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Abstract: In this paper model reduction methods are used to obtain a nonlinear process
model for designing a model predictive controller (MPC). The corresponding controller
and its closed-loop response is then compared with controllers that are determined from
the original model and a linearized version of this model. The reduced dimensional non-
linear MPC controller performs almost as well as the nonlinear MPC controller that is
based on the original model and considerably better than the linear MPC controller.
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1. INTRODUCTION

Over the past two decades, model reduction methods
have become increasingly popular. Such methods are
designed to extract a reduced dimensional state-space
model that adequately describes the input-output be-
havior of the process under study. In fact, the meth-
ods are data-driven and attempt to reduce the number
of state variables by observing the loss in accuracy
for describing the measurable process behavior.

A variety of different model reduction techniques
exists for linear and nonlinear models and the aim of
almost any reduction technique is to provide a re-
duced order model that can be used for controller
design. However, little work has been done in evalu-
ating the closed-loop performance that is achieved
when the controller is based upon the reduced model
and used for the original full-order process which can
include disturbances and model mismatch.

Reduced dimensional models can be considered for
determining an MPC controller, which presents an
alternative to using the original process model. The

main benefits are a decrease in the effort for com-
puting adjustments of the manipulated variables and
identification of the directions in state-space that are
meaningful in a control-engineering context. While
the former aspect is clearly related to the reduced size
of the model, the latter benefit results because in the
reduced set of state variables, unobservable and un-
controllable contributions to the process variation
have been removed. As a test system, the simulation
of two CSTRs that are operating in series is consid-
ered. This process exhibits a nonlinear relationship
between the input, the state and the output variables
and, therefore, is a challenging task for model reduc-
tion. An MPC controller is developed for each model
and the performance of these controllers subjected to
a set point change and an output disturbance provide
the basis for comparison. It is demonstrated in this
article that the performance of the MPC controller
based on the original model is only marginally better
than the one based on the reduced dimensional
model. In contrast, the computational effort, deter-
mined by the number of floating point operations, can
be considerably less for the latter one since computa-
tions for efficient MPC algorithms grow with the
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cubic of the number of states of the model. Addition-
ally, this controller performs significantly better than
the linear MPC controller.

The paper is structured as follows. A brief review of
existing model reduction methods is presented prior
to the introduction of the MPC approach. Then, the
example process that is considered for the case study
is introduced. This is followed by a presentation of
the application study.

2. REVIEW OF PREVIOUS WORK

Balanced model reduction for linear systems was first
introduced by Moore (1981) in order to eliminate
states that are close to being non-minimal and, there-
fore, contribute little to the input-output behavior of a
system. Scherpen (1993) extended the balancing ap-
proach to a specific class of nonlinear systems by
introducing energy functions and investigating con-
ditions that guarantee existence of a balanced reali-
zation. However, the procedures are only applicable
to control-affine systems, present computational dif-
ficulties, and in general a closed form solution cannot
be obtained. The only numerical implementation of
Scherpen’s approach is given by Newman and Krish-
naprasad (2000) who used a Monte-Carlo approach
as an approximation for the computation of the en-
ergy functions and tested their algorithm on a pen-
dulum with two states. Their algorithm computes
approximations to the energy functions as well as a
balancing transformation for the nonlinear system.
However, after the coordinate transformation is ap-
plied, and even without reducing the model, the
transformed system does not exhibit the same input-
output behavior as the original system due to the ap-
proximations that were applied during the computa-
tional procedure.

Due to the problems encountered with nonlinear bal-
ancing procedures, several methods that perform a
Galerkin projection, based upon a linear coordinate
transformation, have been developed. Newman and
Krishnaprasad (1998) compared models describing
chemical vapor deposition that were reduced by prin-
cipal component analysis (PCA) and balancing,
where the balancing transformation was found from
the linearized system. Pallaske (1987) investigated a
procedure where the linear transformation is found
from a covariance matrix that is computed from data
collected along system trajectories. These trajectories
represent the system behavior under a constant input,
but starting from different initial conditions. Löffler
and Marquardt (1991) extended this model reduction
approach to models described by differential alge-
braic equation systems. Due to the complexity of the
model they investigated the case where the trajecto-
ries start at the steady state operating point and are
generated by step changes in the inputs to the system.
Lee et al. (2000) computed the linear coordinate
transformation by balancing a system that was gener-

