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Abstract: For many practical applications, a combination of theoretical and experimental model-
ling appears feasible. Qualitative knowledge about the most significant effects are often known or
easily accessible. This contribution suggests a semi-physical modelling approach based on the
special architecture of local models. Due to their inherent transparency, these models are very
well suited for the incorporation of mainly qualitative process knowledge. The integration of prior
knowledge is realised by an adaptation of the model structure to that one of the process. As a
result, the final process-specific models are characterised by high generalisation performance also
in situations with only few measurement data. Copyright © 2002 IFAC
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1. INTRODUCTION

The solution of many engineering problems requires
accurate mathematical models of all kinds of proc-
esses. In control engineering, these static or dynamic
models are the basis for e.g. process simulation, con-
troller design, model-based control, process optimi-
sation and model-based fault-diagnosis.
There exist mainly two ways to develop mathematical
process models. Theoretical modelli ng on one side is
based on the formulation of the underlying physical,
biological or chemical laws in equations. This ap-
proach is usually called white-box modelling, since
the model development implies a deep understanding
of the physical background. As a result, the final
models are transparent and interpretable, that means
their parameters have a specific physical meaning.
Difficulties arise if the considered processes are
poorly understood or too complex. Then, the collec-
tion of a suitable degree of process knowledge de-
mands high effort and the generated models are often
not as accurate as desired.
On the other hand, experimental modelli ng ap-
proaches rely on the assumption of general black-box
model structures with adaptable parameters. These

parameters are estimated by an identification method
based on measured data. The aim of parameter esti-
mation is the adaptation of the model input/output
behaviour to that one of the process. Generally, the
structures of the model and that of the real process
are not related. Consequently, internal model pa-
rameters have no direct physical interpretation. Since
no process knowledge is required, experimental mod-
elling approaches represent universally applicable
methods. However, the achievable model quality is
strongly restricted by quality and quantity of avail-
able measurement data. Classical polynomials as well
as neural networks with a huge number of different
existing structures can be applied for experimental
modelling.
In real engineering applications at least to a particular
degree process information is almost always avail-
able. Although insufficient for a fully physically
parameterised model, this prior knowledge should be
exploited during model development. There are nu-
merous methods from pure physical to experimental
modelling (Fischer et al., 1997). These so-called
grey-box approaches attempt to combine the advan-
tages of both white- and black-box models.
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In this paper, a semi-physical modelling approach is
pursued where process knowledge and experience of
engineers are utili sed for a knowledge-based pre-
structuring of originall y very flexible model struc-
tures. Whereas in conventional neural networks the
introduction of such knowledge is usually difficult or
impossible, in this paper a special class of local
model architectures is considered. These models are
featured by their transparency and interpretabili ty.

The paper is organised as follows: Section 2 de-
scribes the basics of local model approaches. The
introduction of prior knowledge is pointed out in
Section 3. In  Sections 4 and 5, guidelines for semi-
physical modell ing are presented and applied to an
example. Finally, conclusions are given in Section 6.

2. LOCAL MODEL APPROACHES

Local model architectures represent a promising
alternative to many other nonlinear model structures
with a pure black-box character like many neural
networks. They have appeared in several scientific
branches. Well known architectures, such as neuro-
fuzzy systems and fuzzy models, belong to this class.
Local models are based on the decomposition of the
considered input space into different operating re-
gimes. Within each operating regime a simple sub-
model is valid. The global model output ŷ  is given

by the combination of all l ocally active submodels
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The validity of each local submodel gi is defined by
its corresponding weighting, activation or member-
ship function Φi. These functions describe the parti-
tioning of the input space and determine the type of
transition between neighbouring submodels.

Different local model architectures can be distin-
guished with respect to the following three properties:

�  Partitioning principle: The membership func-
tions introduce one of the following decomposi-
tion strategy: grid structure, recursive partition-
ing or partitioning into operating regimes of ar-
bitrary form. Figure 1 shows examples of the
mentioned partitioning principles. The determi-
nation of a problem-specific decomposition as
well as the number of submodels is called struc-
ture identification.

�  Local model structure: Local submodels can
possess any structure. However, linear models
are mostly applied. The optimisation of the cor-
responding local submodel parameters is called
parameter identification. Figure 2 illustrates three
differently complex local submodels.

