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1. INTRODUCTION

LQG is a useful tool for design of linear con-
trollers. How ever, it is not applicable tosystems
with saturating actuators. In this situation, de-
signers often use an indirect approach, which con-
sists of selecting the LQG weigh ts thatforce the
resulting controller to operate appropriately in
the linear region of the actuator and then imple-
menting this controller using anti-windup (Hanus,
1988; Kothare, et al., 1994; Crawshaw and Vin-
nicombe, 2000; Zaccarian and T eel,2000). This
paper proposes a different, i.e., direct approach,
according to which the linear controller is de-
signed explicitly taking into account saturation.
This approach is refered to as SLQG, where S
stands for “saturating”. We show subsequently
that SLQG con trollersdo not require an anti-
windup implementation, in the sense that adding
any linear anti-windup cannot reduce the perfor-
mance index.

Results obtained in this paper are based on the
method of stochastic linearization (Gelb and Van-
der Velde, 1968; Roberts and Spanos, 1990), which
is a quasi-linearization technique similar to de-
scribing functions. According to this method, the
saturating actuator is replaced by a linear gain,
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which is a function of the variance of the signal at
its input. Although this method is approximate,
it is shown in Gelb and V ander Velde (1968),
Roberts and Spanos (1990), and Gok cek (2000)
to be sufficiently precise, having errors well within
10% of the exact values of interest (in this work,
the variance of the plant output). Since in practice
the SLQG controller would have to operate with
the real (rather than stochastically linearized) ac-
tuators, we investigate the properties of the closed
loop system consisting of the plant, SLQG con-
troller and the saturating actuator and show that
this system inherits properties of the stochasti-
cally linearized one.

The outline dhis paper is as follo ws: Section 2
presents the SLQG theory. Section 3 addresses the
question of the utility of anti-windup implementa-
tion of SLQG controllers and shows that there is
none. In Section 4, the conclusions are formulated.
The proofs are outlined in the Appendix. More
details can be found in Gokgek (2000).

2. SLQG THEORY
2.1 Pr oblem Brmulation
Consider the system sho wnin Figure 1, where

P(s) is the plant, C(s) is the controller, ¢(u) is
the saturation nonlinearity defined by
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Fig. 1. System model

@(u):asat(g), o> 0, (1)
+1, &> 41,

sat (§) = § —1<E<+1, (2)
_17 § < _1’

A(s) describes the dynamics of the actuator, Fi(s)
and F5(s) are coloring filters, and H; (s) and Ha(s)
are weighting filters. Signals u,v,y € R are the
commanded control, actual control and measured
output, respectively, wi,w,; € R are standard
uncorrelated white Gaussian noise processes, and
21,22 € R are the controlled outputs.

Assume that the system, excluding the controller,
has the state space representation

tg = Azg + Biw + Bagp(u),
z = Clmg + Dlzu, (3)
y = Cozg + Da1w,

— [T T T T T T 1T —
where ¢ = [zp T4 Tp Tp, Ty, Ty,| , W =
[w; wy]T and z = [z; 2]T. Using the method

of stochastic linearization, equations (3) can be
reduced to the following stochastically linearized
form (see Gokeek, 2000):

G = Aig + B1w + BzNﬁ,,
= CiZg + D12, (4)

>

>

:Ij = CQ%G + Dzlw,
where

N =erf (\/50,;) ) (5)
+¢&
erf(£) = % / () 6)

and o is the standard deviation of 4.

Introduce the performance index as the variance
of the controlled output 2:

o2 = lim E[2(t)T2(t)]. (7)

t—00

Finally, assume that the sought controller is of the
form:

#c = Mic — Ly,

(8)

where the dimension of Zo is the same as the
dimension of Zg.

= Kic,

Problem 1. Develop a method for synthesis of
controller (8) (i.e., for selecting matrices M, L, K)
so that performance index (7) is minimized along
the trajectories of (4), i.e., develop a method for
synthesis of SLQG controllers.

Problem 2. Investigate the properties of the closed
loop system consisting of (1), (3) and the SLQG
controller (8).

2.2 Synthesis Equations

Assumption 1. (a) (A,B;) is stabilizable and
(C1, A) is detectable; (b) (A, Bz) is stabilizable
and (C3, A) is detectable; (c) D> = [0 /p]7,
p>0and Doy = [0 /u], w>0;(d) DEC, =0
and B; DI, = 0; (e) A has no eigenvalues in the
open right-half plane.

With the exception of (e), these assumptions are
standard in LQG theory (Kwakernaak and Sivan,
1972).