ated using subspace identification. This identified
system was generated from data collected along sys-
tem trajectories. Lall et al. (1999, 2000) introduced
the concept of empirical gramians, which are an ex-
tension to the gramians for linear systems. These em-
pirical gramians can be computed for control-affine
nonlinear systems and the computation procedure is
based upon system trajectories that include changes
in the system inputs as well as different initial condi-
tions. Based upon the empirical gramians a linear
coordinate transformation can be computed and the
model reduced via a Galerkin projection. Hahn and
Edgar (1999) showed that the procedure presented by
Lall et al. (1999, 2000) is limited to control-affine
systems and requires modifications when the steady
state of the system is different from zero. Addition-
ally, they investigated the extension of balanced
residualization to nonlinear systems via the found
coordinate transformation. A comprehensive review
of model reduction techniques for linear and nonlin-
ear systems was given by Marquardt (2001).

3. MODEL REDUCTION PROCEDURE

The reduction procedure used in this article is an ex-
tension of linear balanced truncation to nonlinear
systems. The procedure itself can be split up into two
steps, the computation of the covariance matrices and
the procedure that balances the covariance matrices
and reduces the system via a Galerkin projection.

3.1 Covariance matrices

For any stable nonlinear system
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the following sets can be defined for the covariance
matrices:
Tn = {T1, …,Tr ; Ti ∈ ℜn×n , Ti

TTi = I , i = 1, .., r}
M = {c1, …, cs ; ci ∈ ℜ , ci > 0 , i = 1, …, s}
En = {e1, …, en ; standard unit vectors in ℜn}
r : number of matrices for excitation/perturbation
directions
s : number of different excitation/perturbation sizes
for each direction
n : number of inputs/states to the system

Definition 1: Controllability covariance matrix
Let Tp, Ep and M be given sets as described above,
where p is the number of inputs. The controllability
covariance matrix is defined by
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where Φilm(t) ∈ ℜn×n is given by Φilm(t) = (xilm(t)-
xss

ilm(v(t)))( xilm(t)-xss
ilm(v(t)))T, and xilm(t) is the state

of the nonlinear system corresponding to the input
u(t) = cmTleiv(t)+uss(0).



The controllability covariance matrix is computed
from data along system trajectories. The input to the
system u(t) is defined as above, where the cm de-
scribes the input size, the TleI determines the input
direction and v(t) is the shape of the input. The
xss

ilm(v(t)) represent the desired system trajectory and
uss(0) refers to the input at the original steady state.
The input shape should be chosen in such a way that
is consistent with typical input behavior of the plant.
If impulse inputs are chosen for v(t), then the con-
trollability covariance matrix reduces to the empirical
controllability gramian. Due to this, it can be shown
that if the system under investigation is linear that the
covariance matrix will reduce to the linear controlla-
bility gramian as well for the case of impulse inputs.

Definition 2: Observability covariance matrix
Let Tn, En and M be given sets as described above,
where n is the number of states. The observability
covariance matrix is defined by
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where Ψlm(t) ∈ ℜn×n is given by Ψlm
ij(t) = (yilm(t)-

yss
ilm)T( yjlm(t)-yss

jlm), yilm(t) is the output of the system
corresponding to the initial condition x(0) =
cmTlei+xss, and yss

ilm is the steady state that the system
will reach after this perturbation.

By this definition the observability covariance matrix
is equivalent to the empirical observability gramian if
yss

ilm is equal to the measurement at the steady state
operating point. Therefore, for this case it will reduce
to the linear observability gramian if the system un-
der investigation is linear and is therefore independ-
ent of the size of the perturbation cm for linear sys-
tems. These covariance matrices have to be deter-
mined from simulation data, collected within a region
where the process is to be controlled. The covariance
matrices capture part of the nonlinear behavior within
the region of operation and are more suitable for de-
termining nonlinear reduced models than gramians of
the linearized system.

3.2 Balancing and reduction algorithm

Once the covariance matrices for the system are
computed they have to be made equal in the states
that are both observable and controllable by a re-
versible linear coordinate transformation as is shown
in equations (4) and (5). (Hahn and Edgar, 2001b)
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This coordinate transformation can then be used
within a Galerkin projection in order to truncate the
states x2 that contribute little to the input-output be-
havior of the system. (Hahn and Edgar, 2001b)
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4. NONLINEAR MODEL PREDICTIVE CON-
TROL ALGORITHM IMPLEMENTATION

The principles of MPC that are relevant for the im-
plementation are briefly reviewed, since comparisons
of the dynamic closed-loop behavior is the main fo-
cus of this article.

