
Although their result is quite different because of the dif-
ferent control objective (theirs is LQR optimal control, ours
is stabilization), and the fact that their plant is open–loop
stable but with the spatial domain of dimension higher than
ours, the technical problem of proving some regularity of
the gain kernel ties the two results together.

The backstepping control design for linear parabolic PDEs
presented here has advantages of its own. First, compared
to the pole placement type of designs it has the standard
advantage of a Lyapunov based approach that the designer
does not have to look for the solution of the uncontrolled
system to find the controller that stabilizes it. The prob-
lem of finding modal data in the case of spatially de-
pendent λ

�
x � and f

�
x � y � becomes nontrivial and finding

closed form expressions for the system eigenvalues and
eigenvectors appears highly unlikely in the general case. In
that case finding eigenvalues and eigenvectors numerically
becomes inevitable, which might be computationally very
expensive if a large number of grid points is necessary
for simulating the system. To obtain a backstepping con-
troller that stabilizes the system, on the other hand, the
designer has to obtain a kernel given by a simple recursive
expression that is computationally inexpensive. Second,
from applications point of view, numerical results both for
the nonlinear (Bošković and Krstić, 2000; Bošković and
Krstić, 2001b; Bošković and Krstić, 2001a) and linear (lin-
earization of the chemical tubular reactor presented here)
parabolic PDEs suggest that reduced order backstepping
control laws that use only a few state measurements can
successfully stabilize the system for a variety of different
simulation settings.

2. MOTIVATION
The semi–discretized version of system (1) with (2) and (3)
using central differencing in space is the finite dimensional
system:

u0 � 0 � (4)

u̇i � ε
ui � 1 � 2ui � ui � 1

h2 � B
ui � 1 � ui

h
� λiui �

� h
i � 1

∑
k � 1

fi � kui i � 1 ��������� n � (5)

un � 1 � αn
�
u1 � u2 ��������� un � � (6)

where n 	 N, h � 1
n � 1 , ui � u

�
ih � t � , λi � λ

�
ih � and fi � k �

f
�
ih � kh � for k � 1 ��������� i � 1 and i � 0 ��������� n � 1. With un � 1

as control, this system is in the strict–feedback form and
hence it is readily stabilizable by standard backstepping.
However the naive version of backstepping would result in
a control law with gains that grow unbounded as n � ∞.

Our approach is to transform the system, but keep its
parabolic character, i.e., keep the second spatial derivative
in the transformed coordinates. Towards this end, we start
with a finite–dimensional backstepping–style coordinate
transformation

w0 � u0 � 0 � (7)

wi � ui � αi � 1
�
u1 ��������� ui � 1 ��� i � 1 ��������� n � (8)

wn � 1 � 0 � (9)

for the discretized system (4)–(6), and seek the functions
αi such that the transformed system has the form

w0 � 0 � (10)

ẇi � ε
wi � 1 � 2wi � wi � 1

h2 � B
wi � 1 � wi

h � cwi

i � 1 ��������� n � (11)

wn � 1 � 0 � (12)

The finite–dimensional system (10)-(12) is the semi–
discretized version of the infinite–dimensional system

wt
�
x � t � � εwxx

�
x � t ��� Bwx

�
x � t � � cw

�
x � t �
� (13)

for x 	 �
0 � 1 � � t � 0 � with boundary conditions

w
�
0 � t � � 0 � w

�
1 � t � � 0 � (14)

which is exponentially stable for c � � επ2 � B2

4ε .

The backstepping coordinate transformation is obtained by
combining (4)–(6), (7)–(9) and (10)–(12) and solving the
resulting system for the αi’s. Namely, subtracting (11) from
(5), expressing the obtained equation in terms of uk � wk,
k � i � 1 � i � i � 1, and applying (8) we obtain the recursive
form

αi � �
ε � Bh � � 1

	�

2ε � Bh � ch2 � αi � 1 � εαi � 2

� �
λi � c � h2ui � h3

i � 1

∑
k � 1

fi � kuk

� ∂αi � 1

∂u1


 �
ε � Bh � u2 � 


2ε � Bh � λ1h2 � u1
�

�
i � 1

∑
j � 2

∂αi � 1

∂u j  � ε � Bh � u j � 1 � 

2ε � Bh � λ jh

2 � u j

� εu j � 1 � h3
j � 1

∑
k � 1

f j � kuk ��� (15)

