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Abstract: This paper presents some properties regarding the Multivariable Generalized
Predictive Controller (MGPC) designed in state space. The authors proposed the design of
such a controller under the condition that it gives the same results as the input/output (I/O)
formulation of the GPC proposed originally by Clarke. The main reason for redesigning the
controller in state space is the power of the analysis tools available. These tools allow some
properties to be treated more easily than under (I/O) formulation. These properties include:
stability, robustness, closed loop representation, specifications, etc. This paper presents
results related to: observability and controllability of the CARIMA model used, closed loop
representation, uniqueness and the existence of control law without constraints and closed
loop stability without constraints. Copyright © 2002 IFAC
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1. INTRODUCTION

To formulate the Multivariable Generalized Predictive
Controller (MGPC) in space state, a model of the pro-
cess described through a CARIMA model (Salcedo,
Martinez, Blasco and Sanchis, 2001; Salcedo, 2001;
Gambier and Unbehauen, 1999; Grimble, 1994; Ling
and Lim, 1996) is assumed. The deterministic part of
the CARIMA model can be represented according to
the following state space model:

x̄(k +1) = Ax̄(k)+Bū(k) ; ȳ(k) = Cx̄(k) (1)

This is a model consisting of n outputs, m inputs and r
states.

To obtain a complete CARIMA model, it is necessary
to add to the former deterministic model the ξi(k)
noise variables and their associated states which are

1 Partially supported by the project 1FD1997-0974-C02-02,
FEDER, and DPI2001-3106-C02-02, Spain.

called noise states x∗i (k). These states are nothing
more than the accumulation of such inputs:

x∗i (k +1) = x∗i (k)+π2iξi(k) i = 1,2, . . . ,n (2)

When these additional states and inputs are incorpo-
rated into the deterministic model given by equation
(1), the following CARIMA model is obtained:

x(k +1) = Āx(k)+ B̄ū(k)+Πξ̄ (k)

ȳ(k) = C̄x(k)+Λξ̄ (k) (3)

Being:

x(k) =

(
x̄(k)
x∗(k)

)

; ξ̄ (k) =






ξ1(k)
...

ξn(k)




 (4)

Ā =

[
AΣrxn

0 In

]

; B̄ =

[
B
0

]

(5)

Π =

[
Π1

Π2

]

; C̄ =
[

C Ω
]

(6)
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This model is a state space CARIMA model equiva-
lent to that used in the I/O case (Sanchis, 1997; Sal-
cedo, 2001; Camacho and Bordons, 1995). Matrices
Σ, Π1, Π2, Ω and Λ can be freely chosen to establish
different noise models for the process. This means
an increase in the complexity of the choice of noise
model parameters with respect to the I/O formulation,
in which only the Ti(z−1) filter polynomials had to be
chosen.

To estimate the model states, a full rank observer,
known as CARIMA observer (Salcedo et al., 2001),
is employed:

x(k +1|k) =
[
Ā−ΠΛ−1C̄

]
x(k|k−1)+

+B̄ū(k)+ΠΛ−1ȳ(k) (7)

On the MGPC design a quadratic cost index, similar
to the cost index used in (Ordys and Clarke, 1993), is
proposed:

Jk(û)=E

[
N2

∑
i=N1

(ȳ(k+i)−w̄(k+i))TQi(ȳ(k+i)−

−w̄(k+i))+
Nu

∑
i=1

∆ūT (k + i−1)Ri∆ū(k + i−1)

]

Qi ∈
� n×n ; Ri ∈

� m×m (8)

Where:

• w̄(k + i) is the vector of the desired references in
instant k + i.
• N1, N2 represents the limits of the prediction hori-
zon.
• Nu is the control horizon.
• Qi is the pondering matrix of the error in instant i
inside the prediction horizon.
• R j is the weighting matrix of the control action
increment in instant j inside the control horizon.

The index can adopt the following matrix form:

Jk(û) = (ŷ(k)− ŵ(k))T Q(ŷ(k)− ŵ(k))+

+ûT (k)Rû(k) (9)

being:

ŵ(k) =
(

w̄(k +N1) · · · w̄(k +N2)
)T

(10)

Q = diag
(

QN1 QN1+1 · · · QN2

)
(11)

R = diag
(

R1 R2 · · · RNu

)
(12)

The methodology for the design of the MGPC (Clarke,
Mohtadi and Tuffs, 1987a; Clarke, Mohtadi and Tuffs,
1987b; Clarke and Mohtadi, 1989) is as follows: on
each sampling instant k, index (9) has to be optimised
to determine the control actions to be applied to the
process. To optimize such an index it is necessary
to predict the n outputs of process (3) inside their
corresponding prediction horizon, and according to:

• The values of the m input variables inside their
control horizons (unknown). These are precisely the
independent variables from which the quadratic index
depends (û(k)).