Theorem 1. Under Assumption 1, there exists a
unique proper controller (8) that internally stabi-
lizes (4) and minimizes o2. The minimum value of
the cost is

. 2 _ T pN? p
ppin o = tr{C1(P+R)C; }—l—mBz QRQB,,
(9)
and the controller is given by
N
K=-——_B]
p_+_ A 2 Q7
1
L=—PCf . (10)

M:A+B2NK+LCQ,

where (P,Q, R, S, N, ) is the unique solution of
the following system of equations
p

exp ([erf (V)] 2) -1

VTN -
2 erf 1(N)

ATQ + QA -
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COBBIQ 0T =0,
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AP + PAT - PCZ,TCZP; + BB =0,

N2 N2
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+A
1
+ PCZTCZP; =0,

(A—p

1 1
(A - ;PCZTC’z)TS + S(A - ;PCZTC'z)

2

B,BTQ =
+ p+)\Q 209 Q 07
N2 12 a?N?
[—] BTQRQB,; — —— =0.
ptA 2[erf ™! (N)]

(11)



As it follows from (11), the SLQG synthesis equa-
tions consist of Lyapunov and Riccati equations
augmented by two transcendental relationships
that account for the stochastically linearized gain
N and the Lagrange muliplier A associated with
the constrained optimization problem.

Theorem 2. Equations (11) can be solved with
any desired accuracy in a finite number of steps
by a bisection algorithm.

Theorem 1 extends LQG to SLQG. Similarly,
LQR can be extended to SLQR.

Theorem 3. Under Assumption 1, there exists a
unique controller

i =Kig (12)

that internally stabilizes (4) and minimizes oZ.
The minimum value of the cost is
2

mKi'n o2 =tr{C1RCT} +p 5 BIQRQB,

_ N
(p+2A)
(13)

and a state feedback gain K that achieves this
minimum is
N

K=—-—_BT 14
p_i_A 2Q7 ( )

where (@, R, N, ) is the unique solution of the
following system of equations

p
exp ([erf (V)] 2) -1

A— =0
JT N ’

2 erf I(N)
2
AT A-— B, BT To, =
Q+Q p+/\Q 2B Q +C; C1 =0,
N2 T N2 T T
A— By B A— B>B
( p+)\22Q)R+R( p+)\22Q)
+B,B{ =0,
N2 7? a?N?
[ ]B{QRQBz—ﬁ:O.
ptA 2[erf 1 (N)]
(15)

In addition, if R is nonsingular, then the state-
feedback gain K given by (14) is unique.

Equation (15) also can be solved by a bisection
algorithm with any desired accuracy in a finite
number of steps.

2.3 Properties of SLQG and SLQR controllers

Theorem 4. The SLQG and SLQR. controllers
lead to saturation activation quantified by

Prob{|d| > a} =1— N, (16)
where N is the solution of (11) or (15).

Thus, to minimize o2, the actuator should expe-
rience saturation to the degree defined by (16).
The benefits of saturation activation have also
been pointed out in Goldfarb and Sirithanapipat
(1999).

Theorem 5. Let Assumption 1 hold, assume C (sI—
A)7!B; £ 0, and view p of Assumption 1(c) as a
parameter. Denote the first term in the optimal
value of the cost expression (13) as 72(p), i.e.,

7v*(p) = tr{C1R(p)CT }. (17)
Then, v2(p) is an increasing function of p and
lim v*(p) = 3 > 0. (18)
p—0+

Thus, Theorem 5 establishes performance limita-
tion of the SLQR disturbance rejection problem
in systems with saturating actuators: Even if the
plant is minimum phase, the disturbance cannot
be attenuated to any desired level, and must be
consistent with the bound (18).

Theorem 6. Consider the undisturbed version of
system (3):

tg = Azg + Bap(u),

Yy = CQCEG, (19)

(i) Assume LQG controller (10) is used. Then,

(a) (zg,zc) = (0,0) is the unique equilibrium
point of (19), (10);

(b) this equilibrium is exponentially stable;

(c) if A and M are Hurwitz, all solutions of the
closed loop system (19), (10) are bounded.

(ii) Assume LQR controller (14) is used. Then,

(a) zg = 0 is the unique equilibrium point
of (19), (14);

(b) this equilibrium is exponentially stable;

(c) if A is Hurwitz, all solutions of the closed
loop system (19), (14) are bounded;

(d) an estimate of its domain of attraction is
given by

4
X = T < 20
{zc| z¢(eQ)za < BT(:0)5; b (20)
where N2
= 21
c= o (21)
2.4 Ezxample

Following Fortuna and Muscato (1996), consider
the problem of roll oscillation suppression of a
passenger ship disturbed by sea wave perturba-
tions. In this problem, the actuator consists of



two actively controlled wings attached to the stern
of the ship. The travel of the wings is limited
to £18°, which implies actuator saturation. The
goal of control is the ensure that the standard
deviation of the roll angle is below 2.6°.

