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Abstract: This paper presents a methodology for feedback adaptive control of active vibration
attenuation systems in the presence of unknown narrow band disturbances. The proposed
methodology consists in two algorithms based on the Internal Model Principle. The first one
deals with an indirect adaptive control, the second one with a direct adaptive control. The
feasibility of the two algorithms is illustrated in real-time on an active suspension system.
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1. INTRODUCTION

One of the basic problems in active vibration control
is the attenuation (rejection) of narrow band distur-
bances of unknown or varying frequency.

Perturbations rejection has been studied for a long
time. An efficient method to eliminate their effect is to
introduce the perturbation’s dynamics into the closed
loop system. This approach is known as the Internal
Model Principle.

The application of the Internal Model Principle is
simplified when both the structure and the parameters
of the perturbation are known. It is the case of what
we call completely known perturbations, discussed,
for example, in (Francis and Wonham, 1976; John-
son, 1976; Bengtsson, 1977; Tsypkin, 1997). How-
ever, complete knowledge of the perturbation is not
often possible. Hence, the perturbation is usually un-
known and may be time-varying. In the case of time-
varying perturbations, the controller parameters have
to be adapted in order to verify the desired specifi-
cations. Closed loop adaptive control methods can be
used to solve this problem. An indirect and a direct
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Fig. 1. Active suspension system

adaptive control schemes are proposed in this paper
and comparatively evaluated.

The structure of the system is presented in fig. 1. The
controller will act upon the piston (through a power
amplifier) in order to reduce the residual force. The
sampling frequency is

')()()*,+
.

The equivalent scheme is shown in fig. 2. The system
input, -/.1032 is the position of the piston (see figs. 1, 2),
the output 45.1032 being the residual force measured by a
force sensor.

The principle of the active suspension is to vary the
system’s stiffness in order to attenuate the vibrations
generated by the part that we want to isolate (primary
force - disturbance). In our case (for testing purposes),
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Fig. 2. Block diagram of the active suspension system

the primary force is generated by a shaker controlled
by a signal given by the computer.

The transfer function ( ������� �� ), between the signal

sent to the shaker, 	 , and the residual force 45.1032 is

called primary path. The transfer function ( �
�����
 )

between the input of the system, -/.1032 and the residual
force is called secondary path. The input of the system
being a position and the output a force, the secondary
path transfer function has a double differentiator be-
havior. In our case, treating narrow band perturbations,
we shall model them using an AR (auto regressive)
model.

The control objective is to reject the effect of unknown
narrow band disturbances on the output of the system
(residual force).

2. PLANT REPRESENTATION AND
CONTROLLER STRUCTURE

The structure of a linear time invariant discrete time
model of the plant (on which is based the design of
the controller) is

� . + � � 2�� + ��� � . + � � 2

. + � � 2

where:

� � number of sampling periods

on the plant pure time delay �
 ������� � + � � ��������������� + � ��� �
� �! � + � � ���������" #��$ + � ��$ �

The controller to design is a RS-type controller (see
fig. 2). The output of the plant 45.1032 and the input -/.1032
may be written as:

45.1032�� � ��� � . � � � 2

. � � � 2 % -/.1032&�'	 � .1032#� (1)( . � � � 2 % -/.1032���)+* . � � � 2 % 45.1032#� (2)

The output sensitivity function (the transfer function
between the perturbation 	 � .1032 and the output 45.1032 ) is:

(�,.- . + � � 2/�


. + � � 2 ( . + � � 20 . + � � 2 1

where0 . + � � 2�� 
 . + � � 2 ( . + � � 2&� + ��� � . + � � 22* . + � � 2 (3)

are the poles of the closed loop.

The polynomials * . + � � 2 and
( . + � � 2 are expressed

as:

* . + � � 2��3*54 . + � � 2 % *76 . + � � 2#�( . + � � 2�� ( 4 . + � � 2 % *98 . + � � 2 1 (4)

where
*76

and
*98

are fixed parts of the controller.

Suppose that 	 � .1032 is a stochastic perturbation, so it

can be written as 	 � .1032�� �� - . � � � 2 % : .1032 , where : .1032 is

a gaussian white noise. The effect of the perturbation	 � .1032 on 45.1032 is given by:

45.1032��


. � � � 2 *98 . � � � 2 ( 4 . � � � 20 . � � � 2 % �� - . � � � 2 %�: .1032#� (5)

Hence, in order the eliminate (minimize) the effect of
the perturbation on the output 45.1032 , we have to take*9; . + � � 2�� � - . + � � 2 (Internal Model Principle).