�  Transition between submodels: In principle, one
can distinguish two forms of transition. Firstly,
hard transitions perform a sudden switching be-

tween the local models. As in most cases, sudden
changes are not natural, soft partitions provide
smooth transitions between the submodels (com-
pare Fig.3).

Murray-Smith and Johanson (1997) give a compre-
hensive overview of local model architectures. Most
of them utilise linear submodels and an axis-
orthogonal partitioning either by a grid structure or
by a recursive decomposition. Examples are the AN-
FIS fuzzy model (Jang, 1993) and the LOLIMOT
neuro-fuzzy model (Nelles, 2001). Local models with
arbitrary operating regimes are usually based on
clustering or product-space clustering algorithms
(Babuska and Verbruggen, 1995).

Figure 1: Partitioning strategies of local model ap-
proaches: (a) grid structure, (b) recursive parti-
tioning by axis-orthogonal cuts, (c) recursive
partitioning by axis-oblique cuts, (d) partition-
ing in operating regimes of arbitrary form
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Figure 2: Different submodel structures

Figure 3: Membership functions with hard and soft
transition between submodels

0 0.2 0.4
u1

0.8 1
0

0.2

0.4

0.6

0.8

1
(d)

0.6

u 2

0 0.2 0.4
u1

0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

0.6

u2

0 0.2 0.4
u1

0.8 1
0

0.2

0.4

0.6

0.8

1
(b)

0.6

u 2

0 0.2 0.4
u1

0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

0.6

u2



3. INTEGRATION OF PRIOR KNOWLEDGE

Local model architectures represent general and very
flexible model structures. On one hand, this flexibil-
ity is an immense advantage since a wide class of

nonlinear systems can be identified. On the other
hand, they may need many variable parameters. A
problem in practical applications often arises from the
available amount of data. According to the “curse of
dimensionality” , high-dimensional input

spaces cannot be fill ed equally dense with data. Be-
cause of these reasons, certain nonlinear effects may
not be captured automatically by tuning available
model parameters.
Due to their transparent structure, local models offer
the possibili ty of adjusting the model structure to the
process structure in terms of physical law based rela-
tionships. Such an incorporation of physical insight
improves the training and the generalisation behav-
iour considerably and reduces the required model
complexity in many cases.
In the following, two ways of integrating prior
knowledge will be investigated.

3.1 Distinction of Input Spaces for Local Submodels
and Membership Functions

So far, according to (1) identical input spaces for the
local submodels gi(u) and the membership functions
Φi(u) have been assumed. However, local models
allow the realisation of distinct input spaces (Figure
4) (Murray-Smith and Johanson, 1997; Nelles, 2000)
with
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The input vector z of the weighting functions com-
prises merely those inputs of the vector u having
significant nonlinear effects which cannot be ex-
plained by the local submodels. Only those directions
require a subdivision into different parts. The deci-
sive advantage of this proceeding is the considerable
reduction of the number of inputs in z. Thus, the
diff icult task of structure identification can be simpli-
fied.
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Figure 4: Structure of local model approaches with
distinct inputs spaces for local submodels and
membership functions

The use of separate input spaces for the local models
(vector x) and the membership functions (vector z)
becomes more precisely by considering another rep-
resentation of the structure in (2). As normally local
model approaches are assumed being linear with
reference to their parameters according to

( ) 0 1 1 ,
x xi i i i n ng w w x w x= + + +�x (3)

(2) can be rearranged to
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Thus, the specified local model approaches can be
interpreted as linear-in-the-parameter relationships
with operating point dependent parameters wj(z),
whereupon these parameters depend on the input
values in vector z. Consequently, the process coeffi-
cients wj(z) still have a physical meaning.

