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Abstract: In this paper the performance and assumptions of linear prediction
acoustical modelling are assessed on the free field cough sound. Four distinct free field
cough classes originating from animal and human species in different health conditions
are considered. For eac h cough class the wcal tract formants are estimated from the

linear prediction parameters.
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1. INTRODUCTION

As reflex-generated perturbation of the respira-
tory function cough is an important symptom in
many respiratory diseases or irritations (Irwin, et
al., 1977). The simple, noninvasiv e, nonhazardous,
contactless and inexpensive nature of acquiring
information of the respiratory system using free
field cough-sound registration makes it an attrac-
tive candidate for on-line follo w-up and clinical
diagnosis (Korpas, et al., 1996). How ever the ap-
plication of this method is still limited due to the
inability to extract adequate objective informa-
tion and the lack of a full understanding of the ori-
gin of the cough sound. Auditive characterization
of the cough sound resulted in several common
labels as brassing, barking, whooping, etc. A more
objective cough-description is obtained by time-
frequency analysis (Korpas, et al., 1996; Murata,
et al., 1996). Modelling of the free field cough
acoustic waveform aims to parameterize the cough
sound signal for analysis and physical interpreta-
tion. Model parameters are fbund y performing
a time or frequency match between the original
signal and that generated by the model. In this

paper linear prediction acoustical modelling of the
free field cough waveform is assessed.

2. MATERIALS AND METHODS
2.1 A coustic al data: animal and human studies

In this study ‘acute’ cough due to a common cold
and ‘voluntary’ cough on request are registered
on respectively 3 suffering and 9 healthy non-
smoking human individual subjects betw een 20
and 30. ‘Chemical’ and ‘chronic’ cough are reg-
istered during reproducible eliciting of coughing
on individual Belgian Landrace piglets, aged 9
w eeks,by respectively nebulization of citric acid
(2 piglets) (Van Hirtum, et al., 2000; Moreaux,
et al., 1999) and inoculation of a respiratory in-
fection (2 piglets) (bronchopneumonia with P as-
teurella multocida) (Kobisch, et al., 1996), with-
out disturbing the animal’s behaviour. This re-
sulted in respectively 48 ‘acute’, 36 ‘voluntary’,
1883 ‘chronic’ and 119 ‘c hemical’induced cough
samples. Free field acoustic registration at 22050
Hz is performed with a standard multi-media



microphone (20-20kHz frequency response) and
sound-card (16 bit). The microphone was posi-
tioned at a distance of respectively 0.3 up to 0.5
and 0.3 up to 1.7 m from the human or piglet sub-
ject. So acoustical studies on both species resulted
in 4 cough-classes.

2.2 Linear prediction for spectral analysis

Linear prediction (LP) time-domain acoustic mod-
elling is commonly applied in speech processing
using a source-filter arrangement to model the
vocal tract system (Rabiner, et al., 1993). In gen-
eral it is assumed that the source is located at
the glottis and that a linear filter is adequate to
model the frequency properties of the vocal tract.
Furthermore for analysis it is assumed that no
information about the excitation of the vocal tract
is known and that the sound waveform can only be
modelled from its previous values. Based on both
assumptions the linear vocal tract filter defines
an autoregressive (AR) model of the signal, in
which the current sample, y(t), is predicted from
a linear combination of a finite number (n,) of
past samples
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where ¢,(t) is the predicted signal sample and
n, the prediction order. The coefficients a; are
assumed constant over the analysis frame. The
prediction error or residual, e,(t) = y(t) — Jp(t),
represents either structure in the sound waveform
which is not captured by the model or randomness
which can inherently not be modelled. The LP
spectral estimate only makes sense if the model is
correct (inclusive stationarity of the vocal tract,
white noise or null source), if not it will make
the source look as much as white noise as possi-
ble, putting all spectral shaping into the transfer
function. For a good model, the residual has no
predictable structure and appears as white noise.
The vocal tract transfer function is expressed in
the z-domain as the all-pole system:
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with G the gain term. The estimated vocal tract
transfer function, H (z), represents the combined
effects of the glottal wave shape, vocal tract re-
sponse and lip radiation. A match between the
spectral envelope of the waveform and the fre-
quency response of H(z) is obtained if the parame-
ters, a, are derived to minimize the mean squared
prediction error, E, over the analysis frame length,
which leads to maximum likelihood estimates of

parameters assuming prediction errors have Gaus-
sian distributions. Due to the spectral match-
ing property of the mean-squared error criterion,
linear prediction analysis can be used to obtain
a smoothed estimate of the short-time spectral
envelope of the sound waveform. Estimates of
the formants are obtained by locating peaks in
the smoothed spectral envelope or by factorizing
A(z) into its constituent poles. Each formant is
approximated by a complex-conjugate pole pair,
[pi, Di] with p; = r;exp(ji;), which forms a second
order filter with transfer function A4;(z), given by

