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1. INTRODUCTION 

 
Both conditions of consistent parameter estimation 
and the available convergence rate of identification 
algorithms (in the least mean squares (LMS) sense) 
depend on the uncertainty level in the description of 
the plant and disturbances. Without noises, there exist 
computationally simple enough algorithms of 
recurrent estimation (like Kaczmarz algorithm and its 
modification, Shi and Kozin, 1986), which guarantee 
an exponential convergence rate. When the 
unmeasured disturbances can not be neglected the 
asymptotically reachable rate of transient processes in 
the identifier depends on the sample volume N as  
O(N-λ) with λ≤1 determined by the noise distribution 
class capacity. In particular, for regular parameter 
estimation problems, λ = 1 and the asymptotic 
convergence rate is determined by the lower limit of 
Cramer – Rao information inequality or its various 
modifications for dynamic plant identification 
(Kashiap and Rao, 1976). In the non-parametric 

identification problems, the limiting algorithm speed is 
less in the order and is determined by the smoothness 
of the noise distribution for the estimated plant 
characteristic (Krzyak, 1986; Nazin and Yuditsky, 
1999; Ibragimov and Khasminsky, 1979). The slow 
convergence is indeed an obstacle for practical use of 
stochastic approximation algorithms in the real time 
control systems. On the other hand, for less 
uncertainty there are estimation algorithms with a 
higher order convergence rate, determined by the 
noise distribution specifics (Ibragimov and 
Khasminsky, 1979).  
 
The identifier adjusts the model using the feedback on 
the discrepancy between outputs of the plant and its 
adjustable model like in a classic control system 
structure with the error feedback. However, there is an 
essential difference due to the fact that in the 
identification problems the discrepancy gain factor is 
diminishing during the adjustment to meet the estimate 
consistency conditions. Such a step value decrease 
may be stated a priori (as in an ordinary stochastic 
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approximation algorithm) or chosen based on current 
observations as in the least mean squares algorithm 
and its modifications with recurrent matrix inversion 
(Poznyak and Tikhonov, 1990; Evans et al., 1994; 
Ljung, 1987), and also in the scheme of  Goodwin et 
al. (1981). Due to the quasi-stationary nature of real-
life control plants, the problem naturally arises to 
finding principally different recursive estimation 
schemes where the convergence condition is met by 
special nonlinear discrepancy transformation rather 
than by diminishing the step value. Such an algorithm 
with a discrepancy transform of the “dead zone” type 
was suggested by Bunich (1983); it was shown that for 
certain classes of distributions with border 
peculiarities a higher  
order convergence rate is really achieved compared to 
the asymptotically reachable rate in regular estimation 
problems. Nevertheless, the applicability of the 
algorithm was limited by strict constraints on noise 
distributions.  
 
In what follows, the noise distribution class constraints 
are essentially relaxed and the identification algorithm 
convergence is investigated under limited noises with 
a priori upper border. 

 
 

2. THE PROBLEM STATEMENT AND 
DESCRIPTION OF RECURSIVE  

ESTIMATION PROCEDURE   
 

Consider an identification problem of a linear plant 
with discrete time t = 1, 2, …, described by “input – 
output” equation 
 
   yt = φ t

Tθ*+ vt         (1) 
 
where φ t ∈  RN  stands for regressor, θ* ∈  RN is 
unknown parameter, vt ∈  R1 is unmeasured plant 
output disturbance (noise). The observations are a 
random vectors sequence (yt, φ t)∞t=0 ∈  RN+1 on the 
probability space ., ,P)(Ù ℑ  The noise is limited 
with a priori given upper bound, i.e., positive constant 
δ:  
 
  │vt│< δ   P-a.s. (almost surely)           (2) 
 
Given an observation sample, one is to estimate 
parameter θ*.  
 
In the absence of information about the useful 
statistical plant properties such as ergodicity one can 
not guarantee consistent plant parameter estimation, 
and is to limit himself to functional identification. For 
example, in a periodic observation sequence, the 
functional identification may be treated as a solution 
of a finite set of linear inequalities with respect to 
(w.r.t.) θ* which are determined by plant equation (1) 
and the noise constraint (2). To solve this problem, the 
relaxation procedure by Motzkin and Schoenberg 

(1954) can be used with discrepancy transformation of 
the “dead zone” type: 
 

 θ t  = θ t - 1 +  φ t  f ( ξ t ) || φ t || - 2 , 
            ξ t = y t – φ t T θ t – 1 , f ( ξ t ) =         (3) 

    =( | ξ t | - δ ) + sign ξ t. 
 