3.2 Structure of Submodels

The choice of appropriate submodel structures always
requires a compromise between submodel complexity
and the number of submodels. The most often applied
linear submodels have the advantage of being a direct
extension of the well known linear models. However,
under certain conditions more complex submodels
may be reasonable. If the main nonlinear influence of
input variables can be described qualitatively by a
nonlinear transformation of the input variables (e.g.
fi (x) = x1

2, x1x2), then the incorporation of that
knowledge into the submodels leads to a considerable
reduction of the required number of submodels. Gen-
erally, this approach can be realised by a pre-
processing of the input variables x to the nonlinearly
transformed variables

*
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T
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Besides those heuristically determined model struc-
tures, local model approaches also enable the incor-
poration of fully physically determined models. Fur-
thermore, local models allow the employment of
inhomogeneous models. Consequently, different local
submodel structures are valid within the different
operating regimes.
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Figure 5: Pre-processing of input variables x for in-
corporation of prior knowledge into the sub-
model structure



4. GUIDELINES FOR SEMI-PHYSICAL
MODELLING

The data-based modelling with local model architec-
tures is an attractive alternative to theoretical ap-
proaches. Since in accordance with (4) these ap-
proaches can be interpreted as linear-in-the-parameter
models with operating point dependent parameters,
the application of experimental modelling methods
and the physical interpretability of the results need
not exclude each other. Thus, the identification of
nonlinear processes can be performed systematically
by regarding the following guidelines:

(i) Physical analysis of the process: Consideration
of the physical relationships, derivation of the
system order, discretisation of the time continu-
ous differential equations. Thus, an initial mod-
elling approach with the input vector x is ob-
tained. Furthermore, non-modelled physical
phenomena are considered, which contribute to
the operating point dependency of the physical
parameters. With this knowledge, a preselection
of possible signals in the input vector z of the
membership functions Φi(z) can be accom-
plished. Then, vector z is a subset of u.

(ii) Performance of initial experiments on the proc-
ess: For the selection of the sampling rate and
the excitation signal, process knowledge has to
be gathered. This can be done by recording step
responses at different operating points. Based on
these measurements, the time constants can be
roughly estimated. Furthermore, the dead times
of the output with reference to the input signals
are determined. In some cases, comparable ex-
pert knowledge is available by considering
similar systems.

(iii) Determination of the sampling time: The sam-
pling time Ts has to be selected small enough
that the modelled smallest time constants are
embodied adequately in the sampled signal. On
the other hand, for implementation on cost-
efficient micro computers, Ts should be chosen
as large as possible. Unfortunately, no univer-
sally valid guidelines for the selection of the
sampling period are known. Based on the
knowledge of the smallest interesting time con-
stant Tmin, the following rule of thumb can be
used

1 3

5 5
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T
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which is the generalised form of a guideline for
linear systems (Isermann, 1992). From now on,
in order to suppress higher order dynamics, the
process signals should be filtered by analogue
lowpass filters with an appropriate characteris-
tic.

(iv) Selection of the excitation signal: Usually, input
signals are chosen in a manner such that wide
ranges of the input space are excited. As the dy-
namic model depends on past values of the input
and output signals, not all of these variables can

be excited independently. Hence, the design of
adequate excitation signals is of great impor-
tance. In case of linear systems so-called pseudo
random binary signals (PRBS) realised by feed
back shift registers yield good results. However,
in case of nonlinear systems, the PRBS is not
suitable, as only small input domains are ex-
cited. An extension of these signals are so-called
amplitude modulated pseudo random binary
signals (APRBS), whereupon both, the impulse
width and the amplitude are varied independ-
ently (Nelles and Isermann, 1995). In order to
excite the process uniformly in different oper-
ating points, the amplitudes are equally distrib-
uted over the considered input regimes. For the
selection of the minimum impulse length (cycle
time) λ, the following rule of thumb can be
specified

5
minTλ ≤  , (7)

regarding the minimum process time constant
Tmin. The clock time of the shift register should
be selected as large as possible since the resolu-
tion of the data grid is the finer the larger the
length is chosen.
On the other hand the output signal is also de-
sired to be equally distributed in order to
achieve better identification results. If prior
knowledge concerning input domains is avail-
able, in which the process characteristics (proc-
ess gain and time constants) are nearly constant,
an APRBS for each of those domains can be de-
signed. The overall excitation signal arises by
appending the individual signals (Fischer et al.,
1997).

(v) Measurement of datasets: For the sake of model
identification, different datasets can be meas-
ured. The dataset which arises from the excita-
tion signal of step (iv) is utilised for training,
whereas the other data are used for validation
purposes.

(vi) Model identification: An appropriate local
model architecture is identified and the valida-
tion quality is tested. If the result does not sat-
isfy the requirements, the physical correctness
of the approach should be proved and adapted.
The considered dead times of output signals are
also a potential source of error. In addition, fur-
ther input variables can be added to the vectors
x and z, respectively.

