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Abstract: In this paper, a strategy of an active control accommodation is proposed
to deal with the regulation of SISO plants with large parametric uncertainties. The
model of the plant is partitioned into a family of a finite number of LTI models. Then,
the associated controllers are designed such that they achieve the same performances
for a given control objective. The selection of the adequate controller is based on
an online detection algorithm of these models. The stability and bumpless transfer
issues linked to the switching of controllers are discussed. The results of a real-time
experimentation of this strategy on a laboratory thermal process demonstrate its

effectiveness. Copyright (©) 2002 IFAC
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1. INTRODUCTION

The mathematical models of plants are just an
approximation of what should be their behavior
under some specific operating conditions. They do
not approximate the plant accurately when the
operating conditions change strongly. For models
with large parametric uncertainties resulting from
these changes, some examples have shown that it
does not exist a linear controller with constant
parameters which can perform the control task in
a satisfactory manner (Morse, 1996). The control
law, in this case, must be able to insure satisfac-
tory performances even though the plant model is
subject to these uncertainties.

In this paper, an active control accommodation
strategy which takes into account these large para-
metric uncertainties is proposed. It is based on
the design of an additional detection loop and

1 Corresponding author

a switching control technique. The concept of
this accommodation based on a switching control
strategy is introduced in section 2. The controller
design and the stability analysis relating to the
controllers switching are presented and discussed
in section 3. The section 4 deals with the ex-
perimental results of a real-time implementation
of this strategy applied to a laboratory thermal
process.

2. ACTIVE CONTROL ACCOMMODATION
BY SWITCHING CONTROL

In our approach, a supervised control structure
integrating an operating mode detection and ac-
tive accommodation loop is designed. The active
control accommodation is based on an indirect
switching control since it depends on the detection
of the actual process model. The operating mode
detection and accommodation (OMDA) structure
is depicted in figure (1). A multi-controller struc-
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Fig. 1. OMDA structure of a feedback system.

ture is proposed to elaborate a control, denoted
in the following by wu,, for a process with large
parametric uncertainties that are denoted by e.
The supervision setpoint 3. describes the control
objectives (e.g., setpoint control change, regula-
tion objectives change) to be achieved. The ac-
commodation signal « selects the controller cor-
responding to the detected model by the detection
signal d.

Let us denote the plant model as G and assume
that its parameters are piecewise constant and
belong to a bounded compact domain D. To han-
dle the control task by taking into account these
uncertainties, one should partition the domain
D into a finite number of compact sub-domains
D;,i € Iand I = {1,2,...,g}, such that D =
\J D; and design a controller C; for each nominal
icl

niodel G; corresponding to the center of the sub-
domain D;. This sub-domain can be taught as
the small parametric uncertainties (e.g., measure-
ment noise, modelling error...) around the nominal
model G;. From the families of the process models
and the controllers, it can be defined an Operating
Mode (OM) matrix which relates each controller
C; to each process model G, given by:

M ={M;; = (Cy,Gy) | (4,5) € I’} (1)

Each element in the diagonal of M achieves
the desired control objectives and performances.
To determine which controller must be used in
the kth sampling period, the proposed detection
method proceeds in three steps: the online sim-
ulation of the models Gj; the evaluation of the
residual ¢; = y(k) — y;(k), associated to the jth
model, where y; (k) is the output of the jth model;
and the model isolation which is based on the
search of the least of the J;(k) given by:

1
= ()

—&j(k—N)) (2)

Ji(k) = Jj(k 1) +

where N is the size of the sliding window.

Following these guidelines, a pair (d, t4) is de-
fined as the detection test which describes each
detected model d and the detection time tq(k).
The detection rule is computed online by:

d(k) ={P = Gy, m=arg min J;(k)} (3)
1<j<g

This rule decides that the process is operating in
the mth model G,,,. At each sampling period T; a
minimization search is carried out. The selected
controller corresponds to the argument of the
smallest J;. The detection time t4 is the instant
kT; where k is the sample when the detection
changes, i.e., d(k) # d(k — 1) and Ty is the
detection-accommodation loop sampling period.
tq is expressed by tq = {kTy, d(k) #d(k—1)}.

The control input u, is evaluated at each instant
t = k'T,, where T, is the control sampling period.
The detection-accommodation loop sampling pe-
riod is chosen such that T; = %Tc, l € N* such
that the accommodation function anticipates the
control input in order to minimize the detection
time delay with respect to the control sampling
period T.. For a correct signal to noise ratio a
good choice of [ and Ty allows a good tuning of
the multi-model based detector.