3. INDIRECT ADAPTIVE CONTROL FOR
NARROW BAND PERTURBATION

ATTENUATION

The methodology proposed in this section concerns
the indirect adaptive control for the attenuation of
narrow band perturbations and consists in two steps:

(1) On-line identification of the perturbation model.
(2) Computation of a digital controller using the

identified perturbation model in order to reject
the perturbation effect on the output of the sys-
tem.

Knowing that we deal only with narrow band perturba-
tions, let consider an AR (auto regressive) perturbation
model:

45.1032�� �� - . � � � 2 %�: .1032 1 (6)

where : .1032 is a gaussian white noise and

� - . + � � 2������ � - � + � � �<�����=� � -�>@? + � � ?
����� + � � � �- . + � � 2#�ACB � the order of

� - . + � � 2#�
Remark: For the case of a damped sinusoid we can
consider ACB �ED . For the case of not-damped sinu-
soids

� -�F �G� .
From equation (6) we obtain:

45.10C��� 2��H) �
?I J
K � � -�L 45.10=)NM���� 2C� : .10&��� 2#� (7)



The problem is, in fact, an on-line adaptive estimation
of a signal in presence of noise.

One construct an adjustable predictor for 45.1032 given
by (7).

The a priori adjustable predictor is

�4 � .10&��� 2 ��) �
?I J
K �

�� -�L .1032�45.10 )NM���� 2
� ���� .1032�� .1032 1

where ���� .1032C��� �� - � .1032 ����� �� -�>@? .1032
	 �� � .1032C��� ) 45.1032 ����� ) 45.10 ) ACB ��� 2
	 �
The a posteriori adjustable predictor is:

�45.10C��� 2���) �
?I J
K �

�� -�L .10&��� 2�45.10=)NM���� 2
� ���� .10C��� 2�� .1032#�

The a priori prediction error is� � .10C��� 2�� 45.10C��� 2 ) �4 � .10C��� 2#�
The a posteriori prediction error is� .10C��� 2�� 45.10C��� 2 ) �4 .10&��� 2#�
The parameter adaptation algorithm is (Landau et
al., 1997):�� .10&��� 2 � �� .1032&�
� .1032�� .1032 � .10=��� 2#� (8)� .10&��� 2 � � � .10&��� 2����� � .1032�� .1032�� .1032 � (9)

� � .10&��� 2 � 45.10&��� 2=) ���� .1032�� .1032#� (10)

� .10&��� 2 � �� � .1032
��
� .1032 ) � .1032�� .1032�� � .1032�� .1032� ��� ���� F � ��� ��� � .1032�� .1032�� .1032

��
1(11)

where � .1032 is the adaptation gain matrix.

Once the perturbation model is identified, one com-
putes the controller containing the perturbation dy-
namics by solving the diophantine equation (3), and
using (4):


. + � � 2 *98 . + � � 2 ( 4 . + � � 2�� + ��� � . + � � 22* . + � � 2� 0 . + � � 2 1 (12)

where
*98 . + � � 2 � �� - . + � � 2 � � � � ?I J

K �
�� -�L + �

J
,

� . + � � 2 and


. + � � 2 represent the plant model.

In order to apply this methodology we suppose that the
plant model

+ ��� � . + � � 2�� 
 . + � � 2 is known (the model
is obtained by identification (Landau et al., 2001)). We
suppose also that the degree of

� - . + � � 2 , ACB is fixed.

4. DIRECT ADAPTIVE CONTROL FOR
NARROW BAND PERTURBATION

ATTENUATION

In the literature it has been proposed to add a sup-
plementary degree of freedom into the RS controller,
presented in section 2, in order to explicitly take
into account the perturbation (see (Tsypkin, 1991),
(Tsypkin, 1997)). Using this supplementary degree
of freedom, the attenuation problem may me treated
independently.

4.1 � -parameterization

Let � * � . + � � 2 1 ( � . + � � 2
	 be a nominal controller, ver-
ifying the diophantine equation (3) and satisfying the
robustness constraints. Using the Q-parameterization
(known also as Youla-Kucera parameterization)

* . + � � 2��!* � . + � � 2&� 
 . + � � 2�� . + � � 2#� (13)( . + � � 2�� ( � . + � � 2 ) + ��� � . + � � 2�� . + � � 2 1 (14)

one obtains the family of all stabilizable controllers,� * . + � � 2 1 ( . + � � 2
	 , where � . + � � 2 is a polynomial of
degree A�� . The polynomial � . + � � 2 will be designed
such that the equivalent * . + � � 2�� ( . + � � 2 controller
contains the internal model of the disturbance.

