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Abstract: Irregular sampling of stochastic processes gives the theoretical possibility 
to estimate spectral densities up to very high frequencies. However, the methods 
developed tend to be heavily biased at higher frequencies or fail to produce a 
spectrum that is positive for all frequencies. A new estimator is introduced that 
applies autoregressive spectral estimation to unevenly spaced data. This estimator 
approximates the data by equidistant resampling with a special nearest neighbor 
algorithm, that only accepts data if the nearest irregular data point is within half the 
slot width of the resampling time grid. The algorithm searches for uninterrupted 
sequences of resampled data and analyzes those sequences using the Burg algorithm 
for segmented data. With sufficient data, results can be accurate at frequencies higher 
than the mean data rate. Copyright © 2002 IFAC 
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1.  INTRODUCTION 

 
Astronomical data and turbulence data obtained by 
Laser-Doppler anemometry are often irregularly 
sampled, due to the nature of the observation system. 
This has the theoretical advantage that the highest 
frequency that can be estimated is higher than half 
the mean data rate, which is the upper limit for 
equidistant observations. Many estimation techniques 
for unevenly spaced data have been developed. Most 
can be considered as variations of slotting, of resam-
pling methods or of the Lomb-Scargle estimator. 
 
Benedict et al., (2000) give a recent survey of the 
developments in the different techniques. Slotting 
methods estimate an equidistant covariance function 
from the irregularly sampled data. Slotting 
algorithms have been refined with normalization and 
fuzzy slotting. Local normalization reduces the 
variance of the estimated covariance function. Fuzzy 
slotting produces a smoother covariance function by 
distributing products over multiple time slots. 
Covariance functions as estimated by present slotting 

techniques are not positive semi-definite. This results 
in spectra that can become negative at a large 
percentage of the frequencies where the power is 
weak. Using ad hoc windowing schemes such as 
variable windowing can sometimes reduce this effect. 
Variable windowing takes a wide spectral window at 
frequencies with low power and a smaller one for 
higher power. This can have a good performance in 
examples. Broersen et al., (2000) showed, however, 
that the effectiveness of such schemes depends 
strongly on the true characteristics of the data. 
Therefore, variable windowing requires experience 
and skill, as well as a good guess about the true 
spectrum that is sought. It cannot be used generally. 
 
The second class of estimators resamples the data on 
an equidistant time grid. After resampling, the data 
can be analyzed using the periodogram or time series 
models for equidistant data. While resampling 
methods obtain positive spectra, estimates at higher 
frequencies will be severely biased. Adrian and Yao 
(1987) described Sample and Hold reconstruction as 
low-pass filtering followed by adding colored noise.  
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These effects can in theory be eliminated using the 
refined Sample and Hold estimator of Nobach et al., 
(1996). This refined estimator tries to subtract the 
resampling noise from a modified periodogram and 
to undo the low-pass filtering. However, it does not 
guarantee a positive spectrum, especially not at 
frequencies where the resampling noise contribution 
is much greater than the spectral density of the true 
process. The refined resampling might give good 
results at frequencies where noise and process have 
the same power but not if the noise is much stronger 
than the process. Nearest Neighbor resampling has 
similar characteristics. In system identification, 
missing data are often not interpolated but recon-
structed with an estimated data model; see Wallin et 
al., (2000). Broersen et al., (2000) and de Waele and 
Broersen (2000a) showed that the use of time series 
analysis instead of periodograms might produce 
improved spectral estimates. However, the noise and 
filtering effect of equidistant resampling set limits to 
the achievable accuracy of resampling methods. This 
precludes the accurate estimation of spectra at higher 
frequencies where the inevitable resampling noise 
exceeds all small details and hides spectral slopes.  
 