Ai(z) =1+ a1zt +axz? (3)

The frequency of the formant, Fj, is determined
from the pole angle and the bandwidth, B;, from
the radius.

Fy =1i/2nT (4)
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The spectrum is unique in the range —f;/2 <
f < fs/2 and repeats at multiples of the sampling
frequency, fs = 1/T. The transfer function, fI(z),
is stable if all the poles lie inside the unit circle.
Model performance is objectively evaluated by the
prediction signal-to-noise ratio (SNR):
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3. RESULT AND DISCUSSION
3.1 Effect of waveform pre-processing

In accordance with previous research, (Van Hir-
tum, et al., 2001), 100 Hz high pass filtering im-
proves the signal-to-noise ratio by eliminating low-
frequency noise (mainly from mechanical origin
such as ventilation noise) while preserving the
intended acoustical waveform at its maximum.
The strived H(z) is the estimated vocal tract
transfer function. However in section 2.2 it is
pointed that H (z) represents the combined effects
of the glottal wave shape, vocal tract response
and lip radiation. Assuming that the glottal vol-
ume velocity can be approximated by a two-pole
model (-12dB/octave) and the lip radiation by a
single zero (4+6B/otave), the combined effect of
glottal wave shape and lip radiation introduces
a -6dB/octave shift to the magnitude spectrum
(Deller, et al., 1993) and can be approximated by
a single pole P(z).

P(z)=1—pz™" p=0.95 (7)

Therefore pre-emphasis with the first-order filter
P(z) is commonly applied to the waveform in



order to remove this trend and consequently to
spectrally flatten the waveform by respectively
suppressing and enhancing lower (< 4kHz) and
higher (> 4kH z) frequency components. In order
to minimize the waveform discontinuities at the
beginning and ending of the analysis frame it
is common to (Hanning) window each analysis
frame so as to taper frame begin- end ending to
zero. The effect of these three frequently used pre-
processing steps (noise-filtering, pre-emphasis and
windowing) and there mutual combinations on the
estimated vocal tract transfer function, H(z), is
assessed on the experimental data by comparison
of the obtained prediction SNR given in Equa-
tion 6. It appears that for all experimental data
classes pre-emphasis yields the largest prediction
SNR followed by firstly no pre-preprocessing and
secondly successively high-pass filtering and win-
dowing. Therefore in the following it is chosen to
pre-process the waveform by pre-emphasizing,.

3.2 LP model order

In general the model order is determined by the
properties of the data, the specific form of H and
the form of the vocal tract excitation. In this
paper the model form of H is fixed as a LP model
indicated in Equation 2 because of its simple
closed-form solution, complete separation of the
source and the vocal tract filter in synthesis and a
possible direct interpretation in terms of a loss-less
acoustic tube model of the vocal tract (Rabiner,
et al., 1993). No assumptions are made concerning
the form of the vocal tract excitation and the
properties of the data are optimized for modelling
during the pre-processing described in subsection
3.1. For speech sampled at 8kHz typical analysis
orders range from n, = 10 — 16 in correspondence
with 4 formants requiring a minimum of 8 poles (4
pole pairs) with some poles added to count for the
effect of glottal shaping, lip radiation and nasal
coupling. Bearing this in mind the LP model is
applied to the 4 classes of cough data described in
subsection 2.1 with the model order respectively
equal to 5, 8, 10, 12, 14, 15, 16, 18, 20 and 25.
The analysis frame-length is set to 45 msec and
is shifted with one third of the frame-length or 15
msec. The effect of varying the model order on the
mean prediction SNR and associated standard de-
viation for each of the 4 cough-classes is presented
in Table 1. As expected from the LP spectral
matching property the prediction SNR in Table
1 increases with increasing model order. How-
ever this property might easily introduce over-
parameterization of the waveform under study.
Comparison of waveform and error spectra from
LP with variation of model order for a represen-
tative cough of (a) animal: chronic, (b) animal:
chemical, (c¢) human: acute and (d) human: vol-