The controller equation becomes:( � . � � � 2 % -/.1032��G)+* � . � � � 2 % 45.1032 )�� . � � � 2 %! .1032 1
where  .10327� 


. � � � 2 % 45.1032�) � ��� % � . � � � 2 % -/.1032 .
The new scheme of the closed loop, with the � -
parameterized controller, is presented in figure 3.

If we take into account the equations (13) and (14), the
equation defining the closed loop poles is the same as
(3), therefore the closed loop poles remain unchanged.

Having the controller parameterized as in (13) and
(14), the perturbation effect on the output of the sys-
tem, (5), is:

45.1032�� ( � . � � � 2 ) � ��� � . � � � 2�� . � � � 20 . � � � 2 %" .1032 1
with

 .1032C�


. � � � 2� - . � � � 2 %@: .1032� 
 . � � � 2 % 45.1032=) � ��� % � . � � � 2 % -/.1032#�

The output sensitivity function in this case is

(�,.- . + � � 2��


. + � � 2!� ( � . + � � 2 ) + ��� � . + � � 2�� . + � � 2
	0 . + � � 2 �

In order to reject the disturbance, � . + � � 2 should be
selected such that

( � . + � � 2 ) + ��� � . + � � 2�� . + � � 2 �



Fig. 3. Structure of the � -parameterized controller -
closed loop scheme

� . + � � 2 � - . + � � 2 , which implies to solve the diophan-
tine equation

� . + � � 2 � - . + � � 2�� + ��� � . + � � 2�� . + � � 2� ( � . + � � 2 1 (15)

where
� - . + � � 2 , � . + � � 2 and

( � . + � � 2 are known.

Defining � .1032/� 45.1032 we obtain:

� .1032�� ( � . � � � 20 . � � � 2 %! .1032

) � ��� � . � � � 20 . � � � 2 � . � � � 2 %! .1032#� (16)

Define
�� .10 1 + � � 2 as the estimation of � . + � � 2 at in-

stant 0 . Using (15), equation (16) becomes:

� .1032���� � . � � � 2 ) �� .10 1 � � � 2
	 %
� ��� � . � � � 20 . � � � 2 %" .1032

��� .1032 1 (17)

where � .1032 is a filtered white noise type perturbation,
which to a large extend takes care of the differences
between the true model of the plant and the identified
one.

If we consider
�� .10 1 � � � 2�� �� � .1032&� �� � .1032 � � � � ��������� ��� .1032 � � ��� , note

�� � .1032/� � �� � .1032 �� � .1032 ����� �� ��� .1032
	 the
parameters vector.

Equation (17) becomes� .1032�� � � ) �� .1032
	 %" �� .1032&��� .1032 1
where  �� .1032/� � ��� � . � � � 20 . � � � 2 %! .1032 . One sees that � .1032
corresponds to an adaptation error.

The ”a priori” adaptation error is:� � .10&��� 2��  � .10&��� 2=) ���� .1032  �� .10&��� 2 1
with

 � .10&��� 2 � ( � . � � � 20 . � � � 2 %" .10&��� 2#� (18)

 �� .10&��� 2 � � ��� � . � � � 20 . � � � 2 %" .10&��� 2#� (19)

 .10=��� 2 � 
 . � � � 2 % 45.10C� � 2=) � . � � � 2 % -/.10C��� 2#�
For the estimation of the parameters of

�� . + � � 2 we use
the following parametric adaptation algorithm:

�� .10&��� 2 � �� .1032&�
� .1032�� .1032 � .10=��� 2#� (20)� .10C��� 2 � � � .10&��� 2����� � .1032�� .1032�� .1032 � (21)

� � .10&��� 2 �  � .10&��� 2=) ���� .1032�� .1032#� (22)

where � .1032 is given by (11) and

� .1032/�  �� .10&��� 2#�
In order to apply this methodology (for rejecting the
perturbation 	 � .1032 (see figure 3)), we suppose that the

plant model
+ ��� � . + � � 2


. + � � 2 is known (it is identified) and

that there exist a controller � * � . + � � 2 1 ( � . + � � 2
	 who
verifies the desired specifications in the absence of the
disturbance. We also suppose that the degree A � of the� . + � � 2 polynomial is fixed, A � � ACB ) � for the case
when the perturbation structure is known.