4.1 Principles of MPC

MPC utilizes a process model to forecast how future
process behavior will be influenced by introducing a
series of adjustments to the manipulated variables
(MVs). Given that the process is sampled at a prede-
fined interval, a series of values for the changes in the
manipulated variables are determined which are used
for the minimization the following cost function
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where J represents the cost function, yk and ysp are the
values of the measurements and their set points at
time instance k, respectively. Furthermore, d accounts
for the presence of output disturbances, ∆uk are the
incremental values of the manipulated variables and
N and Nc represent the design horizons for determin-
ing a succession of steps of the manipulated vari-
ables. Q and R are positive semi-definite weighting
matrices that determine how aggressively the con-
troller will attempt to remove any set point error of
the controlled variables. The resulting optimization
problem is solved using a nonlinear programming
approach, since the underlying process model is non-
linear and a quadratic cost function is used.
It should be noted that the usual practice is to imple-
ment only the first step by adjusting the MVs ac-
cordingly and that the cost function is re-evaluated
after each sampling interval.

4.2 Disturbance Estimation

In practice, the mismatch between the measured and
the predicted values of the controlled variables
(CVs), often referred to as model mismatch, is re-
garded as the influence of output disturbances. Sev-
eral approaches have been proposed to estimate out-



put disturbances on the basis of the model mismatch,
one of which is presented in equation (9)
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where Nd represents a design horizon that is used to
smooth out the influence of measurement noise. If the
current time horizon is less than Nd steps, then all of
the available data is used for the disturbance estima-
tion. It is assumed, similar to an on-line application,
that measurements from the real process are only
available at discrete measurement points and that the
values of the outputs stay constant between two
measurements. It should be noted that the variables d
and yk are vectors for models with multiple measure-
ments as will be the case in the case study in the fol-
lowing section.

4.3. MPC based upon reduced-dimensional models

The performance of the MPC controller is clearly
dependent upon the degree with which the process
model describes the true process behavior. As an ex-
ample, if a poor process model predicts a transient
response of the process that departs considerably
from the true response, an inadequate closed-loop
response is expected.

In this article, reduced dimensional process models
are utilized within a MPC framework. The main
benefit of using reduced dimensional models is that a
reduction of the computational effort can be
achieved. Furthermore, reduced dimensional process
models are designed to omit only insignificant con-
tributions from individual states. Hence, it is ex-
pected that the performance of controllers using such
models departs only marginally from controllers that
take advantage of an accurate process model. In order
to use different models for the controller design the
computation integrates the system model over the
prediction horizon by calling a different file that
contains the new model. It does not matter if the
model that the optimization routine tries to invert is
of the form of equation (1), a linearized version of
equation (1) resulting in linear MPC on a nonlinear
model or a reduced model of the form of equation
(6). This makes performance tests easy to evaluate,
because no additional parameters need to be adapted
for a meaningful comparison.

5. APPLICATION STUDY

In this section, the performance of the MPC control-
ler based upon a model derived from first principles,
two reduced dimensional models and a model based
upon a linear approximation are compared. The ex-
ample study relates to the simulation of two serially
operating CSTRs. At first, the open loop behavior of
the example process is compared with each of the

considered models. This is to demonstrate the nonlin-
ear character of this process and to justify the use of a
nonlinear model. This is then followed by contrasting
the performance achieved by the different MPC con-
trollers.

5.1 Description of the process

The example is based upon the model of two CSTRs
operating in series with one reaction A->B that has
been used extensively by other researchers for non-
linear controller design (Henson and Seborg, 1997).
The original model consisted of four differential
equations representing the energy and component
balances for each reactor, where the coolant flow rate
is the only input and the temperature measurement
the only output of the model. The model has been
augmented with volume balances for each reactor and
one additional measurement (volume in the second
reactor) and one extra input (valve position at the
outflow of the second reactor). This results in a
model with six states, two inputs and two outputs.
For a more detailed description of the model see
Henson and Seborg (1997) and Hahn and Edgar
(1999). For this model a nonlinear controller was
found to offer much improved performance over a
linear controller due to the nonlinearity of the model
(Henson and Seborg, 1997). In fact for step changes
of more than 8% in the valve position at the outlet of
the second reactor, the system will move to a vastly
different steady state corresponding to lower conver-
sion. For the application study, the sampling time is 6
seconds and the control horizon is 12 seconds, i.e. a
control horizon of two control moves for each opti-
mization step. Furthermore, the prediction horizon is
selected to be 36 seconds, equaling six time steps into
the future. It should be noted that the underlying pro-
cess model is a continuous model. Thus, each optimi-
zation step requires integration of the model over the
prediction horizon in order to predict the process re-
sponse. While this is computationally expensive and
may lead to difficulties for on-line applications, we
believe it gives a meaningful comparison of the con-
troller performance for different types of models. In
order to reduce the computational burden, each opti-
mization step is initiated by incorporating the previ-
ously obtained solution for that step. For estimating
the impact of unmeasured disturbances, the applica-
tion of equation (9) is considered with a design hori-
zon of N = 10 (1 minute).

