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Abstract: Distillation columns constitute a significant fraction of the capital invested in 
the refineries around the world; their control requires a major part of the total operating 
cost of chemical processes, if the used strategy is not adequate. This article presents the 
application of optimal fuzzy control to reduce the energy consumption of a Benzene-
Toluene distillation column. This method is based on the determination of the specific 
values of the fuzzy controller parameters such that certain performance criterion is 
minimised. Results of a simulation study are presented showing the potential 
improvement offered by this method. Copyright©2002 IFAC  
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1.  INTRODUCTION 
 

The control of the overhead and bottom composition 
in distillation column has been the subject of research 
for many years. Luyben (1975) has shown that 
composition control minimizes the energy 
consumption of a distillation column under the 
influence of disturbances. However, implementing 
composition control is not easy due to the 
phenomenon of interaction or coupling that exists 
between the various control loops of distillation 
column (Khelassi, 1991). In addition, distillation 
column is usually non-linear, non-stationary, 
multivariable and is subject to constraints and 
disturbances.  
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These phenomenons pose a problem for the 
conception of a robust control system (Stogestad, 
1992; Lundström, 1995; Christen, 1997). 
 
Accordingly, much research and development has 
focused to determine a control that permitted to 
improve the performance of the distillation column 
and to optimize the energy consumed by this column. 
The goal of this work is to propose an optimal fuzzy 
controller developed by Wang (1998) to control a 
distillation column in view of optimization of the 
energy consumed by this column.  
 
On the issue of optimal fuzzy control, Wang 
developed an optimal controller to stabilize a linear 
time invariant system via Pontryagin minimum 
principle (Wang, 1998). However, although fuzzy 
control of linear systems could be a good starting 
point for better understanding of some issues in fuzzy 
control synthesis, it does not have much practical 
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implications since using the fuzzy controller 
designed for a linear system directly as the controller 
may not be a good choice (Wang, 1998). 
 
Tanaka and co-workers (Tanaka, 1998a, b, 2000) 
tried to obtain a fuzzy controller to minimize the 
upper bound of the quadratic performance function 
by linear-matrix-inequality (LMI) approach based on 
the assumption of local-linear-feedback-gain control 
structure. Nevertheless, no theoretical analysis on 
this design scheme of optimal-fuzzy-control structure 
was proposed (Wu, 2000a). Wu and Lin (2000a, b) 
propose a global optimal fuzzy controller for a fuzzy 
system (i.e., the system described by a fuzzy model). 

 
This paper is organized as follows; a dynamic model 
of this binary distillation column is presented in 
Section 2. The Pontryagin minimum principle for 
solving the optimal control problem is generalised in 
Section 3. In Section 4, the method developed by 
Wang to design an optimal fuzzy controller for linear 
systems is presented. Section 5 deals with the 
application of the Wang’s method to control the 
study distillation column and gives the obtained 
simulations results.   
 
 

2. MODEL OF THE COLUMN 
 
Figure 1 shows a schematic representation of the 
binary distillation column studied in this work. The 
column separates a mixture of Benzene-Toluene. It is 
constituted of seven trays with feed F is entering at 
the feed tray f ( 4  =f ).  
 

In this process the top composition of the column (x7) 
is controlled by the reflux (Lr), and the bottom 
composition of the column (xb) is controlled by the 
vapour flow (Xv). The nominal data of the column are 
given by Khelassi (1991).   

 
For the modelling of the distillation column, both the 
material balance and heat transfer equations are used 
(Cingara, 1990; Luyben, 1992), thus the obtained 
model will be constituted by a set of characteristic 
equations corresponding to the different stages of 
operating column. For the system of equations 
describing the operating column see Khelassi (1991). 
 
The linear model of the distillation column is given 
by the state space representation (Khelassi, 1991): 

 
u Bx Ax +=& , 

(1) 
x Cy = . 

 
With: 
 

 xT, vector of state ( )scbfd
T VPxxxxx  , ,,,...,,..., , 17=x . 

uT, vector of inputs  ( )vssffr
T X,P,zF,,P,L=u . 

 y, vector of outputs ( )b
T xx ,7=y . 