5. RESULTS OBTAINED ON AN ACTIVE
SUSPENSION

The procedure for narrow band perturbation rejection
using the methodologies proposed in this article will
be illustrated in real time for the case of the control
of an active suspension (see figures 1 and 2). In our
case the perturbation 	 .1032 will be a varying frequency
sinusoid. The objective of the control is to reject the
effect of this perturbation on the output of the system,
45.1032 , by adapting the controller parameters on-line as
a function of the perturbation’s frequency.

The frequency characteristic of the identified primary

path model (open loop identification)
� ����� � . � � � 2� . � � � 2

(see figure 2), between the perturbation 	 .1032 and the
residual force 45.1032 , is presented in figure 4. The first
vibration mode of the primary path is near � D *,+

.

The frequency characteristic of the identified sec-
ondary path model (closed loop identification), be-
tween the control -/.1032 and the residual force 45.1032 , is
presented in figure 5. This model has the following
complexity: A
	 �G��� , A

 �G��� , � � (

.

There exist several vibration modes on the secondary
path, the first one being at � ��� ')*,+

with a damping fac-
tor

( � (�� . The system contains a double differentiator.

The nominal controller (without the internal model
of the perturbation) has been designed using the pole
placement method. A pair of dominant poles has been
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Fig. 4. Frequency characteristic of the primary path
model
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Fig. 5. Frequency characteristic of the secondary path
model

fixed at the frequency of the first vibration mode with
a damping

� � ( � ' . In addition a fixed part
*96 �G�=�� � � . * � *76 * 4 2 which assures the opening of the

loop at
( � ��� ; and � ( auxiliary poles at

( � � have been
introduced into the controller . The resulting nomi-
nal controller has the following complexity: A 6 ���� 1 A 8 � ��� and it satisfies the imposed robustness
constraints.

Real-time experiments of vibration-canceling perfor-
mance were performed with sinusoidal signals of
varying frequency as perturbation 	 .1032 (see figure 2).
The experiments use the secondary path model iden-
tified on the real system. We considered sinusoids of
frequencies varying between D�� and � � *,+

, the first
vibration mode of the primary path being near � D *,+

.

The implementation protocol used consists in a self-
tuning operation. It starts in open loop without per-
turbation. After � ()()( samples we apply a sinusoidal
perturbation at � D *,+

. After the algorithm converges
we compute the controller and we apply it, passing
in closed loop. As soon as the controller is applied,
the adaptation algorithm is stopped and we wait for a
change of frequency. When such a change is detected
we restart the algorithm, letting the last controller ap-
plied on the system. When the algorithm converges,

we compute a new controller and apply it on the sys-
tem.

The measured residual force obtained with both
methodologies, the indirect and direct one, are pre-
sented in figures 6 and 7, respectively. We can see the
� D *,+

sinusoid applied after � ()()( samples, a D�� *,+
one applied after ��D ()()( samples, again a � D *,+

one
applied after D ()()()( samples, a � � *,+

one applied afterD ')()()( samples and again a � D *,+
one after ��� ()()(

samples.
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Fig. 6. Temporal results using the indirect adaptive
method
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Fig. 7. Temporal results using the direct adaptive
method

From figures 6 and 7 we can see that the convergence
speed of the direct algorithm is bigger that the con-
vergence speed of the indirect algorithm, except the
� � *,+

frequency.

The residual force spectrum before (in open loop) and
after convergence for the indirect and direct methods
are presented in figures 8 and 9 respectively, for the
three frequencies that we have chosen: � D *,+

, D�� *,+
and � � *,+

. We can remark that the attenuations are
bigger than D�� � � for all the frequencies used and for
both algorithms. The attenuations obtained with the
direct algorithm are better than those obtained with
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Fig. 8. Spectrum of the residual force in open and in
closed loop, using the indirect adaptive method
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Fig. 9. Spectrum of the residual force in open and in
closed loop, using the direct adaptive method

the indirect one at D�� and � � *,+
, while at � D *,+

the
performances of both algorithms are similar.

In the case presented upper, of a pure sine wave, we
used ACB �GD for the indirect method and A � � � for
the direct one.

6. CONCLUSIONS

Two adaptive methodologies for active vibration con-
trol systems in the presence of unknown narrow band
disturbances have been presented. The first approach
is an indirect adaptive method, the second a direct
one. Real time experiments on an active suspension
have been carried out. The results obtained lead us to
conclude that the direct adaptive algorithm converges
faster than the indirect one. Moreover, the direct algo-
rithm is much simpler than the indirect one.
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