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Abstract: Within a decision-making hierarchy of production planning process, the majority
of problems are dependent on the time component and strongly sensitive to endogenous and
exogenous components. These problems can be related to an important class of stochastic
optimal control. Difficulties in providing a closed-loop policy for them, lead to search for
sub-optimal alternatives. In this paper, four different sub-optimal procedures are
investigated in relation to their implementation by dynamic programming algorithm. Based
on an aggregated production-planning problem, a case study is considered with the purpose
of comparing the different procedures. The best one is used to provide scenarios relating to
the future use of material resources of the company. Copyright@2002IFAC
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1. INTRODUCTION

The paper deals with a discrete time, linear-stochastic
optimal control problem with chance constraints on
state and control variables. Such a problem has been
used to represent an extensive class of management
problems like financing, marketing, advertising,
production and inventory (Neck, 1984). The last
class, that is, the production planning problem is of
main interest here. The production-planning problem
requires a set of decisions used to adapt the material
resources of the company as a means to satisfy the
demand. Such decisions are made over different
planning horizons that depend on the levels of the
planning hierarchy. For instance, in the strategic
level, the decisions are made over a long-term
horizon (i.e. from 1 to 2 years) and as a result, a
production plan is developed. This plan usually
enables the manager to make decisions about changes
in the workforce, overtime scheduling, activating
machines on stand-by, subcontracting production
capacity, firing, hiring, etc. Therefore, it provides

important insights concerning the rational use of the
firm’s industrial resources.  This production plan is to
be provided by a stochastic optimal control problem.

Due to factors like uncertainty, dimensionality, and
physical constraints, this problem is not easily
solved. A true optimal solution (i.e., closed-loop
solution) is possible only in special cases, as with
small dimension problems by using, for example,
stochastic dynamic programming. Consequently, for
larger problems, suboptimal approaches become very
important. These procedures usually provide
numerical solutions for various sequential
optimization problems, which is calculated and
implemented easier than the true optimal solution.
There are a wide variety of sequential suboptimal
procedures, and it is not easy to classify them in a
unified manner. Some tentatives are found in Neck
(1984) and Bertesekas (1995).

The basic objectives desired from this work are: a) to
formulate a general linear stochastic control model
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that represents a production planning problem
(section 2); b) to use the dynamic programming
algorithm for implementing the optimal (section 4)
and suboptimal approaches (section 5) with focus on
the stochastic problem defined in section 2; c) from a
simple example (section 6), to compare  solutions
provided by the different suboptimal approaches with
the true optimal solution; and d) to show that the
best performance approach can be used in a
simulation scheme that helps the manager adjust the
production plan and, as well, to gain insight
concerning the future use of the company's material
resources.

2.  A LINEAR STOCHASTIC PROBLEM

Let’s consider the following stochastic optimal
control problem in which all states are assumed
perfectly observed
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where {fk, k=1, ..., N} denotes functions that
represent, for example, holding and production costs;
B∈ℜnxm denotes a coupleable matrix, in which, each
row can represent a sequence of machines which is
responsible for producing a product; x∈ℜn denotes
the vector of states of the system where information
about inventory and workforce are available; u∈ℜm

denotes the control variable of the system which
contains information about the capacity of production
of each machine; and d ∈ ℜn  is a vector of non-
negative random variables which represents, for
example, the fluctuation of sales. Note that the state
and control variables are constrained to the following
spaces: Xk={xk≤xk≤ kx } and Uk={uk≤uk≤ ku }. These

constraints are considered in probability due to the
stochastic nature of the system.

Since the production process is a dynamic system,
the problem must be seen as a model for sequential
decision making. Consequently, all information
measured over the periods have a strong influence on
the optimal solution. Besides, some features of the
problem, such as: dimension, multi-period structure,
probabilistic constraints, and stochastic nature, make
it very difficult to be solved. A true optimal
sequential solution can be provided by the stochastic
dynamic programming algorithm (SDP), however,
this is only valid for small dimension versions of (1).
It is note worthy that an advantage of applying SDP
is that it provides a global optimal solution for (1)
that can be used as a benchmark for checking and
comparing other alternative techniques.