 
The values of A and B are given by substitution of 
the linearised versions of equations around the 
nominal points.  
 
The values of the matrices A, B and C are: 
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Fig. 1. Schematic of the distillation column. 
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3.  THE PONTRYAGIN MINIMUM PRINCIPLE 
 

In this section, we state the Pontryagin minimum 
principle for solving the optimal control problem. 
Consider the system: 
 

( ) ( ) ( )[ ]  ,   ttgt uxx =& ,                      (2) 
 

with initial condition ( ) 00 xx =  where nℜ∈x  is the 
state, mℜ∈u  is the control input, and g is a linear or 
non-linear function.  
 
The optimal control problem for the system (2) is as 
follows (Macki, 1982): determine the control ( )tu  
such that the following performance criterion 
 

( )[ ] ( ) ( )[ ]∫+=
fT

dtttLTSJ
0

   ,     uxx ,            (3) 

 
is minimized, where S and L are given functions and 
the final time Tf may be given. 
 
The Pontryagin minimum principle for solving this 
optimal control problem proceeds as follows. First, 
define the Hamilton function: 
 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]  ,      ,   ,, ttgtttLH T uxλuxλux += ,   (4)   
         

and find ( )λxu ,h=  such that ( )λux  , ,H  is 
minimised with this u. substituting ( )λxu ,h=  into 
(4) and define 
 

( ) ( )[ ]  ,, , , λλxxλx hHH =∗ .                 (5) 
 

Then, solve the 2n differential equations (Anderson, 
1990): 
 

( ) ( ) 00      , xx
λ

x =
∂
∂

=
∗Ht& ,                  (6) 
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and let ( )t∗x  and ( )t∗λ  denote the solution of (6) and 
(7). Finally, the optimal control is obtained as: 
 

( ) ( ) ( )[ ]  ,  ttht ∗∗∗ = λxu .                      (8) 
 
 

4.  OPTIMAL FUZZY CONTROLLER 
 
In this section a review of the method proposed by 
Wang to design an optimal fuzzy controller of linear 
systems is presented. This method is based to 
determine the specific values of the fuzzy controller 

parameters such that certain performance criterion is 
minimised.  

 
Consider the time-invariant linear system: 
 

    
( ) ( ) ( ) ( )
( ) ( ).

,0       , 0

tt
ttt

x Cy
xx    u Bx Ax

=
=+=&

        (9) 

 
where ( ) [ ] nT

nxxt ℜ∈=  ,..., 1x  is the state, ( ) mt ℜ∈u  
is the control input, ( ) nt ′ℜ∈y is the output vector and 
A, B and C are, respectively, ,nn× mn×  and nn ×′  
matrices. The performance criterion is given by the 
following quadratic function (Anderson, 1990): 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ++=
fT

TT
ff

T dtttttTTJ
0

      u RuxQ xx Mx . 

(10)     
 
Where the matrices nn×ℜ∈M , nn×ℜ∈Q , mm×ℜ∈R  
are symmetric and positive definite. 
 
It is assumed that the desired controller is constructed 
from the fuzzy systems. If the rules using singleton 
fuzzifier, center-average defuzzifier and product 
inference engine (Wang, 1994; Mendel, 1995); the 
actuating signal from the controller ( )tu  is 

( ) ( )Tmuut  ..., , 1=u  with  
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Here the membership functions ( )iA xil

i
µ  are fixed. 

Our task is to determine the parameters nll
jy  ...1  such 

that J of equation (10) is minimised. 
 
Define the fuzzy basis function: 
 
 ( ) ( ) ( )( )Tbbt xxb N ..., , 1= ,  
 
as: 
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where 

12 , ,1 += Nli K , Nli 2 , ,1 K= and ( )∏ = += n
i iNN 1 12 .  