untary are shown in Figure 1. The green, magenta
and red fit on top of the blue waveform spectra
corresponds respectively with n, = 5, n, = 10
and n, = 14. Based firstly on the improvement
in mean prediction SNR by increasing the order
with one step in Table 1 and secondly on the
visual inspection of smoothed spectral matching
of the harmonic resonances as illustrated in Figure
1 the model order was set to n, = 14 for the 4
cough classes. Other subjective criteria like audi-
tive interpretation of the synthesized cough sound
or objective criterion functions incorporating the
variance on the parameters as among others de-
fined in Akaike’s Information Criterion (AIC), Fi-
nite sample Information Criterion (FIC) or Young
Identification Criterion (YIC) are not applied.
Although such objective criteria might improve
the LP modelling here it is assumed that the
parameters are not biased due to the de-noising in-
corporated in the pre-processing described in sub-
section 3.1 and the fairly good estimation of the
harmonic resonances as shown in the plots of Fig-
ure 1. The poor modelling of the valleys between
the resonance peaks is inherent to LP modelling
spectral matching since lower spectral values con-
tribute less to the mean-squared error criterion
and therefore are less accurately modelled. For
the animal species the class resulting from infected
subjects (animal: chronic) exhibits the best model
performance, while for human subjects the class
resulting from healthy subjects (human: volun-
tary) shows a slightly better performance com-
pared to human: acute. For infected subjects the
performance of the LP model on animal subjects
(animal: chronic) exceeds the performance on the
human subjects (human: acute), while the oppo-
site holds for the healthy classes (animal: chemi-
cal and human: voluntary). The cough-class due
to chemical irritation (animal: chemical) clearly
shows the worst model performance. The high
and fairly constant standard deviations over all
model orders in Table 1 indicate a variable nature
of the cough waveform for all cough-classes. This
finding and the overall low SNR-values in Table 1
cast doubts on the validity of the assumption of
a two-pole model for the glottal volume velocity
during sound production. Therefore other model
structures need to be assessed.

3.3 Estimation of LP model parameters

The mean LP parameter estimates aj with as-
sociated relative standard deviations &(ay) (in %)
obtained with the model order fixed at n, = 14 as
described in subsection 3.2 for all 4 cough-classes
is given in Table 2. The large relative standard
deviations £(ay) on the mean parameter estimates
for n, = 14 again indicate a variable nature of
the cough waveform for all cough-classes. Lower



Table 1. Effect of variation of LP model order on mean prediction SNR (mean) and
associated standard deviation (std).

Model order | animal: chemical | animal: chronic | human: voluntary | human: acute
Na mean std mean std mean std mean std
5 4.72 2.71 7.03 1.83 5.58 2.53 5.48 2.70
8 4.87 2.70 7.12 1.77 5.84 2.53 5.69 2.68
10 4.95 2.70 7.21 1.75 6.00 2.51 5.78 2.66
12 5.02 2.68 7.25 1.74 6.13 2.53 5.88 2.66
14 5.07 2.68 7.29 1.73 6.20 2.53 5.98 2.68
15 5.09 2.68 7.30 1.72 6.24 2.53 6.01 2.68
16 5.11 2.68 7.32 1.71 6.28 2.52 6.05 2.69
18 5.15 2.68 7.34 1.71 6.35 2.52 6.11 2.68
20 5.18 2.67 7.36 1.70 6.41 2.51 6.16 2.67
25 5.25 2.66 741 1.68 6.53 2.52 6.24 2.66
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Fig. 1. Comparison of signal and error spectra from LP with variation of model order for a representative
cough of (a) animal: chronic, (b) animal: chemical, (c) human: acute and (d) human: voluntary. The
green, magenta and red fit corresponds respectively with n, =5, n, = 10 and n, = 14.