A third category of estimators uses the method of 
Lomb (1976) and Scargle (1982), which directly 
estimates a spectrum from the irregularly sampled 
data. The Lomb-Scargle spectrum can be completely 
alias free and reduces to the periodogram if the data 
happens to be regularly sampled. It is a least squares 
fit of sines and cosines to the irregularly sampled 
data. The Lomb-Scargle method is able to accurately 
detect peaks up to very high frequencies in a very 
low noise environment, but fails to accurately 
describe any slopes and details in the spectrum. 
 
Bos et al. (2001) introduced a new idea with time 
series analysis. Their estimator can be perceived as 
searching for sequences of data that are almost equi-
distant. The selected sequences of different lengths 
can be analyzed with an irregular version of the Burg 
(1967) algorithm for segments of de Waele and 
Broersen (2000b). This present paper introduces an 
improved estimator, combining the previous search 
for uninterrupted quasi-equidistant sequences with a 
refined slotted Nearest Neighbor resampling. On an 
equidistant grid, only observations are accepted if the 
original irregular sampling instant is not further than 
half a slot width from the resampling grid point. This 
yields several uninterrupted segments, which can be 
used for estimation of an autoregressive spectral 
model. The choices of the slot width as well as the 
automatic selection of the best order for the 
autoregressive spectral model are discussed. 
 
 

2.  SLOTTED NN RESAMPLING 
 

The analysis of resampling methods shows that an 
important problem is the multiple use of a single 
irregular observation for more resampled data points. 

This immediately creates a bias term in the estimated 
covariance function, because the covariance R(0) 
leaks to estimated non-zero covariance lags. The 
analysis of Adrian and Yao (1987) shows that both 
the covariance and the spectrum suffer from bias in 
Sample and Hold resampling. Broersen et al., (2000) 
evaluate Nearest Neighbor (NN) resampling. The 
total covariance can be calculated theoretically as the 
sum of two conditional expectations of lagged 
products in the covariance estimates, where 
contributions to the ‘lagged’ product use either the 
same irregular observation or two different irregular 
observations. Bias is caused by the shift of irregular 
time intervals to a fixed grid and by the multiple use 
of the same irregular observation. This second bias 
cause will be eliminated in slotted NN resampling. 
 
The irregular signal x is measured at N irregular time 
instants t1...tN. The average distance between samples 
T0 is given by T0 = (tN-t1 )/(N-1) = 1/f0, with f0 the 
mean data rate. The signal is resampled on a grid at 
N/k equidistant time instants at grid distance Tg=kT0 
(for simplicity in notation, the slot index k or 1/k is 
limited to integer numbers). The resampled signal 
exists only for t=nTg with n integer. The spectrum 
can be calculated up to frequency f0/2k. The usual 
Nearest Neighbor resampling substitutes at all grid 
points nTg the closest irregular observation x(ti), with 
 

|ti-1-nTg| > |ti-nTg|   ;   |ti+1-nTg| > |ti-nTg|. (1) 
 
Slotted Nearest Neighbor resampling accepts only a 
resampled observation at t=nTg if there is an irregular 
observation x(ti) with ti within the time slot 
 

 (n-0.5)Tg < ti ≤ (n+0.5)Tg .  (2) 
 
If there is more than one irregular observation within 
a slot, the closest one is selected for resampling; if 
there is no observation within the slot, the resampled 
signal is left empty. For small width of the slot, the 
number N0 of non-empty resampled points nTg 
becomes close to N because almost every irregular 
time point falls into another time slot. For larger slot 
width, more irregular observations may fall within 
one slot and only the one closest to the grid point 
survives in the slotted NN resampled signal.  
 