• The ξi variables considered as white noise.
• The values (known) of the previous applied inputs,
and the actual state.

From of the control action values obtained after op-
timising index (9), only the control actions corre-
sponding to the first instant of each control horizon
u1(k),u2(k), · · ·um(k) are applied to the process. This
technique is known as receding horizon. The process
is then repeated for the following sampling period k+
1.

2. RESULTS ABOUT CONTROLLABILITY AND
OBSERVABILITY

In this section, some interesting results regarding
observability and controllability are described. See
(Salcedo, 2001) for a more exhaustive description.

Lemma 1. The deterministic part of state space
CARIMA model (1), matrices A, B and C, have the
following realisation:

A = diag
[

A1 A2 · · · An
]

B =
[

BT
1 BT

2 · · · BT
n

]T

C = diag
[

C1 C2 · · · Cn
]

(13)

where:

Ar =






0 0 . . . 0 −a0,r

In−1

...
−anr−1,r




 (14)

Br( j, i) = b j−1,r,i ; Cr =
(

0 · · · 0 1
)

(15)

being a j,r the coefficients of Ar(z) polynomials and
b j−1,r,i the coefficients of Bri(z) polynomials:

Ar(z) = znr +anr−1,rz
nr−1 + · · ·+a1,rz+a0,r

Bri(z) = bnr−1,r,iz
nr−1 + · · ·+b1,r,iz+b0,r,i

The polynomials Ar(z) and Bri(z) are the polynomials
of the deterministic part of the I/O CARIMA model.

Proposition 2. The pair (A,C) is observable if matri-
ces A and C are built as in Lemma 1.

The previous results are only interesting in order
to complete the proof of the following proposition,
which characterises the observability of the state space
CARIMA model, that is to say, the observability of the
pair (Ā, C̄):

Proposition 3. If noise matrices, Σ, Ω, Π1, Π2 and Λ,
are designed in order to place the CARIMA observer
poles (Salcedo et al., 2001), and no pole is located in
1, then the pair (Ā, C̄) is observable.

In general, the pairs (A,B) and (Ā, B̄) will not be
controllable, however the pair (Ā, [B̄ Π]) will be con-
trollable under some smooth conditions:

Proposition 4. If noise matrices, Σ, Ω, Π1, Π2 and Λ,
are designed in order to place the CARIMA observer
poles, and the matrices K j:



K j =
[
Π j j A jΠ j j +Π j jΩ j j · · ·

As+n−1
j Π j j +As+n−2

j Π j jΩ j j + · · ·+Π j jΩ j j

]

j = 1, · · · ,n (16)

have no empty row, then the pair (Ā, [B̄ Π]) is control-
lable.

Proposition 5. (About matrices K j). The K j matrix has
no empty row if some of the following conditions
hold:

(1) If the pair (A j ,Π j j) is controllable.
(2) If ∀ k Γ j j,k 6= ak, j.
(3) If ∃ k : Γ j j,k = ak, j, the matrix:

Zk =











0 · · · 0 1 0 · · · 0
(k+1)

k+1A j
...

k+1A
n j−1
j











(17)

is non-singular and ∃ l : Γ j j,l 6= al, j. Moreover, ∃ s ∈
�

: k+1As
jΠ j j 6= 0 being k+1As−1

j Π j j = 0.

k+1Al
j is the (k +1)-th row of the matrix Al

j

Finally, using the previous results, sufficient condi-
tions can be presented under which the state space
CARIMA model is a minimal realisation:
Proposition 6. The state space CARIMA model (3),
under the hypothesis of propositions 3 and 4, is a
minimal realisation.

3. EXISTENCE AND UNIQUENESS OF THE
UNCONSTRAINED CONTROL LAW

It is important to emphasize that only the uncon-
strained case will be analysed in this paper, altough,
the constrained case will analysed in future works.

In (Salcedo, 2001) was established that:
Proposition 7. If Qi matrices are positive definite, the
Ri matrices are non-negative definite and the N matrix
has full column rank, then the unconstrained MGPC
control law has a unique solution given by:

û(k) = −
(
NT QN +R

)−1
NT QT

(

Mx(k)+

+Oū(k−1)+Pξ̄(k)− ω̂(k)
)

û(k) = −
(
NT QN +R

)−1
NT QT êc(k)

This expression is deducted from the linear system:

−
(
NT QN +R

)
û(k) = NT QT êc(k) (18)

This linear system has a unique solution if, and only if,
the NT QN +R matrix is non-singular. By extension, it
is non-negative definite, so it will only be non-singular
if, and only if, it is positive definite.
In the case that such matrix is singular, it may be
possible that the linear system has no solution. In order
to guarantee the existence of the solutions:

Rank
(
NT QN +R

)
=

= Rank
[
NT QN +R NT QT êc(k)

]
(19)

condition which depends on the reference.