Writing the αi’s in the linear form

αi �
i

∑
j � 1

ki � ju j (16)



and performing simple calculations we obtain the general
recursive relationship for the kernel as

ki � j � h2

ε � Bh

�
c � λ j � ki � 1 � j � ki � 1 � j � 1

� ε
ε � Bh

�
ki � 1 � j � 1 � ki � 2 � j � � h2

ε � Bh

�
c � λi � δi � j� h3

ε � Bh
fi � j � h3

ε � Bh

i � 1

∑
l � j � 1

fl � jki � 1 � l
j � 1 ��������� i (17)

for i � 1 ��������� n with convention

ki � j � 0 � for j � i and i � j � 0 (18)

Initial conditions are obtained by using (18). For the simple
case when λ

�
x ��� λ = constant and f

�
x � y ��� f = constant,

equations (17) can be solved explicitly to obtain

ki � i � j � � �
i

j � 1 � L j � 1
n � �

i � j ��� j � 2 �
∑
l � 1

1
l

�
j � l
l � 1 � Ml

n

�
�

i � l
j � 2l � L j � 2l � 1

n � �
i � j �	� 
 j � 1 ��� 2 �

∑
l � 1

1
l

Pl
n � 
 j � 1 �	� 2 � � l

∑
m � 0

Mm
n

�
�

l � m � 1
l � 1 � j � 1 � 2l � 2m

∑
k � 0

�
j � l � 2m � k

l � 1 �
�

�
k � l � m � 1

k � �
i � m

k � l � 1 � Lk
n (19)

for i � 1 ��������� n, j � 1 ��������� i, where Ln � h2

ε � Bh

�
c � λ � �

Mn � ε
ε � Bh

andPn � h3

ε � Bh
f . The linearity of the con-

trol law in (16) suggests a stabilizing boundary feedback
control of the form

α
�
u ���

� 1

0
k
�
x � u

�
x � dx � (20)

where k
�
x � is obtained as a limit of  � n � 1 � kn � j � n

j � 1 as
n � ∞. From the complicated expression (19) it is not
clear if such limit exists. A quick numerical simulation
(see Figure 1) shows that the coefficients  � n � 1 � kn � j � n

j � 1
remain bounded but it also shows their oscillation, and
increasing n only increases the oscillation. A similar type
of behavior was encountered in the related work of Balogh
and Krstić (2001). Clearly, there is no hope for pointwise
convergence to a continuous kernel k

�
x � . However, as we

will see in the next sections, there is weak* convergence in
L∞ as we go from the finite dimensional case to the infinite
dimensional one. As a result, we obtain a solution to our
stabilization problem (1) with boundary conditions (2) and
(3).

3. MAIN RESULT
The precise formulation of the main result is summarized
in the following theorem.

Theorem 1. For any λ
�
x � 	 L∞

�
0 � 1 � , f

�
x � y � 	 L∞

� �
0 � 1 �

� �
0 � 1 ��� and ε, c � 0 there exists a function k 	 L∞

�
0 � 1 �

such that for any u0 	 L∞
�
0 � 1 � the unique classical solution

u
�
t � x � 	 C1


 �
0 � ∞ � ;C2 � 0 � 1 � � of system (1), (2), (3) is ex-

ponentially stable in the L2
�
0 � 1 � and maximum norms with

decay rate c. The precise statements of stability properties

are the following: There exists positive constant M �����
such that for all t � 0�

u
�
t � � � M

�
u0

�
e � ct (21)

and max
x � � 0 � 1 ��� u � t � x � � � M sup

x � � 0 � 1 � � u0
�
x � � e � ct � (22)

Remark 1. For a given integral kernel k 	 L∞
�
0 � 1 � the ex-

istence and regularity results for the corresponding solution
u
�
x � t � follows from trivial modifications in the proof of

(Levine, 1988, Thm 4.1).

4. PROOF OF MAIN RESULT
The proof of Theorem 1 requires four lemmas.

Lemma 1. The elements of the sequence  ki � j � defined in
(17) satisfy�� ki � i � j

�� � �
i

j � 1 � L j � 1
n � �

i � j � � j � 2 �
∑
l � 1

1
l

�
j � l
l � 1 � Ml

n

�
�

i � l
j � 2l � L j � 2l � 1

n � �
i � j � � 
 j � 1 ��� 2 �

∑
l � 1

	 � 
 j � 1 �	� 2 � � l

∑
m � 0

Mm
n

�
�

l � m � 1
l � 1 � j � 1 � 2l � 2m

∑
k � 0

�
j � l � 2m � k

l � 1 �
�

�
k � l � m � 1

k � �
i � m

k � l � 1 � Lk
n � (23)

where λ � max
x � � 0 � 1 ��� λ � x � � and f � sup
 x � y ��� � 0 � 1 �	� � 0 � 1 � � f � x � y � � .