An essentially wider class of functional identification 
and adaptive control problems based on algorithm (3) 
and its modifications (so called “widened strip”) was 
considered by Fomin et al. (1981) in the context of the 
recurrent target inequalities theory.  
 
For a time-invariant observation scheme with defined 
on ),,( PℑΩ  measure  P  saving shift transform T: 
Ω → Ω the statistic properties of this transform will be 
the worse, the higher is the speed of approximation by 
T-periodic automorphisms. The limit case of no new 
data corresponds to the Motzkin and Schoenberg 
(1954) scheme with a periodic observation sequence. 
When the automorphism T possesses useful statistical 
properties under certain constraints one can obtain 
consistent plant parameter estimation. Then (3) 
becomes the Motzkin and Schoenberg (1954) scheme 
generalization for stochastic identification problems 
and is in fact, a stochastic relaxation procedure 
(Ermolyev, 1976).  
 
As algorithm (3) characteristic contains a dead zone, 
the global convergence of estimates will demand 
imposing additional conditions on the observed 
variables. For example, consistent estimation is 
impossible in a passive identification problem when 
the regressor has a finite probability density (w.r.t. 
Lebesgue measure). In identification problems with 
randomized strategy there are methods of signal-to-
noise ratio improvement by choosing a test signal in 
the control channel. The effect of large signal-to-noise 
ratio and the means of obtaining it are crucial in the 
design and convergence investigation of identification 
algorithms in this paper.  
 
 

3. STATIC PLANT IDENTIFICATION  
 

The first industrial applications of control systems 
with identifier (Danilov and Rajbman, 1973) 
concerned the adaptive compensator design for a 
system with linear static plant Yt= φ t

Tθ*+Kut + vt 
where Yt stands for output to stabilize, φ t is the 
observed disturbance vector, K is a given gain factor 
w.r.t. scalar control ut, vt is white noise, and θ* is 
unknown parameter vector. Defining yt= Yt – Kut and 
using estimate θt-1(y0

t-1,φ0
t-1) of parameter θ* to adjust 

the compensator ut= - K-1 φ t
T θt-1 one finds that 

control quality is determined by the choice of a plant 
identification algorithm (1) in the context of the 
estimation problem stated above.  
 



 

  
 

Consider  the  distance  function  d(θ, Pt)   from the  
point  θ∈RN to a rectangular strip Pt = {a ∈ R N:  
|y t – φ t 

T a| ≤ δ }. To investigate the algorithm 
convergence (3), let us use the following statement (no 
proof is supplied here) which is a direct consequence 
of geometric interpretation of algorithm (3) and 
distance function definition.  
 

Lemma 1. Function d(θ, Pt) is convex, Lip d(θ, Pt)= 
=1, and  

 
Σ d2(θ t - 1, P t) ≤ ||θ* - θ 0 ||2, 

 t > 0 

 |d2(θ, Pt) - |φ t T(θ* - θ)|2 ||φ t||-2 | ≤  
 
≤4 δ2||φ t||-2 + 4δ ||θ* - θ || ||φ t||-1.    

 
The statement that follows develops the idea of 
consistent estimator design without diminishing the 
identification algorithm step value.  
 
Lemma 2.  Let {φt=φ0(Ttω)}∞t=0 be a stationary 
ergodic sequence with values in RN defined on 

,P)(Ω ℑ, , and the probability measure generated by 
the distribution function of this sequence is 
equivalent to  Lebesgue measure  on  RN . Then      
lim sup d(θ, Pt)=  
t→∞ 
= ||θ* - θ || a.s. (almost surely) ∀ θ ∈ RN.  
 
The restrictions assumed in Lemma 2 of the 
observed disturbances distribution class can be 
relaxed. However, the simple example of an 
estimation problem following the scheme (3) with a 
uniformly bounded observation sequence shows that 
without such restrictions the identifiability 
conditions are not met. 
 
The following statement provides consistent 
estimation conditions for a stationary observed input 
variables sequence satisfying the weak dependence 
condition. 
 