For overcoming the above difficulty is to consider
the suboptimal stochastic procedures available in the
literature. Such approaches combine concepts of
control theory (for example, feedback schemes) with
mathematical programming techniques.  Before
starting to introduce the optimal and suboptimal
procedures in the next section, a method for
transforming the state and control probabilistic
constraints into an equivalent deterministic constraint
will be discussed.

3.  CHANCE-CONSTRAINTS

Constraints on state and control variables strongly
increase the complexity of solving an optimization
problem. Particularly in stochastic cases, it is almost
impossible to guarantee feasible solution face to
these constraints. A possibility of overcoming such
difficulty is to consider probabilistic constraints, as
will be seen sequentially.

First, consider the linear stochastic system given in
(1); and, second, assume that: (a) the random variable
dk has a Gaussian probability distribution function

Φd,k with mean kd̂ and finite variance Var(dk)=Vdk≥0;

and (b) a small variability of the control variance
(i.e., Vuk≈0), so that, the risk of violation of the
control constraint is low. This means that uk∈Uk, ∀γ.
Based on these characteristics follow the lemma:

Lemma: Let β1 and β2 be probabilistic measures,
then { } α≥∈ ++ 1k1k Xx.obPr  can be written:
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where 121 −β+β≤α  (see Silva Filho (2000)).

Assuming, for the sake of simplicity, that β1=β2=β
implies that α ≤ 2⋅β-1 and, consequently the dynamic
equation in  (1) can be used to rewrite (2) as follows:
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where εk=(dk- kd̂ )/Vdk denotes a normalized random

variable with identical distribution to the dk. Thus,

assuming that the inverse distribution function 1
k,d

−Φ
exists,  it is possible from (3) to determine statistics
lower and upper boundaries for the control variable:
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Comparing the space defined in (4) with the original
control space Uk, defined in section 2, it is possible to
define a sub-space Uβ(xk) that depends on the
observed state at each period k, and on the
probability measure β.  The lower and upper limits of
this space are respectively: [ ])â,(xu,umaxu kkxâ =
and [ ])â,(xu,uminu kkxâ = . An important property

of this subspace is that for two distinct probability
measures β1 and β2, it is possible to show that

)x(U)x(U kk 12 ββ ⊂ ∀k,  if β1 >β2.

4.  TRUE OPTIMAL SOLUTION VIA SDP

Let’s primarily change the probabilistic constraint of
the problem (1) for the deterministic constraint uk ∈
Uβ(xk) described above. Due to the additive structure
of the functional cost in (1), the principle of
optimality can be applied and, as a result, a sequence
of subproblems can be defined and solved
interactively over the time. Thus, applying the
stochastic dynamic programming SDP, the problem
(1) becomes one of finding a sequence of control
{uk

*∈ Uβ(xk), k=0, 1, ...,N-1} that solves the
following subproblem which proceeds backward
from stage N-1 to stage 0 with x0, xN, and
J(xN)=f(xN), known a prior:
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Some comments: the optimal cost is J*=J0(x0) given
by the last step of the algorithm (5). This true optimal
solution is impossible for large dimension problems.
However, for small dimension problems, it allows the
user to compare alternative procedures for solving (1).

5.  SUB-OPTIMAL PROCEDURES

The difficulties of providing a true optimal solution
for the problem (1) has increased the interest for
approximate (sub-optimal) procedures (Neck, 1984).
These procedures usually depend on some
simplifications of the original problem, which allows
using mathematical programming and/or optimal
feedback control techniques in order to provide a
feasible solution. Next, three different alternative
solution procedures will be presented.