 

3.  AUTOREGRESSIVE MODELS 
 
Autoregressive (AR) models are a class of models for 
all stationary stochastic processes; see Priestley 
(1981). The power spectrum and the covariance of 
the data can be expressed into the parameters of the 
AR model. The best model order (the number of 
parameters in the AR model) can be selected 
objectively and automatically, based on reliable 
statistical criteria; see Broersen (2000). This is an 
important advantage above periodogram estimates 
where no objective or statistical rule exists to select 
the best among different spectral estimates. An 
AR(p) process can be written as ( Priestley 1981): 



 
 

     

n 1 n 1 p n p nx a x a x− −+ + + = ε! ,  (3) 
 
where εn is a purely random process, a sequence of 
independent identically distributed stochastic 
variables with zero mean and variance σε

2. Almost 
any stationary stochastic process can be written as an 
unique AR(∞) process, independent of the origin of 
the process. Hence, this model type can be applied to 
turbulence data and to similar physical phenomena. 
Broersen (2000) argues that AR parameters for 
different model orders of a stochastic process are 
preferably estimated with the method of Burg (1967). 
Selection criteria add a penalty for each estimated 
parameter to the logarithm of the residual variance of 
each estimated model and look for the minimum of 
the criterion; see Broersen (2000). Moreover, finite 
order models are quite well in describing true 
processes with infinite orders, because the true 
parameters are decreasing rapidly for most processes. 
The covariance function and the power spectral 
density of the data can be computed from the 
estimated model parameters. The power spectrum of 
the AR(p) model is given by (Priestley, 1981): 
 

22 jh( ) / A(e )ω
εω = σ .   (4) 

 
Here, A(ejω) is defined as 1+a1e-jω+ …+ ape-jpω with 
the parameters ai  as defined in (3) . 
 
 
3.1 Burg for segments. 
 
The original Burg (1967) algorithm for AR parameter 
estimation recursively estimates reflection 
coefficients kp from equidistant data. The Burg 
algorithm for segments of de Waele and Broersen 
(2000b) is a modified version that allows the simul-
taneous AR estimation from S multiple segments, 
even if those segments are not of equal length. In the 
first step, the functions s

0f (n)  and s
ob (n)  are made 

equal to the S segmented data sequences xs(n), 
s=1,…,S. The first reflection coefficient k1 can now 
be estimated using the following equation, with p=1: 
 

s s
p 1 p 1

p s 2 s 2
p 1 p 1

2 f (n)b (n p)
k

f (n) b (n p)
− −

− −

− −
=

+ −
∑

∑ ∑
.  (5) 

 
New functions s

pf (n)  and s
pb (n) , called forward and 

backward residuals can be computed for each stage p. 
 
          s s s

p p 1 p p 1f (n) f (n) k b (n p)− −= + −  
s s s
p p 1 p p 1b (n) b (n) k f (n p)− −= + + .  (6) 

 
This means that only segments that contribute at 
stage p-1 appear in the residuals (6). These are used 
to estimate a new reflection coefficient kp+1 with (5). 
Only segments longer than p+1 points contribute in 
this stage. The total number of contributing residuals 
should at least be 25 for sufficient statistical 

reliability. After the final parameter kL has been 
computed, AR models of order 1 to L can be 
calculated by applying the recursive Levinson-
Durbin formulas; see Stoica and Moses (1997). This 
modified Burg algorithm will be applied to uninter-
rupted segments from the slotted NN resampled data. 
 
Order selection. After estimation of a number of 
AR(i) models, i=1..L, the problem is to select the best 
model order. Broersen and Wensink (1996) described 
a finite sample criterion FIC for equidistant data: 
 

( )( )
p

p
i 0

FIC(p,3) ln RES p 3 v
=

= + ∑ .  (7) 

 
RES(p) is the residual variance of the AR(p) model: 
 

p
22

x i
i 1

RES(p) (1 k )
=

= σ −∏ ,   (8) 

 

Further, vp denotes the empirical formula for the 
variance of kp. The empirical variance of kp estimated 
with Burg’s method from N observations can in 
equidistant time series analysis be approximated by: 
 

p pv 1/(N 1)= + .    (9) 
 
Here, Np denotes the number of products N-p that is 
available to estimate the parameter kp. When 
estimating parameters in irregularly sampled data, the 
variance vp is still described accurately with the 
relation above. In irregularly sampled data, however, 
the actual number of available products Np is much 
smaller. It tends to decrease exponentially with 
increasing orders p. The actual number Np should be 
counted and used in the order selection criterion (7). 
 