Theorem 1.   Let under the conditions of Lemma 2  
{yt, φt}∞t=0  be an m–dependent stationary process in 
RN+1  and the following condition of limiting non-
singularity holds  
 

lim sup tr {Г-1(A)} < ∞ ,            (4) 
A→∞ 
Г(A) = cov [φ t ||φ t ||-1 

  / ||φ t || > A ]. 
Then  the   estimator  (3)  is strongly consistent, i.e., 
lim θ t = θ*  a.s. for t→∞  ∀θ0∈RN. 
 
Let us explain the limiting non-singularity condition 
(4). It is easy to give an example of a stationary 
observation sequence {φt}t=0

∞  with the distribution 
concentrated on some proper sub-space  of RN (for 
large enough ||φt||). In this case, the condition (4) is 
not met and the global convergence of algorithm (3) 
cannot be guaranteed.  

 
4. DYNAMIC PLANT IDENTIFICATION USING 

TEST SIGNALS 
 

In the previous section the possibility of plant 
parameter consistent estimation was related to a 
large ratio of amplitudes of observed and 
unobserved disturbances. However,  the global 
convergence of estimates (3) is principally 
impossible for limited observed variables. Such a 
situation occurs in the linear system identification 
with limited unmeasurable disturbance vt. The 
system consists of discrete-time control plant  
 
a(∇, θ)Yt = b(∇, θ)Ut + vt ,  a (0, θ) = 1,  
b(0, θ) = 0 ,  deg a = deg b = s          (5) 
 
and stabilizing controller  
 
α(∇, θ)Ut=β(∇, θ)Yt, deg α=deg β =s, α(0)=1    (6) 
 
where ∇ denotes one step delay operator. The data 
(Yt, Ut) for t<0 are fixed. The class ℜ  of stabilizing 
regulators (6) for plant (5) is large enough. In 
particular, one can obtain any stable polynomial 
g(z), deg g=2s, g(0)=1 as characteristic polynomial 
of a closed-loop system, solving pole adjustment 
problem in class ℜ  (Fomin et al., 1981).  
 
The problem of identification of plant (5) is to 
estimate vector θ = col (-a1,…, -as; b1,…, bs) from 
observations “input – output”. To have consistent 
estimates of the parameter, different schemes with 
control randomization by a measurable test signal 
are widely used (Saridis, 1977). Consider the 
randomized control system with plant equation  
 

a(∇, θ )y t = b(∇, θ)ut + vt,          (7) 
  
and randomized by test signal wt  feedback  

 
 α(∇)u t = β(∇)y t + w t , w t = Atet.         (8) 
 
In the right-hand side of (8) et = ± 1 is the white 
noise Bernoulli sequence independent of plant 
disturbance. The amplitudes At are to meet the 
control admissibility conditions and to provide large 
enough discrepancy between plant and model 
outputs (overlapping the dead zone). It results in 
following conditions 
 
 
        T 

 lim sup A t = ∞ ,     ΣAt
2 = o(T). 

 t → ∞       t=1  
 
Varying the test signal amplitude within these limits 
one can control the identification speed. The 
condition of randomized control admissibility limits 
the unit test signal power 
 



 

  
 

                                   T 

lim sup T–1 Σ ЕР(y2
t + u2

t ) < ∞.  
              T → ∞                    t = 1 

 
In the class of admissible controls the limit control 
quality functional can be defined: 
 

           T 

 J = lim sup T–1 Σ ЕР y2
t.          (9) 

                       T→∞               t=1 
 
Both, the disturbances and the test signal are 
assumed to belong to a probability space ,P)(Ω ℑ, , 
and control availability conditions and quality 
functional (9) ensemble averaging operation denotes 
the expectation w.r.t. measure P (in what follows, 
the subscript in notation Ep of this averaging will be 
omitted). The control admissibility condition is met 
also for unlimited but rare enough test signals.  
 