Evidently, only those cases where the unconstrained
control law has a unique solution are interesting, and
so the NT QN +R matrix is positive definite. There are
three possibilities:

(1) The Ri matrices are positive definite. In such
case R will also be positive definite too, as well as
NT QN +R. This situation is not frequent in predictive
control.
(2) The conditions of proposition 7 hold. The con-
dition related to the full column rank of matrix N
seems artificial, however, the following proposition
gives smooth conditions that guarantee such a prop-
erty:

Proposition 8. (Rank of N). If the matrix B has full
column rank, RankB = m, and the pair (Ā, C̄) is ob-
servable, then the N matrix has full column rank when
N2 −Nu ≥ n+ ∑n

j=1 n j −1.

See (Salcedo, 2001) for the proof of this proposition.
(3) Neither of the previous hypotheses is verified, that
is to say, matrices R and NT QN are non-negative def-
inite, but its sum is positive definite. The following
proposition guarantees when this situation will hap-
pen:

Proposition 9. Suppose that the matrices R and NT QN
are non-negative definite, ∃ x 6= 0,y 6= 0 : xT Rx =
0 , yT NT QNy = 0, if the null spaces of R1/2 and N has
no common vectors (except 0), then the NT QN +R
matrix is positive definite.

See (Salcedo, 2001) for the proof of this proposition.

4. CLOSED LOOP REPRESENTATION

The next section contains the state space closed loop
representation of the plant + MGPC given by the
following proposition (Salcedo, 2001):

Proposition 10. If there are no discrepancies between
the plant and the model, all the CARIMA observer
poles are inside the unit disk and R = 0, then the state
space closed loop representation of the plant + MGPC
can be reduced to:

x̄(k +1) = ABCx̄(k)+BBCω̂(k)

ȳ(k) = CBCx̄(k) (20)

ABC = A−BσMW, BBC = Bσ
CBC = C (21)

5. STABILITY RESULTS

In order to perform the stability analyse, the cost index
optimum value will be used as a Lyapunov function.

Proposition 11. The cost index optimum value for the
unconstrained MGPC is given by:



J∗k = êc(k)
T
K êc(k) (22)

K =
[

Q−QN
(
NT QN +R

)−1
NT QT

]

(23)

particulary, when R = 0, the references are constant
and there is no differences between the model and the
plant then:

J∗k =

(
x̄(k−1)
ω̄(k−1)

)T

T̄
T
K T̄

(
x̄(k−1)
ω̄(k−1)

)

∀ k ≥ 1

(24)

T̄ =
[
T ([MWB+O]σ − I)U

]
(25)

T = [MW (A−BσMW)−OσMW] (26)

See (Salcedo, 2001) for the proof of this proposition.

Since this analysis deals with linear systems without
constraints, the stability does not depend on reference
nor on initial conditions. In order to simplify, it will
be assumed that the reference is zero and the linear
system starts from a generic initial condition x̄(0).
Under these conditions the cost index optimum value
is now:

J∗k = x̄(k−1)T
T

T
K T x̄(k−1) ∀ k ≥ 1 (27)

Using this result, it is obtained:

Proposition 12. Once selected the Qi matrices, for
those pairs of N2 and Nu such that the matrix:

L = AT
BCT

T
K T ABC −T

T
K T (28)

is negative definite, then the closed loop of the plant +
MGPC is stable.

PROOF. It will be established that if the matrix L

is negative definite then the cost index optimum value
is a Laypunov function for the closed loop. By exten-
sion:

J∗k = x̄(k−1)T
T

T
K T x̄(k−1)≥ 0 (29)

Now it can be seen if this optimum value decreases
with k:

J∗k+1 − J∗k = x̄(k)T
T

T
K T x̄(k)−

−x̄(k−1)T
T

T
K T x̄(k−1) (30)

using (20):

x̄(k +1) = ABCx̄(k)+BBC ω̂(k)
︸︷︷︸

0

x̄(k) = ABCx̄(k−1) (31)

it is obtained:

J∗k+1−J∗k =x̄(k−1)T AT
BCT

T
K T ABCx̄(k−1)−

−x̄(k−1)T
T

T
K T x̄(k−1) (32)