 
Define the parameter matrix Nm×ℜ∈θ  as: 
 

[ ]TTT
mθθθ L1 = .                     (13) 



where NT R ×∈ 1
jθ  consists of the N parameters nll

jy  ...1  
for  12,...,2,1 += ii N l  in the same ordering as ( )xlb  
for .,...,2,1 N   l =   
 
Using these notations, we can rewrite the fuzzy 
controller ( ) ( ) ( ) ( )( )Tn

T
m ffuut xxu ,..., ..., , 11 == of 

(11) as: 
 

( )xbθu  = .                          (14) 
 

To achieve maximum optimality, we assume that the 
parameter matrix θ  is varying; that is, ( )tθθ = . 
 
Substituting (14) into (9) and (10), we obtain the 
closed loop system: 
 

   ( ) ( ) ( ) ( )( )  ,      tttt xbθ Bx Ax +=&             (15) 
 
and the performance criterion 
 

( ) ( ) ( ) ( )[
( )( ) ( ) ( ) ( )( ) ] .                 
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ttTTJ
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ff
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+= ∫        (16) 

 
Hence, the problem of designing the optimal fuzzy 
controller becomes the problem of determining the 
optimal ( )tθ  such that J of (16) is minimised (Wang, 
1998). Viewing the ( )tθ  as the control ( )tu  in the 
Pontryagin minimum principle, we can determine the 
optimal ( )tθ  from (4)-(8). Specifically, define the 
Hamilton function: 
 

( ) ( ) ( )
( )[ ].                        

   ,, T

xb θ Bx Aλ
xb θ RθxbxQ xλθx

++

+=
T

TTH
       (17) 

 

From 0=
∂
∂
θ
H ; that is: 

 

( ) ( ) ( ) .0 2 =+=
∂
∂ xb λBxbxb θ R
θ

TTTH       (18) 

 
We obtain, approximately, that (Wang, 1998): 
 

( ) ( ) ( )[ ] .    
2
1 11 −− ∆+−≈ xbxbxb λBRθ TTT     (19) 

 
Where ∆ is a full-rank matrix with very small norm; 
we introduce ∆ to make ( ) ( ) ∆+xb xb T  invertible (∆ 
may be generated by a small random number 
generator). Substituting (19) into (17), we can get: 
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(20) 
where ( )xα  is defined as: 
 

        ( ) ( ) ( ) ( )[ ] ( )xbxbxbxbx 1   
2
1 −∆+= TTα .       (21) 

 
Using this ∗H  in (6) and (7), we obtain: 
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λ
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with boundary condition ( ) 00 xx =  and 
( ) ( )ff TT x Mλ  2= . Let ( )t∗x  and ( ) [ ]( )  ,0   fTtt ∈∗λ  

be the solution of (22) and (23), then the optimal 
fuzzy controller parameters are (Wang, 1998): 
 

( ) ( ) ( )( ) ( )( ) ( )( )[ ] 11    
2
1 −∗∗∗∗−∗ ∆+−= ttttt TTT xbxbxbλBRθ , 

(24) 
 

and the optimal fuzzy controller is: 
 

( ) ( )xbθu  t∗∗ = .                     (25) 
 

Note that the optimal fuzzy controller is a state feed-
back controller with time varying coefficients. 
 

The optimal fuzzy controller algorithm (Wang, 1998) 
 
Step 1. Specify the membership functions ( )iA xil

i
µ  

to cover the state space where 12,...,2,1 += ii N l and       
ni ,...,2 ,1= . The membership functions may not be 

chosen as triangular because the function ( )xα  with 
these membership functions is not differentiable [we 

need ( )
x
x

∂
∂α  in (23)]. We choose ( )iA xil

i
µ  to be 

Gaussian functions.  



Step 2. Compute the fuzzy basis functions ( )xlb  
from (21) and the function ( )xα  from (21). Compute 

the derivative ( )
x
x

∂
∂α . 

Step 3. Solve the two point boundary differential 
equations (22) and (23) and let the solution be ( )t∗x  
and ( ) t∗λ , [ ]fTt  ,0∈ . Compute ( )t∗θ  from (24). 