LP model orders and other pre-processing combi-
nations, described in Subsection 3.1, didn’t result
in an over-all improved parameter-variance. Vi-
sual inspection of cough-waveform spectrograms
however shows a very limited time-variation. So
although the LP modelling is not optimal, the
applied modelling might allow the localization of
the harmonic resonances in the smoothed spectra.
The effect of variation of the parameter estimates
and the large standard deviations on the LP mod-
elling performance of order n, = 14 is illustrated
in Figure 2 on (a) spectra and (b) poles of the
same (animal: chronic) waveform-segment as used
in plot (a) of Figure 1. The green, cyan, red
and black results are obtained from respectively
the parameters estimated on the exemplar sound,
the class mean parameters as given in Table 2,
the class mean parameters plus standard devia-

tion and finally the class mean parameters minus
standard deviation. From the presented spectra
and poles it is easily to see the loss in model-
accuracy obtained with the class mean parameters
compared to the parameters estimated on the
modelled sound, while modelling with the class
mean parameters minus standard deviation even
result in an unstable transfer function H(z) since
one pole lies outside the unit circle. The models
with parameters not estimated on the waveform-
segment show large deviations for frequencies up
to 4kHz. This paragraph illustrates the bad be-
havior of the retrieved mean LP parameters to-
wards spectral features, which can be improved
considering e.g. the Itakura-Saito distortion mea-
sure instead of the Euclidean distance.



Table 2. Mean LP parameter estimates ajp with associated relative standard
deviation &(ay) (in %) for n, = 14.
ai a2 asg a4 a5 ag ary
animal | chemical | —2.7710~! 4.381071 —1.27107 1 4.211071 1.0410~2 2.72107 1 3.1110~2
&lay) 104.7 38.09 136.0 37.52 1788 55.40 469.4
chronic | —9.0310~ " 1.0210° —5.4610~ "  5.4910° ' —2.7210° " 227100 " —1.84107 "
&lay) 18.81 15.40 37.70 38.24 60.55 70.32 64.31
human | voluntary | —2.5210~%  3.1210~ 1! —2.6610~T  3.5110" 71 —2.3510 1 2471071 —6.4510~2
£(ag) 89.83 61.29 62.32 44.81 63.59 61.03 244.2
acute —3.77100 5.3410° 1T —4.6410~T 5.2010~ 1T —3.5510" 1 3.7210° 1T —3.3710 1T
£(ay) 76.97 34.12 57.58 40.06 55.03 56.32 54.80
as ag a10 aii a12 a3 a4
animal | chemical 1.2010-1 —9.4910~2 5.3310~2 —3.41102 5.4310~4 —1.7110=2 —-7.01103
£(ay) 61.33 275.6 94.71 2736 122.6 300.6 181.7
chronic 12010 % —9.4910~2 5.3210°2 —3.4110°2 5.4310°%* —1.7110°2 —7.0110°3
£(ay) 109.6 104.0 224.4 250.6 1818 10% 379.3 976.1
human | voluntary | 2.2110~!  —8.8910~2 1.5910-1 —1.5510"1  5.1410°2  —6.7910~2  4.5010 2
£(ag) 64.35 178.0 85.36 84.62 238.3 175.9 177.6
acute 2401071 —1.8810 1 2.2010° 1T —7.611072 8.85102 —9.241072 1.541072
£(ay) 80.91 77.03 75.13 171.2 120.6 102.3 509.0
Table 3. Mean formant frequency Fj,
mean bandwidth B; and associated rel-
ative standard deviations & (in %) for
LP with n, = 14.
% animal human
% chemical | chronic | voluntary | acute
i) 1918 2130 1863 1789
E(FY) 23 14 16 26
B 1073 1145 764 1177
&(B1) 72 47 62 71
Fy 3480 3259 3560 3335
| . . . . - E(Fy) 14 6 12 10
fequency (kHo) B> 1180 740 952 914
' ‘ ‘ ‘ ‘ ‘ £(By) 71 57 63 73
© Fs 4992 4593 5251 5129
il T T T 1 E(F3) 13 8 9 7
T R T B 1314 1151 959 1171
. X ! N 3
A N ] £(Bs) 62 46 56 68
;o ! Y Fy 6609 6003 6832 6568
Eoof  iooooxooeo- oo B £(Fy) 7 6 7 5
L xx W% By 1288 1291 1383 1185
N ! </ ] £(Ba) 63 44 67 58
DU ey xR Fy 8113 7584 8151 7990
BRI ANy ] &(Fs) 5 5 4 4
‘ Bs 1315 1589 1128 1169
‘ ‘ ‘ ‘ ‘ &(Bs) 58 44 83 63
-15 -1 -05 reﬂa‘ 05 1 15
. Lo accuracy and consequently in peak-estimation of
Fig. 2. Effect of variation of the parameter es- the LP-model with class mean parameters towards
timates for LP model of order n, = 14

on spectra (a) and poles (b) for the animal
chronic cough example also shown in part (a)
of Figure 1. The green, cyan, red and black
results are obtained from respectively the pa-
rameters estimated on the exemplar sound,
the class mean parameters and finally the
class mean parameters + standard deviation.