Remark 2. There is equality in (23) when λ
�
x � � constant

� 0 and f
�
x � y ��� f � constant � 0.

Proof 1. We first obtain estimates for the initial values of
k’s, and then go from j � i backwards to obtain

� ki � i � � iLn � � ki � i � 1 � � i
�
i � 1 �
2

L2
n �

�
i � 1 � Pn (24)

Finally we obtain inequality (23) of Lemma 1 using the
general identity (17) and mathematical induction.

We now introduce notations q � j
n 	 �

0 � 1 � so that we can
write�� kn � n � j

�� � �� kn � n � qn

�� � �
n

qn � 1 � Lqn � 1
n

� �
n � qn ��� qn � 2 �

∑
l � 1

1
l

�
qn � l
l � 1 � �

n � l
qn � 2l �

� Lqn � 2l � 1
n Ml

n � �
n � qn �

��� 
 qn � 1 ��� 2 �
∑
l � 1

1
l

Pl
n � 
 qn � 1 ��� 2 � � l

∑
m � 0

�
l � m � 1

l � 1 � Mm
n

�
qn � 1 � 2l � 2m

∑
k � 0

�
qn � l � 2m � k

l � 1 � �
k � l � m � 1

k �
�

�
n � m

k � l � 1 � Lk
n (25)

�����
M grows with c, λ and 1 � ε.



We now show the uniform boundedness of  � n � 1 � ki � j � i � j � n.
Note that the binomial coefficients in inequality (23) are
monotone increasing in i and hence it is enough to show
the boundedness of terms

�
n � 1 � kn � j.

Lemma 2. The sequence  � n � 1 � kn � j � j � 1 � � � � � nn
�

1 remains
bounded uniformly in n and j as n � ∞.

Proof 2. We can write, according to (25),

�
n � 1 � �� kn � n � qn

�� � �
n � 1 �

�
n

qn � 1 �
�

E�
n � 1 � 2 � qn � 1

� �
n � 1 � � n � qn � � qn � 2 �

∑
l � 1

1
l

�
qn � l
l � 1 � �

n � l
qn � 2l �

�
�

E�
n � 1 � 2 � qn � 2l � 1

Ml
n � �

n � 1 � � n � qn �

� � 
 qn � 1 �	� 2 �
∑
l � 1

1
l

Pl
n � 
 qn � 1 �	� 2 � � l

∑
m � 0

�
l � m � 1

l � 1 � Mm
n

�
qn � 1 � 2l � 2m

∑
k � 0

�
qn � l � 2m � k

l � 1 �
�

�
k � l � m � 1

k � �
n � m

k � l � 1 �
�

E�
n � 1 � 2 � k

(26)

where E � 2 λ � c
ε . The three terms in (26) can be estimated

as

�
n � 1 �

�
n

qn � 1 �
�

E�
n � 1 � 2 � qn � 1 � EeE � e � (27)

�
n � 1 � � n � nq � � qn � 2 �

∑
l � 1

1
l

�
qn � l
l � 1 � �

n � l
qn � 2l �

�
�

E�
n � 1 � 2 � qn � 2l � 1

Ml
n � EeR � E � (28)

�
n � 1 � � n � qn � � 
 qn � 1 ��� 2 �

∑
l � 1

1
l

Pl
n

� � 
 qn � 1 ��� 2 � � l

∑
m � 0

�
l � m � 1

l � 1 � Mm
n

�
qn � 1 � 2l � 2m

∑
k � 0

�
qn � l � 2m � k

l � 1 �
�

�
k � l � m � 1

k � �
n � m

k � l � 1 �
�

E�
n � 1 � 2 � k

� H

�
1 � R

n � n �
1 � E

n � n �
1 � H

n � n

� He 
 R � E � H � (29)

where R � 2 �B �
ε and H � 2 � f �

ε . This proves the lemma.