Consider an auxiliary system S with output u*t = ut – 
Ut and input yt = yt - Yt:  

 
α*(∇, θ )u*t = β*(∇, θ )y*t + wt,          

 a(∇, θ )y*t = b(∇, θ )u*t.               (S) 
α*(∇, θ ) = α(∇) - β0b(∇, θ ),     
β*(∇, θ ) = β(∇) - β0 a(∇, θ ) 

 
The characteristic polynomial of this system 
coincides with that of system (5, 6). “The controller” 
(second equation of (S)) has a measurement delay, 
and polynomials a(., .), b(., .) are co-prime due to the 
controllability of plant (7). The difference order of 
the “controller” due to (6) is not less than the plant 
order, which implies the controllability of matrix 
pair (A, B), B=col(1, 0, …, 0) in a standard closed 
loop system representation 
 
              ∆x t + 1 = A ∆x t + B w t + 1 ,                    (10) 

∆xt=col(u*t , …, u*t–s+1,  y*t , …y*t–s+1), ∆x 0 = 0. 

 
Let a test signal be switched on during the steps t(k)-
2s+1,…, t(k), k=1, 2,…; t(1) >2s. Iterating equation 
(10), taking into account the white noise wt , and the 
conditional averaging, one obtains a matrix 
inequality (Fomin et al., 1981) 
 
E(∆xt ∆xT

t /v0 t–2s
 w0 t–2s ≥ λσ t–2s+1

2I2s a.s., t=t(k), (11) 
 
where constant λ is positive due to the controllability 
of pair (A, B), and σ2

t-2s+1 is the variance of a test 
signal at the beginning of a new randomization cycle 
on step t(k)-2s+1. To derive (11), one is to take into 
account the assumed independence of the test signal 
and plant disturbance, and the monotonic growth of 
the test signal variance during a randomization cycle.  
 
Let us consider the routine of the test signal 
amplitude and switching time control. Denote as n(t) 
the total number of instances when the test signal is 

switched on during steps 0, 1,…,t. Define a set of 
natural numbers  M= ∪ [t(k) – 2s+1, t(k)], 
        k > 1 

t(k+1)>t(k)+2s with characteristic function χM(t), 
t=1, 2,…and define amplitudes as At=A(t)χM(t), 
where the monotonic number sequence {A(t), t=1, 
2,…} meets the following conditions 
 
           A2(t)=o(t/n(t)),       limA(t)=lim n(t)=∞     (12) 
 
which guarantees unbounded test signal amplitudes 
with zero relative power per step: 
 T 

 Σ Ewt
2 ≤ n(t)A2(t) = o(t).                       (13) 

t = 1 

The zero power condition is preserved when a test 
signal passes through a stable system (7, 8) 
providing availability (in the sense of (9)) of control 
for randomization scheme (8) and the same limit 
value of quadratic quality functional as in the system 
(5, 6) without randomization.  
 
In relation to adopted randomization scheme note 
the following. It is known that in dynamic plant 
identification problems one can get convergence rate 
(in the LMS sense) of the order o(t-1) even for 
smooth disturbances distribution, for example, using 
the LMS techniques for auto-regression parameter 
estimation for “heavy tails” noise distribution (see 
Hannan and Kanter (1977)). So to control the 
convergence rate, it is natural to use randomization 
scheme (8) where variances of test signals and time 
intervals between their switching on are increasing 
unlimitedly.  
 
To estimate parameters of the plant (7)  let us use the 
dead zone algorithm (3) with regressor φ 

t = col (yt–1 
…yt–s, ut–1 … ut–s ): 
 
     φТtθ = [1 - a(∇, θ )]yt + b(∇, θ )ut.    

 
The following statement not only validates the use of 
an  identification algorithm for rather general 
assumptions of disturbances but also allows us to 
evaluate a convergence rate.  
 
Theorem 2. Let the feedback (6) be stabilizing for 
control plant (5), and for control system (7, 8) the 
following conditions hold:  
1. Bernoulli sequence of random variables {et} and 
disturbance {vt}, t=0, 1,…,∞  are independent. 
2. Random variables sequence {vt} meets the 
condition |vt| < δ  a.s. with a priori given bound δ.  
3. Test signal amplitudes At and the number n(t) of its 
switching on during the steps [t(k)-2s+1, t(k)], 
0<t(k)<t+1, k=1, 2,… meet the conditions: 
 At =A( t)τχ M (t), A2(t)= n(t)ln n(t), lim n(t)=∞, lim 
A(t+1)/A(t)= 1,  M = ∪

k
 [t (k) – 2 s+1, t (k)].  