5.1. Mean-Value Controller (MVC)

This procedure uses the certainty-equivalence
principle (Bertesekas, 1995). Based on this principle,
all available information about the decision variables

is represented by their mean values. Therefore, the
problem (1) can be approximated by a deterministic
problem whose solution can be provided by any
optimal control technique as, for instance, the
maximum principle of Pontryagin (Parlar, 1985) or,
by any applied mathematical programming
technique. Using the deterministic dynamic
programming algorithm, the MVC procedure can be
implemented as follows:
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)x̂(J)û,x̂(fMin)x̂(J

:computethen)x̂(f)x̂(JbeLet

kkk1k

1k1kkkk
))k(x̂(U)k(û
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where { } { } kkkkkk uûexEx̂dEd̂ ==⇒= . Note

that )x̂(Uû kk ∈ whose lower and upper bounds are

respectively:
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Note that: since the he current state of the system are
completely ignored at each period k, the solution
provided by MVC is known as an open-loop solution.

5.2. Naive Feedback Controller (NFC)

The basic idea of this procedure is to consider the
random variable of the system centered in any value
know exactly, for example, the mean values of the
decision variables. Different from MVC, the NFC
takes into account the current state of the system to
compute the control policy. This procedure can be
implemented from the dynamic programming  (DP)
algorithm as follows:

   (Step 1) At the beginning of period k, the current
state of the system xk is observed.
   (Step 2) This information is used as an initial
condition (i.e., ix̂ =xk) to provide a deterministic

optimal control policy from the algorithm:
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   (Step 3) Since new measures of  the state of the
system are not allowed, the optimal policy provided
by (7) is a deterministic sequence { }N1ii û...,,û,û + .

However, the NFC uses only the first element of this

control sequence (i.e., ik ûu =∗ ) to apply to the input

of the system, ignoring the others elements.  For the
next period k+1, as soon as a new measure is
observed, the steps from 2  to 3 are repeated again.



As a result, in the implementation of the NFC
procedure, problem (7) must be solved N times in an
“on-line” fashion (Bertesekas, 1995).

5.3. Open-Loop Feedback Controller (OLFC)

Contrasting MVC and NFC, the OLFC procedure
preserves the stochastic nature of the system. It takes
into account the uncertainties about xk and dk

whenever it calculates the optimal control policy.
Consequently, its implementation is more complex
than the previous ones. In fact, to apply the OLFC
procedure it is essential to know beforehand the
probability distribution of the state xk. Using the
dynamic programming algorithm, the procedure can
be described as follows:

    (Step 1) At each period k=0, 1, ..., N-1, as soon as
a new measure of the state of the system is taken, the
initial state is updated, that is: ki xx̂ = and the

probability distribution Φx,k is computed.
    (Step 2) From this information, the optimal control
sequence {ui, ui+1, ..., uN-1} is computed by the
algorithm:
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d̂ûBx̂x̂

.t.s
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where { } ∫ Φ∂== ℜ xkiiiiiiii )u,x(f)u,x(fE)û,x̂(F  is the

expected values of the functional cost fi(.).
   (Step 3)  Since new measures connected with the
state of the system are not allowed, the solution of (8)
is a deterministic sequence { }N1ii û...,,û,û + . Similar

to NFC, the OLFC procedure selects only the first

element of the sequence (i.e., )ûu i
*
k = ) to apply to

the input of the system, ignoring the other elements.
Thus, as soon as, a new measure of state is observed
at the beginning of period k+1, the procedure returns
to step 2 and the problem (8) is solved again for
stages  i=k+1, ..., N.

5.4. Partial Closed-loop Controller (PCC)

The basic idea of this procedure is to combine an
open-loop solution provided from the equivalent
deterministic problem with a feedback control
structure, see Silva Filho (1999) for details. A brief
description of this approach is given as follows: First
of all, a linear decision rule for the problem (1) is
given by:

)x̂x(Gûu kkkkk −⋅+=                  (9)

where Gk is a linear feedback gain; and kk x̂andû

are the mean optimal solution provided by the
equivalent deterministic problem arisen from (1), i.e.:
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where F(.) is calculated analogously to (8); and the
lower and upper bounds of the state and control are
given by (Silva Filho and Ventura, 1999):
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where Vx and Vu denote the state and control

variances and  1
u

1
x and −− ΦΦ  the inverse distribution

functions. Note that to guarantee some similarity
with the results discussed in section 3, it has been
assumed that α=γ=β.