As a result of the above boundedness, we obtain a sequence
of piecewise constant functions

kn
�
x � y � � �

n � 1 �
n

∑
i � 1

i

∑
j � 1

ki � jχIi � j � x � y � (30)

for all
�
x � y ��	 �

0 � 1 ��� �
0 � 1 � � n � 1, where

Ii � j ��� i
n � 1

� i � 1
n � 1 	 �
� j

n � 1
� j � 1
n � 1 	 (31)

for all j � 1 ��������� i � i � 1 ��������� n � n � 1. The sequence
(30) is bounded in L∞

���
0 � 1 ��� �

0 � 1 � � . The space
L∞

���
0 � 1 ��� �

0 � 1 ��� is the dual space of L1
���

0 � 1 ��� �
0 � 1 � �

hence, it has a corresponding weak*–topology. Since the
space L1

� �
0 � 1 ��� �

0 � 1 � � is separable, it follows now by
Alaoglu’s theorem, see, e.g. (Kato, 1966, pg. 140), that (30)
converges in the weak*–topology to a function k̃

�
x � y � 	

L∞
���

0 � 1 ��� �
0 � 1 ��� . The uniform in p 	�� weak convergence

in each Lp
���

0 � 1 ��� �
0 � 1 ���� L∞

���
0 � 1 ��� �

0 � 1 ��� , immediately
follows.

Lemma 3. The map k̃ :
�
0 � 1 � � L∞

�
0 � 1 � is weakly contin-

uous.

Proof 3. From the uniform boundedness in i of (23) we
obtain that

� nx �
∑
j � 1

k � nx � � ju j � � nx �
∑
j � 1



�
n � 1 � k � nx � � j � u j

1
n � 1

n � ∞� � � �
� x

0
k̃
�
x � ξ � u

�
ξ � dξ � u 	 L1

�
0 � 1 ����� x 	 �

0 � 1 � � (32)

Here
�
nx � denotes the largest integer not larger than nx and

the convergence is uniform in x. For an arbitrary x 	 �
0 � 1 �

we now fix an n � N
�
ε � 2 � and choose a δ � 0 such that�

nx ��� �
n
�
x � δ � � . We obtain���� � 1

0
k̃
�
x � ξ � u

�
ξ � dξ � � 1

0
k̃
�
x � ξ � u

�
ξ � dξ

����
� ����� � x

0
k̃
�
x � ξ � u

�
ξ � dξ � � nx �

∑
j � 1

k � nx � � ju j

�����
�

����� � nx �
∑
j � 1

k � nx � � ju j � � n 
 x � δ � �
∑
j � 1

k � n 
 x � δ ��� � ju j

�����
�

����� � n 
 x � δ �	�
∑
j � 1

k � n 
 x � δ �	� � ju j � � x � δ

0
k̃
�
x � δ � ξ � u � ξ � dξ

������ ε � 2 � 0 � ε � 2 � ε (33)

which proves the weak continuity.

The following lemma shows how norms change under the
above transformation.

Lemma 4. (Balogh and Krstić (2001)). Suppose that two
functions w

�
x � 	 L∞

�
0 � 1 � and u

�
x � 	 L∞

�
0 � 1 � satisfy the

relationship

w
�
x � � u

�
x � � � x

0
k̃
�
x � ξ � u � ξ � dξ � x 	 �

0 � 1 ��� (34)

where k̃ 	 C
���

0 � 1 � ;L∞
�
0 � 1 ��� � Then there exist positive

constants m and M, whose sizes depend only on k̃, such
that

m
�
w
�

∞ � �
u
�

∞ � M
�
w
�

∞ (35)

and
m

�
w
� � �

u
� � M

�
w
� � (36)

Proof 4. (Proof of Theorem 1). We now complete the proof
of Theorem 1 by combining the results of Lemmas 1–4.
In Lemma 1 we derived a coordinate transformation that



transforms the finite dimensional system (4)–(6) into the
finite dimensional system (10)–(12). As a result of the uni-
form boundedness of the transformation we obtained the
coordinate transformation (34) that transforms the system
(1), (2) into the asymptotically stable system (13)–(14).
Due to the weak continuity proven in Lemma 3 the infi-
nite dimensional coordinate transformation results in the
specific boundary condition

u
�
1 � t ��� α

�
u ���

� 1

0
k
�
ξ � u � ξ � t � dξ � (37)

where k
�
ξ � � k̃

�
1 � ξ � , ξ 	 �

0 � 1 � with k 	 L∞
�
0 � 1 � . The well

known (see, e.g. (Cannon, 1984)) stability properties of
system (13)–(14) along with Lemma 4 proves the stability
statements of Theorem 1.