Then: 



 

  
 

1. For any bounded set Q ⊂ R2s the estimate (3) 
uniformly w.r.t. initial condition θ0 ∈ Q is strongly 
consistent, i.e., 

 
lim  supϕ t(θ 0)=0 a.s., ϕ t(θ0)=||θ -θ t(θ 0)||. 
t→ ∞ θ 0∈ Q 
 
2. The following hold: 
lim inf [A2(t) E∆t-2s ]<∞, ∆t-2s  = ||θ -θ t-2s||2. 
t→ ∞ 
 
Corollary.  
1. If under Theorem 2 conditions test signal meets 
condition n(t)=(t/lnt lnlnt)1/2 for large enough t, then 
control strategy generated by feedback (7) is 
admissible. 
2.  If under Theorem 2 conditions n(t)=t/lnlnt, then 
lim inf(t E∆t)=0, , ∆t  = ||θ -θ t||2. 
t→ ∞ 
 
Note that in the second statement of  the Corollary, 
the control admissibility condition does not hold. 
The achievement of convergence rate of order o(t-1) 
does not contradict to Cramer – Rao lower bound, as 
in the identification problem with randomized 
control strategy (8) the observations sample is not 
homogeneous.  
 

5. CONCLUSION 
 

The convergence analysis of stochastic relaxation 
procedure “dead zone” was based on the effect of 
algorithm linearization for large signal-to-noise ratio 
which offers an opportunity for consistent plant 
parameter estimation without diminishing the step 
value. The consistency is preserved also when the 
identifier is switched on only in randomization steps, 
which simplifies the adaptive identification strategy. 
Moreover, instead of test signal amplitude control 
program one can use feedback w.r.t. discrepancy. 
The suggested recurrent parameter estimation 
procedure is computationally simple and can be used 
for real-time control in systems with identifier in 
closed loop.  
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APPENDIX 
 

Proof of Lemma 2. Let us use the inequality (θ, Pt) ≥     
≥ [φ tT (θ - θ*) - 2δ ]||φ t||-1.  Let ε ∈ (0, 1) and χ U (x) 
be a characteristic   function of  open   set   U = {x∈ 
RN:   |xT(θ -θ*)|>2δ +(1-ε) ||θ -θ*|| ||x||}, θ≠θ*. This 
set contains a point x=λ(θ-θ*), where λε║θ-θ*║2>2δ 
and so is not empty. Due to Poincaré theorem 
(Kornfeld et al., 1980) lim sup χU(φ t)=1   a.s.,   so   
lim sup d(θ, Pt)≥ (1-ε )||θ - θ*║ a.s.  As ε is arbitrary 
from (0, 1), lim sup d(θ, Pt) ≥|| θ - θ*|| and inverse 
inequality follows from  definition of function d(., .). 
 



 

  
 

Proof of Theorem 1. Due to Lemma 1, Lip d(θ, Pt)=1 
so for t>m one has  
  m                           m 

Σ|d(θ t–i-1, Pt)-d(θ t–i, Pt)| ≤ Σ||θ t–i–1 -θ t–i|| ≤  
i = 0                      i = 0 

                 m                  ∞ 
≤m1/2{Σ||θ t–i–1 -θ t–i||2}1/2, Σd2(θ t–m, Pt)≤m2||θ*-θ 0||2,  
        i = 0                 t = m 

∞
     

         ∞ 
ΣE[d2(θ t,Pt+m)/||φ t+m||>A]P(||φ t+m||>A)<ΣEd2(θ t,Pt=m)< 
t=0          t=0 

<∞. Together with the second inequality from Lemma 1 
we obtain: 
|E{[d2(θt, Pt+m)-|φt+m 

T(θ*-θt)|2||φt+m||-2]/||φt+m||>A}|≤  
 
4δ 2A-2+4δ ||θ*-θ 0||A-1, from which it follows that 
 
lim sup|E{|φt+m

T(θ*-θt)|2||φt+m||-2]/||φt+m||>A}|=O(A–1)  
t → ∞  

Due to the condition of m-dependence of 
observations {φt}t=0

∞   one gets  lim sup tr{Г(A)cov(θ*-
θt)} = O(A–1)                                     t→ ∞ 

consistency of estimator (3) follows from limit non-
singularity of Γ(A), and strong consistency follows 
from the monotonic character of ║θ*-θt║ sequence. 
 