 

4.  SLOTTED BURG IRREGULAR 
 
It is possible to apply the Burg algorithm for 
segments directly to the slotted NN resampled signal. 
Segments are the uninterrupted sequences of 
resampled data. Each segment of length L can 
contribute to the computation of the reflection 
coefficients until kL-1 with (5). If the grid constant or 
slot was chosen as Tg=kT0, the data are analyzed up 
to the frequency f0/2k, where f0 is the mean data rate. 
This can be repeated for different values of k. 
However, the bias due to shifting the irregular points 
to a grid increases for larger slot width kT0. At the 
same time, the variance decreases, because more 
products become available. The increased bias causes 
the undesirable and unnecessary property that the 
accuracy of the spectral estimates may decrease if 
only a smaller low frequency area is investigated. 
 
Therefore, a modeling time scale Tm is introduced, 
with Tm=mT0. The model scale m is restricted in the 
slotted Burg irregular algorithm to an integer 
multiple of the grid scale k, giving m=k, m=2k, 
m=3k,…Mk, with as highest spectral frequency f0/2k, 



 
 

     

f0/4k,f0/6k,…f0/2Mk respectively. In the current 
practice, k is often given the values 1/32, 1/16, 1/8, 
¼, ½ and 1 and m is limited to k, 2k, 4k, 8k, 16k and 
32k. The maximum value for m equals 1, where the 
frequency range goes up to f0/2. That is the upper 
limit for equidistant data. A smaller slot width k than 
1/32 would give an under-modeling bias and a high 
variance because too few contributions Np remain. 
Slots greater than 1 give too much bias due to shifts 
of irregular time instants to the fixed grid. The upper 
limit m=1 to the model time step yields the spectrum 
up to f0/2. This limit is not necessary but it reflects 
the practical fact that the spectrum until 0.15f0 or 
0.25f0 can be found more reliably by ordinary 
Sample and Hold or Nearest Neighbor resampling, 
followed by equidistant time series analysis; see the 
theoretical analysis of Adrian and Yao (1987), the 
survey of Benedict et al. (2000) and the simulation 
results of de Waele and Broersen (1999). 
 
For m=k, uninterrupted segments can be determined 
directly from the NN resampled signal at nTg. For 
m=ik, i=2, 3, …, there are i different, slightly shifted, 
starting points for the i equidistant subsequences: 
Tg+niTg, 2Tg+niTg, 3Tg+niTg, …, iTg+niTg, respec-
tively. For integer values of n, this yields all possible 
equidistant segments at the model scale mT0 = ikT0 = 
iTg. In this way, all slotted NN resampled obser-
vations are used in the modeling at time scale Tm. 
 
The number of products that is available in the 
segments depends very much on the model order and 
on the slot width Tg=kT0 and is largely independent 
of the modeling time scale Tm. Fig.1 shows that the 
lines are almost straight in this log-linear representa-
tion, indicating an exponential relation. For Poisson 
distributed   distances  they  are  approximated  with 
 

k p p
p 0 0N N (1 e ) N k−= − ≈ .  (10) 

 
If  Np  would  become less than 25, the AR parameter 
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Fig.1. Number of products Np that is available for 

estimation of the reflection coefficient of order p 
with the slotted Burg irregular algorithm for 
different slot widths. 

of order p will no longer be computed to maintain 
statistical reliability. It is clear that a small value of k, 
giving a small bias due to shifting the time instants to 
a regular grid, gives only a small number of available 
products and a low maximum AR order. At the same 
time, a small grid value k gives extra information 
because it enables the evaluation on many modeling 
time steps, whereas k=1 can only give a model at 
m=1 within the limits set for slotted Burg irregular.  
 