5. SIMULATION STUDY
In this section we present the simulation results for a
linearization of an adiabatic chemical tubular reactor. For
the case when Peclet numbers for heat and mass transfer
are equal (Lewis number of unity) the two equations for
the temperature and concentration can be reduced to one
equation (Hlaváček and Hofmann, 1970)

θt � 1
Pe

θξξ � θξ � Da
�
b � θ � e θ

1 � µθ (38)

θξ
�
0 � t ��� Pe θ

�
0 � t � (39)

θξ
�
1 � t ��� 0 (40)

for ξ 	 �
0 � 1 � � t � 0 where Pe stands for the Peclet number,

Da for the Damköhler number, µ for the dimensionless
activation energy, and b for the dimensionless adiabatic
temperature rise. For a particular choice of system parame-
ters (Pe � 6, Da � 0 � 05, µ � 0 � 05, and b � 10) system (38)–
(40) has three equilibria (Hlaváček and Hofmann, 1970).
The middle profile is unstable while the outer two profiles
are stable. The equilibrium profiles for this case are shown
in Figure 2. Linearizing the system around the unstable
equilibrium profile θ

�
ξ � we obtain

θt � 1
Pe

θξξ � θξ � Da G



θ
�
ξ � � θ (41)

θξ
�
0 � t � � Peθ

�
0 � t � (42)

θξ
�
1 � t � � 0 (43)

where θ now stands for the deviation variable from the
steady state θ

�
ξ � , and G is a spatially dependent coefficient

defined as

G
�
θ � ��� b � θ�

1 � µθ � 2 � 1 	 e
θ

1 � µθ (44)

Although not obvious from the equations (41)–(43), it is
physically justifiable to apply feedback boundary control
at 0-end only. In real application control would be imple-
mented through small variations of Tin and Cin (see (Varma
and Aris, 1977) and (Hlaváček and Hofmann, 1970)). Since
our control algorithm assumes actuation at 1-end we trans-
form the original system (41)–(43) by introducing a vari-
able change

u
�
x � t ��� θ

�
1 � ξ � � (45)

In the new set of variables the system (41)–(43) becomes

ut
�
x � t ��� 1

Pe
uxx

�
x � t ��� ux

�
x � t �

� Da g
�
x � u

�
x � t � (46)

ux
�
0 � t � � 0 (47)

ux
�
1 � t � � � Peu

�
1 � t ��� ∆ux

�
1 � t � (48)
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Fig. 1. Oscillation of the approximating kernel for n � 50,
λ � 5, f � 0, ε � 1, B � 1, c � 1.

where g
�
x � is defined as g

�
x ��� G

�
θ
�
1 � ξ ��� and ∆ux

�
1 � t �

stands for the control law to be designed. All simula-
tions presented in this study were done using BTCS finite
difference method for n � 200 and the time step equal
to 0 � 001 s. Although we have tested the controller for
several different combinations of initial distributions and
target systems, we only present results for c � 0 � 1 and
u
�
x � 0 � � � 


ω
Pe cos

�
ωx ��� sin

�
ωx � � , ω � 1 � 48396. This par-

ticular initial distribution has been constructed to exactly
satisfy the imposed boundary conditions on both ends in
the open loop case.

The open loop system (∆ux
�
1 � t � =0) is unstable as shown in

Figure 3. We now obtain a coordinate transformation that
transforms the discretization of (46)–(48) into discretiza-
tion of the asymptotically stable system

wt
�
x � t ��� 1

Pe
wxx

�
x � t � � wx

�
x � t � � cw

�
x � t � (49)

wx
�
0 � t ��� 0 (50)

wx
�
1 � t ��� � Pew

�
1 � t � (51)

The control is implemented as

∆ux
�
1 � t ��� αn

�
u1 ������� � un � � αn � 1

�
u1 ������� � un � 1 �

h
� Peαn

�
u1 ������� � un � � (52)

The closed loop response of the system with controller
designed for n � 200 and c � 0 � 1 and the corresponding
control effort ∆ux

�
1 � t � are shown in Figure 4.

From applications point of view it is of interest to see
whether the system (46)–(48) can be stabilized with a
reduced version of the control law (52). The idea of using
controllers designed using only a small number of steps
of backstepping to stabilize the system for a certain range
of the open–loop instability is based on the fact that in
most real life systems only a finite number of open–loop
eigenvalues is unstable. Indeed, simulation results show
that we can successfully stabilize the unstable equilibrium
using a kernel obtained with only two steps of backstepping
(using only two state measurements u

� 1
3 � t � and u

� 2
3 � t � )

with the same c � 0 � 1. The closed loop response of the
system with a reduced order controller and corresponding
control effort ∆ux

�
1 � t � are shown in Figure 5.
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