The data provided Fortuna and Muscato (1996)
leads to the following plant model:

—1.125 —1.563 0.985 0

.1 0 0 0
R 0 —0.286 —0.311[ “C¢
0 0 1 0
- - (22)
+[0010] wy+[1000] sat(u),

z = [0 0.109 0 0] z¢,
y=[01.248 0 0] z¢.

The open loop standard deviation of ship roll
angle, 21, is 5.55°. Thus, to achieve o,, < 2.6°,
control is necessary.

Fortuna and Muscato (1996) proposed the con-
troller of the form

s+0.1
s+10°

C(s)=35 (23)
With this controller, the closed loop behavior
results in 0, = 2.64° if saturation is ignored and
in o,, = 3.14° in the presence of saturation.

To analyze if the performance specification o,, <
2.6° is achievable by any linear controller, we
solved equations (10), (11) for a very small p
(specifically, p = 10710). This resulted in o;, =
2.30° Thus, the specification can be satisfied. To
obtain a specific controller we choose p = 1.649 x
10~* and g = 10~*. Then, equations (10), (11)
result in

94.60 (s —0.089)(s% + 2.14s + 2.43)

C(s) = .
(8) = S F0.11)(s + 2.41) (5% + 7.825 1 34.6)

(24)

This controller leads to oz, = 2.53° and simu-

lation of the closed loop system (22) with (24)
confirms that o,, = 2.56°. Thus, the specification
is satisfied.

3. SLQG CONTROLLER AND
ANTI-WINDUP IMPLEMENTATION

3.1 Problem Formulation

As it was pointed out above, linear controllers
designed without taking into account actuator
saturation often require an anti-windup imple-
mentation. A typical structure of such an imple-
mentation is given in Figure 2, where C(s) is the
anti-windup block.

The stochastically linearized version of the system
of Figure 2 is shown in Figure 3.

Z2 w1

Fig. 2. Feedback control system with anti-windup
compensator

The problem addressed in this Section is as fol-
lows:

Problem 3. Consider the system of Figure 3 and
assume that C(s) is the SLQG controller (10),
(11). Investigate whether there exists C(s) that
leads to a smaller value of performance index (7)
in comparison with that ensured by C(s) alone
(i.e., without anti-windup).

3.2 Solution

Theorem 7. Assume C/(s) is the SLQG controller.
Then, there exists no C1(s) that would yield a
lower value of the performance index (7) than that
ensured by C(s) alone.

Thus, Theorem 7 states that anti-windup imple-
mentation is not necessary if the controller C(s)
is designed using SLQG.

3.3 Ezample

Consider the system of Figure 2 with

A() =1, P() = —, Fils) = —, o)

Fg(s) = 00]., Hl(S) = ].0, HQ(S) =1.

Consider the SLQG controller

Ols) = 269.67(s + 6.92)
(82 4 55.42s + 1423.20)’

22 w1

Hals
A(s)|—>| P(s) |—>|H1 (s}—>5’1

Fig. 3. Stochastically linearized version of the
system of Figure 2



and choose the anti-windup block C1(s) = P(s).
This choice corresponds to the internal model
based anti-windup suggested in Hanus (1988).
Then, the two controllers C(s) and Ci(s) acting
together yield 02 = 234.5, whereas the controller
C(s) alone yields 03 = 230.2.

To verify the behavior of the real (rather than
stochastically linearized) system with and without
anti-windup, we simulated the system defined by
(25) with controller C(s) alone and with C'(s) and
C1(s) acting together and evaluated o2 in each
case. The results are summarized in Table 1 along
with corresponding o2. These data confirm that
the stochastically lineared system approximates
well the original one (with accuracy of 5-7%) and
the inclusion of anti-windup does not reduce the
performance index.

Table 1. Performance Data

T2
o? o2 TiE X 100%
C(s) 2302 217.54 5.83%
C(s) with C1(s) 2345  220.28 6.49%

4. CONCLUSIONS

An extention of LQG theory to systems with
saturating actuators, refered to as SLQG, is de-
veloped. Although results reported here address
SISO systems and amplitude saturation, exten-
tions to MIMO case and rate saturation are read-
ily available (Gokgek, 2000). Also, similar develop-
ments for nonlinearities other than saturation can
be carried out; some of them are briefly considered
in Gokgek (2000). It is shown that controllers,
designed using the SLQG approach, do not require
anti-windup.