A particular characteristic of the system operating in
open-loop (i.e. Gk=0) is that the evolution of
variances of state and control grow over the periods,
reaching their maximum values at periods N and N-1,
respectively. The difficulty is that this growth can
lead to the risk of infeasibility of problem (10) due to
the degeneration of the inequality constraints given
by (11)-(12). In practice, this degeneration means
that kk xx ββ ≥  and/or kk uu ββ ≥ . To overcome such

difficulty, a feedback scheme (see linear rule in (9))
can be used to smooth the growth of the variances
over the periods. For this purpose, an optimal linear

gain *
kG  must be computed by a minimum variance

problem, that is,  (Silva Filho and Ventura, 1999):

{ }ukk1k,x
G
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k
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As a result from (13), an optimal gain *
kG =-

BT⋅[λkI+BBT]-1 is provided. Note that the parameter
λk denotes the tradeoff between the control and state
variances whose evolutions are given by

dk
T

kxkk1k,x V)BGA(V)BGA(V +++=+
and 

xk
2
kuk VGV ⋅= ,

respectively. This parameter can be computed by a
search procedure that finds the minimum value of the
function ϕ(λk)=Vx,k+1+Vuk, see Silva Filho and
Ventura (1999) for details.

6.  CASE STUDY

The idea here is to develop an optimal production
plan for a single family of products. Thus, following
the stochastic production problem described in (1),
this production planning problem can be formulated
by (14).
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In practice, this plan usually allows managers to gain
insights into the use of the company’s material
resources, therefore, helping him to anticipate
managerial decisions that will improve the planning
process as a whole. The main data of the problem
are: (i) lower and upper boundaries of production
capacities: u =2 and 10u = ; (ii) lower and upper
boundaries of storage: x = 5 and 15x = .

The production and inventory costs h=2 and c=1,
respectively;  and (iii) initial and final inventory
levels are x0=10 and xN is free. The demand dk,
which is extracted from a historical sales report, is

assumed Gaussian with: a) monthly mean kd̂ given

by the sequence {8 8 9 8 8 8 7 6 4 5 7 8} from
January to December, respectively; and b) the

standard deviation given by 42.1Vd = . Lastly, it is

assumed here that α=γ=½. This means that the
manager assumes the risk that inventory and
production constraints can be violated at any period k
of the planning horizon N, see Silva Filho (1999).

The objective of this study is to perform a numerical
analysis of the procedures discussed in the section 5,
in order to consider them as alternatives of obtaining
a feasible solution for (14). As a result, these sub-
optimal solutions will be compared with the true
optimal solution provided by stochastic dynamic
programming (SDP) described in section 4.

6.1. True optimal solution

For the application of SDP algorithm, the first step is
to define a space for the fluctuation of demand. The
lower and upper boundaries of this space defined by:

dkk V58,2d̂d −=  and dkk V58,2d̂d += . Thus,

the chances of the demand dk occuring in this interval
are close to 99% (Chou, 1972). Then, applying the
algorithm given in (5) to the problem (14), it follows
that the optimal cost of operation was $ 1,560, and
the true optimal trajectories (policies) of state and
control are given in figure 2.