(vii) Model reduction: If the trained model yields
satisfying results, it can be further investigated
if simplifications are possible without affecting
the approximation quality. Thus, some input
signals xν of the local models are negligible. On
the other hand, the operating point dependency
of the model parameters on different input sig-
nals zν can be so small that no partition is per-
formed along these directions and these vari-
ables thus can be neglected. For the sake of
semi-physical modelling, special characteristics



in terms of nonlinear transformations fν(xν) can
be directly taken into account (Section 3.2).
Such approaches often lead to considerable sim-
plifications and therefore the number of local
models can be reduced substantially.

The proposed guidelines to model identification are
now utilised for modelling of a real world process.

5. PRACTICAL EXAMPLE

5.1 Process Description

The process under investigation is a centrifugal pump
system as depicted in Figure 6. Measured signals are
the pressures pI(t), pO(t) at the inlet and outlet, the
flow rate Q(t) and the angular speed ω(t).
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Figure 6: Pump system with measuring points

The pump is driven by an inverter-fed, speed variable
induction motor (IM) which is controlled with a field
oriented closed loop control. Here, the motor torque
Mel can be easily calculated by means of

el T R SqM k I= ⋅ Ψ  , (8)

with the constant kT (depends on the electrical motor
parameters), the rotor flux ΨR and the quadrature
current in the field oriented reference frame ISq. The
investigated motor is a three-phase, 50Hz, 2-pole, 1.5
kW, squirrel cage induction machine, rated at 400V,
3.4A and 2900rpmin. The pipe is here assumed to be
constant and will not be changed during operation,
e.g. by applying valves (Wolfram et al., 2001).

5.2 Identification of the mechanical subsystem

For the identification, the special local model struc-
ture LOLIMOT is applied (Nelles, 2000). This Local
Linear Model Tree is a neuro-fuzzy system with
linear submodels and an axis-orthogonal recursive
decomposition of the input space. The guidelines
described in section 4 are employed for the identifi-
cation of appropriate models:

(i) In order to describe the mechanical subsystem,
the torque balance must be taken into account:

( ) ( ) ( ) ( )tMtMtJtM HFrPel ++⋅= ω
�

 . (9)
The torque Mel(t) generated by the motor is
spent for the acceleration of the over-all inertia
JP, the friction losses summarised in term MFr(t)

and the production of the delivery head in term
MH(t). The mechanical friction can be modelled
by

( ) ( )Fr c vM t M sign Mω ω= ⋅ + ⋅  , (10)

regarding Coulomb Mc and viscous Mv friction
terms, whereupon the signum-function can be
neglected as the pump is only driven in positive
direction. The torque component for the genera-
tion of delivery head MH(t) can be specified by

( ) ( ) ( ) ( )tQMtQtMtM THTHH
2
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The continuous equation is discretised by re-
placing ( )tω
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initial difference equation approach is
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Due to saturation effects, (8) yields only accu-
rate results at low speeds. Thus, the parameters
wν of (12) may depend on the speed ω which is
therefore considered as the input variable zν of
the membership functions (compare (4)).

(ii) Assuming that the relationship between the
speed and the torque can be modelled by means
of a first order lag and the additional terms are
negligible, the minimum time constant is deter-
mined by evaluating step responses. Thus, a
minimum time constant of Tmin=50ms is ob-
tained. The dead time between speed and torque
can be neglected, whereas the dead time be-
tween speed and flow rate is approximately 0.5s.

(iii) In accordance with (6) the sample time is cho-
sen to Ts=10ms. The signals are filtered with 4th

order analogue lowpass filters with butterworth
characteristic. The 3dB cut-off frequency is
40Hz.

(iv) The only variable which can be excited in the
specified plant is the rotor speed n=ω/2π. As de-
scribed in Section 4, an APRBS is chosen for
the excitation of the drive. According to (7) the
minimum impulse width is λ=10msec. As the
slew rate of the speed is restricted to
2000rpmin/sec it makes no sense to select λ too
small. Thus, the minimum impulse width is here
λ=0.3s.
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Figure 7: Measured excitation signal (speed)

(v) Several datasets are measured. Both, dynamic
datasets as described in (iv) and static data are
recorded for the sake of training and validation.