The objective of supervision is to ensure a safe
behavior of the system. When a fault occurs
during the process operation, there would be
no model G; approximating the model of the
process and hence no one of the controllers would
achieve the control task in a satisfactory manner.
This problem is handled by adding a vector of
performance levels IT = [my,7a,..., 4], I € RY,
where 7; is the performance level associated to
the process model G';, to the supervision set point.
Then, the accommodation signal « is a piecewise
continuous switching function which represents
the series of the successive activated controllers.
It selects the jth controller corresponding to the
detected model G; whose criterion J; is smaller
than the performance threshold ;. It is expressed
by:

a(k) = {j, [d(k) = G] A [J; <7l (4)

If the condition J; < m; is not satisfied, an
emergency shutdown procedure is activated.

3. MULTI-CONTROLLER DESIGN AND
STABILITY ANALYSIS

3.1 Multi-controller Structure

Let us denote the process transfer function, asso-
ciated to the sub-domain D;, by G,(q):

B;(q)
9= 3w ®)
for which a control u; is designed. Here, ¢ stands
for the shift forward operator. The corresponding
control input u; and the process output y are
related by:




and each control is designed with respect to each
operating mode, by the method of pole placement
presented in (Astrom and Wittenmark, 1997).
Namely, the jth control corresponding to the jth
model is given by the following relation:

where R;(q), S;j(q) and T;(q) are polynomials to
be determined as indicated in (Astrom and Wit-
tenmark, 1997). This leads to the multi-controller
structure shown on figure (2). The polynomial
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Fig. 2. Multi-controller structure.

R;(q) can be chosen as monic and its degree must
be greater than or equal to those of S;(g) and
T;(q), so that to design a realizable controller.
The design of these polynomials depends on the
desired closed-loop specifications given in terms
of the characteristic polynomial. By eliminating
u;(k’) in the relations (6) and (7), it follows:

Yres (k') Bj(a) Tj(a) = y(K')(4;(a) R;(q)
+B;(q) S;(q)  (8)
The closed-loop characteristic polynomial is:

Pu(q) = A;(q) Rj(q) + Bj(q) Si(q)  (9)
The problem of pole placement consists in deter-
mining the polynomials R;(q) and S;(q) satisfying
the Diophantine equation (9) for given polyno-
mials A;(q), B;(q) and P,(q). Then, the closed-
loop transfer function, relating the reference input
Yref (k') to the process output y(k’), is:

B;(q) T;(q)

“i= Lo R B@sw Y
The choice of T}j(z) is done such that to simplify
the auxiliary poles of the characteristic polyno-
mial. In figure 2, W; is a bumpless transfer com-
pensator which will be introduced in section 5.

3.2 Stability Analysis

The design of a given controller Cj, for a model
G, does not insure the same performances for the

remaining models G;»;, i = {1,...,g}. Since the
detection time delay is never equal to zero, the
stability of the feedback loop, in the presence of
an operating mode which is not one of the diag-
onal elements of the matrix M, must be insured.
The stability analysis of the controllers switching
proceeds in two steps (Liberzon and Morse, 1999):
the first one consists in checking the stability of
each subsystem, i.e., each controller must asymp-
totically stabilizes each process model; the sec-
ond one consists in analyzing the stability of the
overall system for arbitrary switching signals. The
first step is easily checked by computing all the
closed-loop poles of the operating mode transfer
functions G; ;(q), (i, j) € I? and i # j, located
out of the diagonal of the matrix M, where:

BJ(Q) E(q) (11)
A;j(q) Ri(q) + Bj(q) Si(q)
If all the roots of the characteristic polynomials
are within the unit circle, then, the first condition
is satisfied. For the second condition, the state
space representation relates the process output
y(k') to the reference input y,.s(k’) by:

{ I(k/ + 1) = Acl(kl)x(k/) + BCl(kl)yref(kl)
y(k') = Ca (k) (k')

Gij(q) =

(12)

This system is called a differential inclusion
(ElGhaoui and Niculescu, 2000). (A (k'), Ba(k'),
Cy(K')) is one of the vertices of the polyhe-
dral formed by the elements belonging to the
set {(Aij, Bij, Cij), (i,5) € I’} (Aiy, Bij,
C;,;) represents the state space realization of the
closed-loop transfer function given by G; ;(g). The
matrices of system (12) are expressed as:

Aa(k) =3 X0 (K) Ay
i=1 j—1

Bu(K) => > Nij(0(k))Bi; (13)
i=1 j—1

Ca(k') = ZZ Xij(0(K)Ci;

where o is the current value, at the instant
t = K'T,, of the switching function describing all
the possible switching sequences of the accommo-
dation signal «, A; j(o(k’)) € {0, 1} such that
9 g

Z Z )\i’j(O'(kJ/)) =1.