Proof of Theorem 2. Let us define states xt, Xt of  
randomized system (7, 8) and non-randomized one 
(5, 6) respectively as: 
xt=φ 

t+1 = col (yt,…,yt–s+1, ut,…, u t – s + 1 ), 
         (A.1) 
Xt = col (Yt,…,Yt–s+1, Ut, …, Ut–s+1), δt=xt-Xt. 
 
Let us use a matrix inequality  
 
E(δt δt

 T / v0
t–2s

, w0
t–2s) ≥ λσt–2s+1

2I2s a.s., t=t(k),    (A.2) 
 
where σt–2s+1

2 = At–2s+1
2 stands for test signal variance 

at the beginning  of a randomization  cycle, constant 
λ > 0 is minimal eigenvalue of matrix 
2s-1 

 Σ  Ak BBT(Ak)T,   which  is positive definite   due   to  
k = 0 

controllability of pair (A, B), and t = t (k). As the 
disturbance vt is limited, random variables ║Xt║ are 
also bounded by non-random constant, depending on 
initial conditions, so from (A.2) one gets 
 
E(xt /v0

t–2s
, w0

t–2s)≥(C1At
2–C2At–C3)I a.s., t=t(k)   (A.3) 

 
with certain positive constants Ci, i=1, 2, 3. As the 
estimate θt-2s is Ft–measurable with Ft being a σ-
algebra generated by random variable (v0

t–2s
, w0

t–2s), 
from (A.3) denoting zt = хt

Т(θ - θt-2s), one gets for 
t=t(k): 
 

Ezt
2 ≥ (C1At

2 – C2At –C3)∆t-2s        (A.4) 
 
Introduce random variables ηt=|f(zt +vt+1)| ||хt||-1, Zt = 
хT

t(θ -θ t). So Еηt
2 =о(1), as E{f2(vt+1+Zt)||хt||-2 } → 0 

for t → ∞ and 

 
      2s-1  
|f(zt+vt+1)-f(Zt+vt+1)| ||хt||-1≤||θ t-θ t-2s||≤Σ||θ t–i-θ t–i-1||,  

                 i=0                        (A.5) 
where random variables ||θ t–i - θ t–i-1|| have zero limit 
a.s. for   t → ∞ and are majored   by the constant 
2║θ-θ0║. As │zt│≤2δ+ηt||хt|| and ||хt|| ≤ C4At + C5, 
C4, 5 > 0  (easily derived from (12)), accounting for 
(A.4) and the monotonic property of the sequence 
║θ-θt║, the strong consistency of estimator θt 
follows. Moreover, as this estimator due to (3) is a.s. 
continuous function of initial value θ0, the monotonic 
sequence of continuous functions φt(θ0)= ║θ-θt(θ0)║  
converge to zero uniformly  over any compact set Q 
from R2s, for t→∞. 
 
Let us now evaluate  convergence rate.  
Lemma 3.  For control system (7, 8) the following 
inequality hold 
 

C4At+C5≥ ||xt||  C4 , C5>0, t=t(k), k>1. 
 
(The proof is rather straightforward, but tiresome and 
is not given due to lack of space). 
 
From Lemma 3 and (A.5), denoting 
            2s-1 

ζt=|f(Zt+vt+1)| ||xt||-1+ ∑||θt-iθt-i-1|| 
         i=0 

one gets            ∞ 

ζt[C4A(t)+C5]+2δ ≥ |zt|,   C6 ≥  ∑ζt
2,   

          t=0 

C7+C8A2(t)Eζt
2 ≥ Ezt

2  with some nonrandom 
constants  Ci.   As Σ (kln k)–1  diverges,   one   has  
lim inf (nln n Eζt(n)

2) = 0   for n→∞,  so  C7  ≥  liminf 
Ezt(n)

2 for A2(t)= n(t)ln n(t) and from (A.4) it follows 
lim inf [A2(t)Ezt(n)

2]<∞  for t→∞.   Moreover, for 
A2(t) = n(t)ln n(t), n(t)= (t/lnt ln lnt)1/2 the control 
admissibility condition  (13)   holds. When  n(t) = 
t/ln lnt, A2(t)=n(t)ln n(t) control is not admissible but 
A2(t)t-1→∞ for t →∞ what implies given in the 
Corollary evaluation: lim inf (tE∆t)=0 for t→∞. 
 
Note that randomization together with (13) does not 
diminish control quality in the sense of (9).  
 
 