 
5.  PERFORMANCE OF THE NEW ESTIMATOR 

 
The performance of the slotted Burg irregular 
algorithm has been tested in simulations. It has also 
been compared to the similar algorithm of Bos et al. 
(2001). That algorithm, without slotted resampling, 
has more contributions Np for the first few values of 
p and less for greater values of p. It will generally be 
slightly more accurate if the best AR order for p is 1 
or 2, because more products are available for 
estimation then. However, the problem in practice is 
mostly that not enough products are available for 
higher AR orders p; in those cases the slotted Burg 
irregular algorithm is to be preferred. Simulations 
with a known (aliased) spectrum are a first step in 
testing new algorithms. 
 
The simulated data had a background spectrum 
consisting of two declining slopes. The first slope 
descends at a rate of ∼ f--5/3 from 0.01f0, and the 
second at a rate of ∼ f--7 for frequencies f above 0.1f0. 
This type of spectrum is representative of turbulence 
data. To test the ability of the new estimator to detect 
spectral details peaks have been added to the 
background spectrum. Test data was generated using 
the following procedure. First 128N equidistant data 
points were generated using a high order AR process. 
Then, randomly 127N data points were discarded. 
Each data point had a probability of 127/128 to be 
discarded. The resulting irregular data was non-
equidistant and time intervals between arrivals were 
roughly Poisson distributed. In simulations the true 
properties of the data are known; hence, the quality 
of estimated results can be established. A quality 
measure for the fit is the aliased model error, MET 
that has been defined by de Waele and Broersen 
(2000a) as:  
 

T
T 2

,T

PE (p)ME (p) N 1
ε

 
= − σ 

  (11) 

 
It uses the true correlation at time scale Tm = mT0 to 
compute how well the process x(t) can be predicted 
by using x(t-Tm), x(t-2Tm), ⋅⋅⋅.  
 
Fig.2 gives a comparison of the ordinary Nearest 
Neighbor resampling, followed by equidistant time 
series analysis with the ARMAsel program of 
Broersen (2001) and the new slotted Burg irregular 
algorithm. The  200000  irregular  observations  have 
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Fig.2. Comparison of Nearest Neighbor resampling 

with ARMAsel time series analysis and the 
slotted Burg irregular where only uninterrupted 
segments are used for AR estimation. Omission 
of many data improves the accuracy. 

 

been generated with the turbulence background and 
an additional peak at 0.35f0, which has 1% of the total 
background power. The theoretical Nearest Neighbor 
resampled spectrum is closely followed by 
theselected ARMA(8,7) model over the whole 
frequen-cy range. The filtering and the added noise 
effects of resampling are not noticeable for 
frequencies below 0.15f0, where the ARMAsel (see 
Broersen, 2001) spectrum is a close approximation of 
the true (aliased) spectrum. Above 0.15f0, the 
resampled spectrum is dominated by distortion and 
the slotted Burg irregular is a much better 
approximation there. It shows that taking only 
uninterrupted segments discards a lot of data, but 
yields improved accuracy. Refined reconstruction of 
Nobach et al. (1996), using Sample and Hold for 
resampling and the time series spectral model for 
undoing the filtering and for subtracting the 
resampling noise has also been investigated. 
However, none of the variants with a guaranteed 
positive spectral density at all frequencies gave the 
same accuracy as slotted Burg irregular. 
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Fig.3. Influence of slot width on the accuracy of the 

slotted Burg irregular spectrum for a given model 
scale Tm=1/2. Wide slots give too much bias and 
narrow slots have not enough products available 
for AR models of sufficiently high order. 
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Fig.4. Evaluation of AR models estimated with the 

slotted Burg irregular algorithm for some model 
scales. For the large scale Tm=1, the peak is 
drowned in the aliased spectrum. For small model 
scales, more data are required to estimate enough 
AR parameters to describe the spectral peak. 