6.2. Sub-optimal procedures

Using the results of section 5, the suboptimal
procedures were implemented via dynamic
programming algorithm. With the exception of the
MVC procedure, the others take into account the
available information about the state of the system,
that is, they use the level of inventory, observed at
the beginning of each month, to improve the solution.
In particular the PCC procedure deserves a little
more attention due to require the computation of a
linear optimal gain G*. In such case, the first step was
to compute the tradeoff parameter λk.Thus, using the
results discussed in session 5.4, a search for λk ∈ (0,
+∞) was employed in order to minimize:
ϕ(λk)=Vx,k+Vu,k subject to evolution of the variance

equations given by: ( ) k,x
2

kuk V1(1V λ+=

[ ] dkxk
2

kk1k,x VV)1()2(V +λ+λ+=+ .  Without loss

of generality, it was assumed *
kλ =λN ∀k. The reason

is that the maximum growth of variances is observed
in the period  k=N (this means a high risk of find a
unfeasible solution to the problem (14)). As a result,
the optimal value is λ*=0.85, implying in G*(λ)=0.46.

Analysis of Results: Table 1 allows comparison
among these different approaches with relation to
costs for problem solving. As was expected, the
solution provided by SDP has the minimum cost
while the open-loop solution provided by MVC has
the maximum cost. It is worth mentioning that the
values of the costs provided by the other procedures
are higher and lower than the costs provided by SPD
and MVC procedures. In fact, from table 1, it is
possible to verify that: JSDP≤JPCC≤JOLFC≤JNFC≤JMVC.

Thus, as a result, the best suboptimal solution is the
one provided by the PCC procedure. The reason for



this is that the PCC explicitly uses a feedback gain
and, consequently its suboptimal solution is
improved at each period k.

Table 1. Comparing the optimal costs

Procedure   SDP    PCC    OLFC    NFC    MVC
  Costs         1560    1785     1812     1995    2830

This kind of solution can substitute the true optimal
solution, providing a production plan and managerial
insights about the use of material resources. The
optimal inventory and production policies, for each
one of these procedures are illustrated  in figures
2(a)-(d). Note that they are compared individually
with true optimal trajectories.

An interesting observation of these results is that the
trajectories provided by the NFC and OLFC
procedures (figure 2(b) e 2(c)) are more responsive to
the fluctuation of demand than the PCC procedure
(figure 2(d)) which uses the optimal gain Gk to
smooth the production policy. Next, the use of the
PCC procedure together with a simulation
mechanism is investigated. The objective is to
develop production scenarios that help managers gain
insights into the use of the company resources.

6.3. Scenarios Analyses via PCC approach

The diagram in figure 3 describes the simulation
scheme. The variables )k(ûand)k(x̂  denote

respectively the  mean optimal trajectories of
inventory and production provided by the PCC
procedure and illustrated in figure 2(d). These
trajectories are used as goals during the simulation
performance. The variables x(k) and u(k) will contain
the current inventory and production levels which are
provided by the simulation process per period k. The
simulation was performed for a planning horizon of
24 months. Thus, the original trajectories  for 12
months, see figure 2(d)), were duplicated for the
other consecutive months, that is,  k=13, 14, ..., 24.
The objective was to provide a long-term vision for
the production planning process. It was also
considered that the fluctuation of demand was
generated from a non-stationary seasonal forecasting
model, described as follows: d(k) =
(6.0+0.25⋅k)⋅(1+sine(3.14⋅k/6))+z(k), where z(k) is
generated from a normal random process. Figure 4
illustrates the result of the simulation. It is worth
mentioning that during the simulation process, the
linear gain Gk is responsible for adjusting the
production levels in order to guarantee that the
inventory levels follow their optimal targets as
closely as possible, i.e., x(k) close to ),k(x̂ k=1, ...,24.

7.  CONCLUSION

In this paper, the solution of a general class of
stochastic production planning problems via sub-
optimal procedures was investigated.
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Fig. 3. Simulation scheme via PCC procedure
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Four different sub-optimal procedures were analyzed
and compared with the true optimal solution provided
by the application of stochastic dynamic
programming. The PCC procedure had the best
performance among them. The reason is that, in
contrasting the other procedures, PCC uses a linear
feedback gain to introduce (see (9)) some
information about the current state of the system into
the control policy. Another advantage of the PCC is
that it can be used to simulate the production process,
allowing managers to gain insights into the use of
company’s material resources.
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