3.4 Formants from estimated LP parameters

As pointed out in subsection 2.2 the positions
and widths of the harmonic resonances can be
estimated from the LP spectra using respectively
Equations 4 and 5. Considering the loss in model-

the parameters estimated directly on each wave-
form, as indicated in subsection 3.3, the formant
frequencies, Fj, and bandwidths, B;, are estimated
directly on each waveform obtained with LP of
ng = 14. Table 3 returns the resulting inter-class
mean formant frequencies, mean formant band-
widths and associated relative standard deviations
& (in %). For both species 5 formants could be
derived in a frequency-interval up to 10kHz or
roughly one formant each 2kHz. The chosen model
order of n, = 14 can then be interpreted as 10
poles required to model the vocal tract leaving 4
poles to model the additional effects as e.g. glottal
shaping and lip radiation. The large associated



standard deviations on both mean F;’s and mean
B;’s indicate a large variability on the mean val-
ues, which increases for higher frequencies. Except
for the estimation of Fj, in general the mean
formant F}’s estimated on animal waveforms are
lowered compared to the frequencies obtained on
human data. Except for the animal Fj-estimates,
on both species the formants on healthy subjects
are increased compared to the same formants for
suffering subjects. Although Table 3 presents a
quantitative estimation of the mean waveform
formants and bandwidths for all 4 cough-classes
discrimination of the 4 classes based on the pole-
angles or formant-frequencies will be difficult due
to the great relative standard deviations and
therefore is not assessed here. However it could
be remarked that the goal of class-classification
might also be put forward as an other possible
subjective criterion to determine the LP-model
order.

4. CONCLUSION

Linear prediction acoustical modelling is assessed
considering the prediction signal-to-noise ratio for
distinct model orders and signal pre-processing
steps on 4 distinct free field cough classes origi-
nating from animal and human species in different
health conditions. For all cough waveform classes
the model order is set to 14 and the best model
performance is obtained after pre-emphasis of the
waveform with a common first-order filter. For
each cough class the vocal tract formants are
estimated from the linear prediction parameters.
Future research involves firstly the acoustic in-
terpretation of the parameters and secondly the
selection of a model-structure to decrease the large
variance on the parameters.

REFERENCES

Irwin, S.I., M.J. Rosen and S.S. Braman (1977).
Cough a comprehensive review, Archives of
internal medicine, Vol.137, pp.1186-1991.

Korpas, J., J. Sadlonona and M. Vrabec (1996).
nalysis of the cough sound: an overview, Pul-
monary Pharmacology, Vol.9, pp.261-268.

Murata, A., Y. Taniguchi, Y. Hashimoto, Y.
Kaneko, Y. Takasaki, and S. Kudoh (1996). Dis-
crimination of productive and non-productive
cough by sound analysis, Internal Medicine,
Vol.37, pp.732-735.

Moreaux, B., D. Beerens, and P. Gustin (1999).
Development of a cough induction test in pigs:
effects of SR 48968 and enalapril, J vet Phar-
macol Therap, Vol.22(6), pp.387-389.

Van Hirtum, A., and D. Berckmans (2000).
Fuzzy approach for improved recognition of pig-
coughing from continuous registration, Proc.
25th International ISMA Conference on Modal
Analysis Noise and Vibration Engineering, Leu-
ven, Belgium, pp.1535-1541.

Van Hirtum, A., and D. Berckmans (2001). Con-
sidering the influence of artificial environmental
noise to study cough time-frequency features,
Proc. 24th European Conference on Noise Con-
trol, Patras, Greece, pp.8.

Kobisch, M., and TNF. Friis (1996). Swine my-
coplasmoses, Revue scientifique et technique de
Doffice international des epizooties, Vol.15(4),
pp-1569-1605.

Rabiner L. and B.H. Juang (1993). Fundamentals
of speech recognition. Prentice Hall, New Jersey.

Deller Jr., J. Proakis and J. Hansen (1993).

Discrete-time processing of speech signals. Macmil-

lan Publishing Company, Englewoods CIliff,
N.J.