A short section of the measured excitation signal
(APRBS with λ=0.3s) is depicted in Figure 7.

(vi) Based on the measured datasets, an initial
neuro-fuzzy model with the input vector of the
local models xT=[ω[k] ω[k-1] ω[k]⋅Q[k] Q2[k] 1]
and the membership functions zT=[ω[k]] is
identified.
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Figure 8: Initial approximation result

The achieved approximation result is illustrated
in Figure 8 (5 local models). Hence, the model
reproduces the static behavior well, whereas
major deviations during dynamic operation oc-
cur. Further improvements can be achieved by
additionally considering the past value of the
torque Mel[k-1] in the input vector x.
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Figure 9: Model error after regarding Mel[k-1]

The resulting model error ∆ (5 local models)
considering the same excitation signal and time
interval as in Figure 8 is depicted in Figure 9.

(vii) The model obtained in step (vi) provides already
satisfactory approximation results. Unfortu-
nately, many variables in x have to be taken into
account. Thus, further considerations aiming at
the reduction of the model without decreasing
the quality are performed.
The flow rate is measured by an inductive sen-
sor with a low cut-off frequency. Thus the con-
tribution of the signal to the dynamic behaviour
of the model is negligible. As the speed is the
only driving input variable, the flow rate de-
pends crucially on this signal. Thus, it should be
possible to economise this input in the derived
model. The new input vector is therefore
xT=[ω[k] ω[k-1] Mel[k-1]]. The corresponding
model error (5 local linear models) is illustrated
in Figure 10.
Furthermore, due to the stationary proportional-
ity between the flow rate and the speed, a quad-
ratic term of the speed can be added supple-
mentary to the input vector xT=[ω[k] ω[k-1]
ω2[k] Mel[k-1]], which can be interpreted as
semi-physical modelling. With this, similar ap-
proximation results however with fewer local
models (3 local models) are achieved.
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Figure 10: Model error without input Q[k]

Similar procedures are performed to identify the two
remaining hydraulic subsystems of the process for
fault detection purposes (Wolfram et al., 2001).

6. CONCLUSION

In this contribution, data-based modelling approaches
which rely on local model architectures are proposed.
For that purpose, the interesting operating range is
partitioned in several regimes and thus the process is
approximated by superposing local models, which are
individually weighted by operating point dependent
membership functions. Therefore, the input spaces of
the local models and the membership functions need
not to be necessarily identical.
As in technical systems always some physical insight
is available, this knowledge can be utilised to im-
prove the model structure and simplify the training
process, which is referred to as semi-physical model-
ling. In order to enable a systematical modelling by
including physical knowledge, a guideline in terms of
several design steps is proposed. Finally, the applica-
tion of the guidelines to a practical process is ad-
dressed.

REFERENCES

Babuska, R. and H. B. Verbruggen (1995). Identification
of composite linear models via fuzzy clustering. Euro-
pean Control Conference. Rome, Italy, p. 1207-1212.

Fischer, M.; O. Nelles and R. Isermann (1997). Exploit-
ing Prior Knowledge in Fuzzy Model Identification of a
Heat Exchanger. IFAC Symposium on Artificial Intell i-
gence in Real Time Control, Kuala Lumpur, Malaysia,
p. 463-468.

Isermann, R. (1992). Identifi kation dynamischer Systeme,
1&2. Springer-Verlag, Berlin, Germany.

Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based
Fuzzs Inference Systems. IEEE Transaction on Sys-
tems, Man, and Cybernetics 23, p. 665-685.

Murr ay-Smith, R. and T. A. Johanson (1997). Multiple
Model Approaches to Modell ing and Control. Tayler &
Francis, London, UK.

Nelles, O. (2001). Nonlinear System Identification.
Springer Verlag, Germany.

Nelles, O. and R. Isermann (1995). Identification of Non-
linear Dynamic Systems - Classical Methods versus
Radial Basis Function Networks. American Control
Conference, 5, Seattle, USA, p. 3786-3790.

Wolfram, A.; D. Füssel; T. Brune and R. Isermann
(2001). Component-Based Multi-Model Approach For
Fault Detection and Diagnosis of a Centrifugal Pump.
ACC ‘2001, Arlington, VA, USA.