APPENDIX

Proof of Theorem 1: The Lagrange multiplier
technique is used. First, the regularity condition
of the constraints is checked. Next, using the
Lagrangian, (11) is derived. Finally, it is shown
that equations in (11) have a unique solution
(P,Q,R,S,N,)\) such that (4) with (8) is in-
ternally stable. Details can be found in Gokgek
(2000). ]

Proof of Theorem 2: For any desired accuracy
€, the following algorithm provides the solution
of (11). (a) start with N;=0 and N;=1; (b) let
N = (N; + N»)/2; from (11), calculate X; solve
Riccati equations for P and @Q); solve Lyapunov
equations for R and S; (c) calculate left hand-side
of the last equation in (11) and call it d; (d) if
N>-N; < ¢, then go to step (f); (e) if 6 < 0, then
let N; = N, else let N» = N, and go to step

(b); (f) caculate K, L, M from (10). Convergence
result can be found in Gokgek (2000). L

Proof of Theorem 3: Similar to the proof of The-
orem 1. Details can be found in G&kgek (2000).
=

Proof of Theorem /: Follows directly from (5). m

Proof of Theorem 5: Evaluating the derivative,
it is shown that 72(p) is increasing and positive.
Details can be found in Gokgek (2000). L

Proof of Theorem 6: (i)-(a) Follows from the fact
A+ B>K and A + LC5 are shown to be Hurwitz.
(i)-(b) Proved by the Lyapunov’s indirect method.
(i)-(c) Proved by applying the triangle inequality
to the solution of (19) with (10).

The proofs of (ii)-(a), (ii)-(b), (ii)-(c) are similar
to those of (i)-(a), (i)-(b), (i)-(c), respectively.
(ii)-(d) Proved by using the Lyapunov funnction
V(za) = zL(eQ)zg. See Gokgek (2000) for de-
tails. (]

The following lemma is needed to prove Theorem
7.

Lemma A.1. Under Assumption 1, the SLQG
controller (10), (11) is the solution of the problem
(A.1)

min_ o3,
M,L.K

where the minimization is over all controller of the
form (8) with dim(2¢) > dim(2g).

Proof: Let m = dim(Z¢) — dim(Zg)-
Augmenting (4) by
i = A3+ Asig,

where A; is an arbitrary m x m Hurwitz matrix
and A, is an arbitrary m x dim(Zg) matrix yields

AZ + Byw + By N4,
= C1% + D121,

T

N>

(A.2)
:Ij = C’zf + Dglw,

where

_ Ta - A 0 — B;

= N A: Bl: s

? [r] [Ath]’ [0] (A3)
C;=[Ci0],i=1, 2.

The state space representations (4) and (A.2) have
identical input-output characteristics from @ and
w to Z and g. Therefore, they yield the same value
of (7) with any controller. However, this augmen-
tation leads to minimization over all stabilizing
controllers with dimensionality (dim(ig) + m).
Within this minimization, Assumption 1 is satis-
fied and, therefore, there exists a unique solution



(P,Q,R,5,N,)\) of equation (11) with matrices
A, By, By, C1, Cs used instead of A, By, By, C1,
C>. Thus, the SLQG controller for (A.2) is given

Let the SLQG controller for (4) be (M, L, K)
and the associated matrices be (P, @, R, S, N, \).

Then, (P,Q,R,S,N,)\) can be written in terms
of (P,Q,R,S,N,\) as follows:

_ [P PRl ~ [QO
P= o v o= 2]

_ [R R 5 [S0 (A.5)
A= et ) 5= [00]
N=N, X=),

where P,, P3, Ry, R3 can be uniquely obtained
from

o I
0=AP + PAT — PCTCoP~ + B, BT, (A.6)
n
B N2 _ .. |
0=(A- <B,B; Q)R+ —PCy C,P
p+A K (A.7)
_ N2 _ . '
R(A - —B,BTQ)T.
+ ( P 2 2Q)

Note that, since the matrices in (A.2) satisfy As-
sumptions 1, solutions of the Riccati and Lya-
punov equations (A.6) and (A.7) exist.

Using (A.3) and (A.5), the SLQG controller (A.4)
becomes

] M 0
M = AZ—PZTCZTCZ% A

_ 2y (A.8)
L= -rrcl] K=K 0.

This implies that both (M, L, K) and (M, L,
K) result in identical transfer function from g
to G. In other words, the optimal controller does
not need more than dim(Z¢) states. Consequently,
this implies that increasing the dimension of the
SLQG controller does not reduce (7). =

Proof of Theorem 7: Within the framework of
stochastic linearization, a linear anti-windup block
C1(s) and SLQG controller C(s) in Figure 3 can
be combined into one controller that uses only
measurement feedback. As a result, the dimension
of combined controller is larger than that of the
SLQG controller. Thus, it follows from the Lemma
A.1 that the performance of the SLQG controller
cannot be improved by anti-windup. =
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