1=1j=1

In the literature, such system is also called a
hybrid system and its behavior can be modeled
by a hybrid automaton (Branicky, 1995). The
methods that allow its study of stability have
been reviewed in (Liberzon and Morse, 1999).
They are based on the computation of candidate
Lyapunov functions using the LMIs formulation
like in (Pettersson, 1999). In (Charbonnaud et
al., 2001), the stability test did not take into



account the structure of switching and resulted
in a conservative set of LMIs where every possible
switch has been considered. Let us consider an
example of a switching system whose operating
mode matrix is of dimension 3, i.e., g = 3. To
satisfy the second condition, a common Lyapunov
function V(z) = 2'Rx, R € R"", R = R”,
R > 0 and a matrix Q € R™", Q = QT, Q > 0,
must be found such that:

AT RA;—R<—Q V(ij)e I (14)

This is a system of nine linear matrix inequalities
(LMIs), which takes into account all the possi-
ble switches. It is tractable and can be resolved
by the interior-point algorithm of Nesterov and
Nemirovski (ElGhaoui and Niculescu, 2000). It
was suggested in (He and Lemmon, 1998) that
the switching structure does account in the sta-
bility analysis of switching systems. Therein, the
stability test is based on the determination of
Lyapunov-like functions associated to the funda-
mental cycles of the hybrid automaton describing
it. Our problem is not tractable by this method
since, there is no specification on the guard sets.
However, the idea of the switching structure is
very interesting in the sense that the set of LMIs
can be reduced in a less conservative set. Let us
assume that the behavior of the considered switch-
ing system is modeled by the hybrid automaton
depicted in figure 3.

Fig. 3. The hybrid automaton describing the at-
tainable states.

The behavior of this automaton is roughly as
follows. The initial state is M 1, i.e., without loss
of generality we assume the process to be in the
first OM at the starting time. Whenever there
exists a model G; whose corresponding criterion
is the smallest among the J; and satisfies the
performance level 7;, at a time k, the state of
the system switches to M; ;, otherwise, if it does
not satisfy the performance level 7;, the state of
the system switches to the stop state which is not
shown in this automaton for the sake of space.
In this example, the process can not jump from
M;j 1 to My 3 or from Mz 3 to Ms; because there

is always a detection time delay at the switching
instants, since the process has to pass by the
second operating point before reaching the third
one. Therefore, the states M 3 and M;; are not
attainable. Thus, they can be removed from the
hybrid automaton. Therefore, the system of LMIs
(14) is reduced to a set (less conservative) of seven
LMIs as follows:

AZjRAi,j - R< _Q7
v(i,j) € I —{(1,3), (3, 1)} (15)

4. EXPERIMENTAL RESULTS

This active control accommodation strategy was
implemented in real-time (AD RTI 815) on the
thermal process depicted in figure 4. The control
objective is to maintain the output temperature
Ts at 32 °C corresponding to a 3 Volts thermistor
output. The ambient temperature 7T, is around
20 °C. For this objective, two experiments have
been considered to prove the performances of the
proposed strategy. In the first one, the OMDA
structure, without using bumpless-transfer com-
pensators, was used. The switching transient re-
sponse has been improved by adding a bumpless-
transfer compensator to each controller. We have
also compared the obtained results with those ob-
tained with a unique robust RST controller whose
design is based on the shaping of the sensitivity
function (Landau et al., 1998).

The thermal process is composed of a tube with a
constant volume V', a heating resistor R connected
to a direct current power supply u(t). Here, C is
the specific heat constant for the air. The process
consists in heating the air flowing into the tube,
with a flow rate f;, to a desired temperature level.
The flow rate signal is assumed piecewise constant
and can vary by changing the throttle position j.

Te j Ts

u(t)

Fig. 4. Thermal process schematic.

The process can be modeled by a first order
system with time delay as follows:

k; e”Ti®
(]. + Tj 8)
where: k;, 7; and T; are, respectively, the static
gain, the time delay and the time constant corre-

sponding to the jth throttle position. Three mod-
els associated to three different air flow rate levels,

Gj(s) = (16)



i.e., low, medium and high, have been identified.
The corresponding transfer functions sampled at
T.=03s,T. > 714, je{1,2,3} are:

~0.0387 ¢ +0.2791

@) === (6303 ¢
01213 ¢ +0.2072
G2(0) = — 5582 4
©0.1633 ¢ +0.1133
Gal0) = — 71811 4 (17)

The desired closed-loop transfer function corre-
sponds to a continuous second order system with
a natural frequency wg = 3 rad.s~! and a damping
factor £ = 0.8. Its discrete time equivalent is given
by the following transfer function:

0.2488 ¢+ 0.1531

c - 1
Gald) = 5 gsa04 102360 D)

The method is illustrated through the design of
the controller associated to the first model G4. A
simple controller with an integral action can be
written as:

Ri(q)=(g—1) (g +72)
S1(q) =s0 ¢* + 51 ¢+ 52 (19)

The degree of the denominator of G (¢) must
be augmented by a dominant pole at (¢ — 0.521)
and an auxiliary pole at the origin to resolve the
Diophantine equation. It follows that:

P.(q) = q(q — 0.521)(¢* — 0.8350 ¢ + 0.2369)
(20)

Also, P,(q) is given by the relation (9):

P.(q) = (¢* —0.63031q) Ri(q)
+(0.03879¢ + 0.27914) S1(q) (21)

Equating the two precedent equations gives: sg =
1.5017, s; = —0.9113, so = 0, ro = 0.2160.
To determine the polynomial T3(g), the poly-
nomial P.(q) can be factorized under the form
P.(q) = Ao(q) Ac(q), where A,(q) corresponds
to the augmented factor and A.(q) corresponds
to the denominator den(G.(q)). Thus, T1(q) can
be chosen such that T1(q) = to As(q), with tg =
A1(1)/B1(1) which leads to a static gain equals
to 1. Thus, Ti(q) = 1.2326 ¢°> — 0.6422 q. The
controllers C5 and C3 are designed in the same
way:

Ra(q) = ¢% — 0.9743 ¢ — 0.0256

Sy(q) =1.2070 ¢* — 0.6358 ¢

Ts(q) =1.1926 ¢* — 0.6213 ¢

R3(q) =¢* — 1.1182 ¢ +0.1182

S3(q) =1.4166 ¢ — 0.7380 ¢

T3(q) = 1.3302 ¢* — 0.6517 ¢ (22)

The stability of the resulting switched system
is insured by resolving the LMIs given by the
relation (15). The optimization problem is found
to be feasible and the common Lyapunov function
is V(2) = 27 Rz, where R is definite positive and
given by:

5.323 —1.944 -—-3.916 0.176

—1.944 43.860 —18.996 —33.654

—3.916 —18.996 42.075  5.608
0.176 —33.654 5.608 41.575

R=

The experiment results are shown on figure (5).
The regulation is satisfactory even in the presence
of abrupt operating conditions changes that are
shown on figure (5.d). The measurement noise
variance is 02 = 1.0436 x 1073. The size of the
sliding window is N = 9. However, the switching
between controllers produce large overshoots on
the process output and make the settling time
longer than what it is supposed to be. These
effects are due to the control input discontinuities.
Large bumps on the control input (see fig. 5.b) and
on the process output (see fig. 5.a) can be observed
at the switching instants. At ¢ ~ 27.5 sec, one can
observe the effect of the second controller activa-
tion when the process evolves from M3 3 to My ;.
The activation of the second controller has an
effect of jerking on the control signal and hence on
the process output signal. The same phenomenon
is repeated at each switching. To attenuate these
bumps, a bumpless-transfer compensator (see Fig.
2) was added to each controller to improve the
transient switching response. The method pro-
posed in (Astrom and Wittenmark, 1997) is used
to reduce these bumps. Then, an integrator is in-
troduced in each controller, i.e., W; = chTll, 1=
1,2, 3. Figure (6) shows the results of the second
experience. The bumps pointed out in the prece-
dent experience are attenuated and the settling
time is reduced.

These results are compared to those obtained by
a robust RST controller. This controller is de-
signed for the model of the process correspond-
ing to a medium air flow rate, i.e., the model
Go. Its robustness margins are: 2.757 gain mar-
gin, 58° phase margin, 0.65 sec delay margin
and 0.598 modulus margin. The results obtained
with this controller are shown on figure (7). The
process evolves according to the same switching
sequence as in the first and second experiment,
ie, 7 = 3,1,2,3,2,1,3. This figure shows that
the RST controller insures satisfactory control
performances. However, when the air flow rate
switches to the low level (between ¢ ~ 27 sec and
t ~ 47sec, t ~ 120sec and ¢ ~ 130 sec), the control
input shows some chattering that did not happen
when the OMDA structure had been used. Also,
the noise perturbations are less attenuated on the
output than with the OMDA structure.
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5. CONCLUSION

The OMDA structure is proposed to detect the
different operating modes of a process and to
accommodate its control input by the selection
of the adequate controller. The implementation of
this structure was illustrated by the active control
accommodation of a thermal process in presence
of large variations in the operating conditions.
The experimental results show that this structure
is easy to implement and gives satisfactory results.
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