5.2 Open-loop behavior

Based upon earlier investigations (Hahn and Edgar,
2001a) the process becomes highly nonlinear for ex-
citations around 7-8% for step changes in the ma-
nipulated variables for the system or when some of
the states of the system move away from their steady
state value by more than 2-3%. The open-loop re-
sponses of the full-order nonlinear system with six



states, a linearized system derived from linearization
at the original operating point, and two reduced order
systems each of which contains four states were
computed. The only difference between the two re-
duced models is that one was reduced based upon
covariance matrices computed for step inputs and the
other one from covariance matrices computed for
impulse inputs. In order to achieve a meaningful
comparison, the excitation sizes for the impulse in-
puts were chosen such that they result in a similar
degree of nonlinearity as for step changes of 7%.
Figures 1 and 2 show the changes of the volume and
temperature for a 7% change in the valve position at
the outlet of the second reactor.
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Fig. 1. Response of the volume to a 7% change in the
valve position
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Fig. 2. Response of the temperature to a 7% change
in the valve position

It can be concluded that all four models correctly
predict the dynamic behavior of the volume. How-
ever, the change in temperature is not predicted accu-
rately by the linear model due to the strong nonline-
arities of the process within this operating region. In
all cases that were evaluated both reduced nonlinear
models provided a closer approximation to the sys-
tem behavior than the linear model. Additionally, the
reduced model that was based upon covariance ma-
trices computed for step changes performed slightly
better in the open-loop comparison than the one
computed for impulse inputs. This is due to the fact

that the models are evaluated for step input changes
in this case study and the reduced model should re-
flect the behavior under study to obtain the best pos-
sible result.

5.3 Closed-loop behavior

The main reason for model reduction is to develop
smaller models for on-line control applications.
Therefore, the reduced models described in the pre-
vious subsection have been used within the model
predictive control scheme described in section 4 for
set-point changes and disturbance rejection. Addi-
tionally, in the case of the reduced models and for the
linear model, model mismatch also exists between
the model used to derive the controller and the real
process.

Different controllers based upon the four models are
used to control the process for a set point change as
well as disturbance rejection and the results com-
pared. The set point change occurs immediately,
where the process is at its steady state and the set
point is changed to 110 l for the volume and 445 K
for the temperature of the second reactor. After
reaching steady state 10 minutes into the simulation,
the system is subjected to an output disturbance of 5
K in the temperature measurement of the second re-
actor. The dynamic responses to these conditions are
shown in Figures 3 and 4. It can be concluded from
the results that all of the models result in good per-
formance for the set point change in the volume of
the reactor. This is not surprising, since all four
open–loop responses described the dynamics of the
volume fairly well. However, major differences can
be seen for the temperature. The two reduced models
are essentially indistinguishable, staying very close to
the behavior of the full-order system that does not
exhibit model mismatch between the controller and
the plant model. This contrasts with the behavior of
the linear model that takes much longer to reach its
new set point and exhibits overshoot and oscillations.
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Fig. 3. Closed-loop responses of the volume for set
point change
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Fig. 4. Closed-loop responses of the temperature for
set point change and disturbance rejection

Figure 5 compares the optimal input trajectories for
the systems. Since all four models gave good results
in describing the dynamic volume behavior they were
virtually identical and only the normalized cooling
rate is shown. Furthermore, since both reduced mod-
els resulted in identical closed-loop trajectories, they
are lumped together in the dashed line in Figure 5. It
can be seen that the input trajectory for the linear
MPC controller is quite different from any of the
nonlinear ones, especially in the beginning, or right
after the disturbance affects the process.
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6. CONCLUSIONS

While the main purpose of model reduction is to
achieve smaller models that can be used for the de-
sign of controllers, surprisingly few results exist that
actually compare the performance achieved with the
controllers to the ones for the full-order system. This
paper describes a nonlinear MPC scheme in which
the closed-loop performance of different controllers
has been evaluated. It was found that nonlinear con-
trollers based upon reduced models can result in sig-
nificantly better performance than linear controllers
for some models. This was illustrated with a detailed

example that included open-loop as well as closed-
loop studies of four different controllers.
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