Step 4. The optimal fuzzy controller ∗u  is obtained 
as given by relation (25). 
 
 

5.  SIMULATION RESULTS 
 
To demonstrate the contribution of the optimal fuzzy 
control depicted above, a comparison with classical 
optimal control is performed on the basis of a 
simulation study. In order to apply the two listed 
techniques, the RGA (MacAvoy, 1983) of the 
considered distillation column is generated to select 
the best control configuration. According to the 
values of the RGA given bellow 

 













−

−
=

7.23   7.22

7.227.23   
RGA ,                (26) 

 
The best control configuration is defined as follows: 
 

[ Lr – x7 ] ; [ Xv – xb ] . 
 
The stability condition is verified since the 
corresponding relative gains of the control 
configuration pairs of this system are positive.  
The quadratic function is chosen as: 
 

( ) ( ) ( ) ( )[ ]∫ +=
fT

TT dtttttJ
0

     u RueQ e ,         (27) 

 
where e is error vector [ ]Tee 21  ,  =e  with:  

771 xxe set −=  , bbset xxe −=2 , 
and 

setx7  is the set point for the top composition. 

bsetx  is the set point for the bottom composition. 
 
The matrix Q and R are chosen as follow:  
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The membership functions ( )iA eil

i
µ  are chosen as 

Gaussian form and are given by: 

 ( ) ( ) 



 −−=

2
2exp i

l
i

l
iiiA ee   eµ ,            (28) 

 
( )2,1  i  li =  makes reference to the considered fuzzy 

set NB (Negative Big), NS (Negative Small), ZE 
(Zero), PS (Positive small)  or PB (Positive Big), and 

2−=NB
ie , 1−=NS

ie , 0=ZE
ie , 1=PS

ie and 2=PB
ie .  

 
The linguistic rule table is given by the table 1 and 
the fuzzy basis function is given by: 
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where 
 

 ( )( )1212 21 ++= N Nl  with 221 == NN . 
 
The dynamic responses of set point change of the top 
composition ( 91.08983.07 →=x ) and the bottom 
composition ( 0537.004878.0 →=bx ) are presented 
in figure 2. It is shows that every controller in the 
two considered control techniques assures the 
tracking of the assigned reference input.  
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Fig. 2. Compositions of top x7 and bottom xb of the 
column. 
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Table 1. The linguistic rule table 
 

       1e  

2e  
NB NS ZE PS PB 

NB   PB   
NS   PS   
ZE PB PS ZE NS NB 
PS   NS   
PB   NB   

 
Table 2. Calculation of the IAE of the two loops for 

the optimal fuzzy control and classical optimal 
control of the column. 

 
 
Optimal control  

Top composition  

( 7x ) 

Bottom composition  

( bx ) 

 
Classic 

 
0.1298 

 
0.1004 

 
fuzzy 

 
0.0942 

 
0.0889 

 
To express the energy consumed by the distillation 
column we calculate the integral absolute error IAE 
of the two loops for the optimal fuzzy control and 
classical optimal control. The obtained IAE values 
are given in   table 2. The total IAE values (0.2302 
for the classical optimal control and 0.1831 of the 
optimal fuzzy control), shows that the dynamic error 
is reduced in the optimal fuzzy control, what implies 
that the energy consumption is reduced in relation to 
the classical optimal control. Therefore, according to 
the obtained IAE values, the optimal fuzzy controller 
gives better results.    

 
 

6. CONCLUSION 
 

In this paper an optimal fuzzy controller for a binary 
distillation column was presented and compared to 
the classical optimal control. The obtained simulation 
results show the effectiveness of the optimal fuzzy 
control. The comparison of the obtained performance 
criterion IAE values, demonstrated that the consumed 
energy by the distillation column is optimised in the 
case of the optimal fuzzy control in relation to the 
classical optimal control, what constitutes a 
significant advantage in process industry capital 
investment, when we know that operating costs of 
these systems are often amongst the highest. 
According to these results, the optimal fuzzy control 
made a good forward in the optimisation of energy 
consumption in distillation columns. 
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