 
Fig.3 gives a simulation result with different slot 
widths of the slotted Burg irregular algorithm for the 
turbulence background with an additional peak at 
0.7f0 with as power 1% of the total power. For every 
slot width, the AR order is selected with FIC(p,3) of 
(7). Also the FIC values for different slot values have 
been  compared.  They  are  –3.82,  -4.48,  -3.85  and 
–3.18 for the grids ½, ¼, 1/8 and 1/32, respectively. 
A comparison with the ME values in Fig.3 reveals 
that the lowest value of FIC is found for the slot 
width ¼ with the smallest ME value. Comparing FIC 
values for different slot widths or grids for a fixed 
model time scale gives surprisingly a very good 
choice. FIC has not been developed for this selection 
but it gives satisfactory results in most situations. For 
every time scale, the best order and the best slot 
width can be selected automatically with FIC(p,3). It 
turns out that the slot width, mostly selected in this 
way, is the smallest that gives enough contributions 
Np for the AR order p that is minimally required to 
describe the significant details. Smaller slots would 
give bias due to under-modeling and wider slots 
increase bias without sufficient reduction of variance. 
 
It remains to find a good modeling time scale. No 
automatic solution to this problem has been found. 
No general rule can be given for all circumstances. 
Sometimes, it is clear that the frequency of a peak 
shifts for different model time scales. In those cases, 
a comparison will show where the true peak 
frequency belongs without aliasing. In the simulation 
of Fig.4, a peak at 1.2f0 with 1% of the total power 
had been added to the background spectrum. Two 
estimated spectra, at scale 1 and at scale 1/16, show 
no peak. Scale 1/4 and 1/8 show a peak at 1.2f0 and 
scale ½ gives a peak at 0.8f0. This is exactly an alias 
of the peak at the two smaller scales. In practice, 
some skill will be required to interpret and to 
combine the information. However, looking at 
different time scales produces valuable information.  
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Fig.5. A non-linear approximate maximum likelihood 

model can, if it converges, give good estimates 
with much less data than slotted Burg irregular. 

 

It requires many irregular observations to estimate 
AR models of moderate orders. Most information in 
the signal cannot be used because only uninterrupted 
sequences are considered in the slotted Burg irregular 
algorithm. For this type of algorithm, this 
requirement is necessary to maintain the positive 
semi-definite property that makes spectra non-
negative at all frequencies. It is tempting to use also 
the information in the many interrupted sequences. 
The obvious solution, filling the gaps with Nearest 
Neighbor interpolation, is shown in Fig.2 to give a 
poor spectrum. An approximate maximum likelihood 
algorithm is being developed with non-linear 
optimization. It uses the same slotted data as the 
slotted Burg irregular algorithm. With a recursive 
conditional approximation of the likelihood function, 
also interrupted data can be used. So far it needs very 
much computing time and its convergence is not 
guaranteed. But it has in certain examples given a 
considerable improvement, in the whole frequency 
range. Making this algorithm more robust is a future 
development. However, the algorithm requires the 
results of AR order, model scale and parameters of 
the slotted Burg irregular algorithm as initial 
information and it is not yet computationally reliable. 
 
 

6.  CONCLUSIONS 
 
A new estimator is introduced that fits an AR model 
to slotted resampled segments of irregularly sampled 
data. The new slotted Burg irregular algorithm 
combines a spectrum that is guaranteed to be positive 
with accurate results at higher frequencies. In 
simulations, the results are better than those that can 
be obtained with known existing techniques. 
 

Order selection for the slotted Burg irregular 
algorithm requires a new selection criterion for the 
AR model order. It is based on the decreasing 
number of products that is available for each order. 
The same criterion can be used to determine the best 
slot width for a given model time scale. Finally, the 
best model time scale is still determined by visual 
inspection of spectra for several time scales.  
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