J∗k+1 − J∗k = x̄(k−1)T
L x̄(k−1)T (33)

As L is negative definite:

J∗k+1 − J∗k < 0 (34)

and so the closed loop of the plant + MGPC is sta-
ble. 2

This stability result can be presented with an al-
ternative proposition, following the ideas shown in
(Nevistić, 1997; Primbs and Nevistić, 2000):

Proposition 13. (Second form). Let be ψ∗ = max{ψ :
−x̄(k−1)T L x̄(k−1)≥ ψJ∗k ∀ k}, then it is verified
that:

J∗k+1 ≤ (1−ψ∗)J∗k (35)

Once selected the Qi matrices, for those pairs of N2

and Nu such that (1−ψ∗) < 1, then the closed loop of
the plant + MGPC is stable.

PROOF. First, the expression for ψ∗ is calculated:

−x̄(k−1)T
L x̄(k−1) ≥ ψJ∗k ∀ k (36)

⇐⇒ −L ≥ ψT
T
K T (37)

⇐⇒ L +ψT
T
K T ≤ 0 (38)

⇐⇒ ψI +L
(
T

T
K T

)−1
≤ 0 (39)

⇐⇒ ψI ≤−L
(
T

T
K T

)−1
(40)

⇐⇒ ψ ≤ λ
(

−L
(
T

T
K T

)−1
)

(41)

λ (·) represents the minor eigenvalue of the matrix.
Consequently, it is deducted that:

ψ∗ = λ
(

−L
(
T

T
K T

)−1
)

(42)

At the previous proposition it was established that:

J∗k+1 − J∗k = x̄(k−1)T
L x̄(k−1)T (43)

Applying the definition equation of ψ∗:

J∗k − J∗k+1 = −x̄(k−1)T
L x̄(k−1)T (44)

J∗k − J∗k+1 ≥ ψ∗J∗k (45)

J∗k+1 ≤ (1−ψ∗)J∗k (46)

if (1−ψ∗) < 1 then J∗k is a Lypunov function, and so
the closed loop of the plant + MGPC is stable. 2

5.1 When J∗k is not a Lyapunov function

There are cases in which J∗k is not a Lyapunov func-
tion, but however, the closed loop is stable. As a con-
sequence, it is necessary to have alternative method-
ologies to analyse the closed loop stability.

It is possible to propose an alternative quadratic func-
tion which is a Lyapunov function of the closed loop,
with the following condition:

Ik = x̄(k−1)T Zx̄(k−1) : Ik ≥ J∗k ∀ k (47)

⇐⇒ Z ≥ T
T
K T (48)

As this is a Lyapunov function it must decrease with
k:

Ik+1 − Ik < 0 ∀ k 6= 0 (49)



operating:

Ik+1 − Ik = x̄(k)T Zx̄(k)− x̄(k−1)T Zx̄(k−1) (50)

Ik+1 − Ik = x̄(k−1)T AT
BCZABCx̄(k−1)−

x̄(k−1)T Zx̄(k−1) (51)

being ABC = A−BσMW. As a consequence, because
this is a Lyapunov function, the following matrix has
to be negative definite:

AT
BCZABC −Z < 0 (52)

In order to build an adequate Z matrix it is neces-
sary to verify the conditions (48) and (52). This can
be achieved solving the following discrete Lyapunov
equation:

AT
BCZABC −Z = L (53)

choosing L so that the another condition is verified.
If L is symmetric and negative definite then the sym-
metric solution of the discrete Lyapunov equation ver-
ifies:

• If the closed loop is stable, all the eigenvalues of
ABC are inside the unit disk, the solution is positive
definite.
• If there is some eigenvalue on the outside of the
unit disk, with some remaining inside, the solution is
indefinite.
• If all the eigenvalues are outside the unit disk, the
solution is negative definite.

Here a particular method for designing the matrix Z is
analysed:

AT
BCZABC −Z = L ,with L = −lI l > 0 (54)

AT
BCZABC −Z = −lI (55)

AT
BC Z/l

︸︷︷︸

ZI

ABC − Z/l
︸︷︷︸

ZI

= −I (56)

ZI is the solution of the discrete Lyapunov equation
when L = −I. Now l is selected so that the another
condition is verified:

Z ≥ T
T
K T (57)

⇐⇒ lZI ≥ T
T
K T (58)

⇐⇒ lZI −T
T
K T ≥ 0 (59)

accepting that ZI is positive definite, that is to say,
stable closed loop:

lI−T
T
K T Z−1

I ≥ 0 (60)

⇐⇒ l ≥ λ
(
T

T
K T Z−1

I

)
(61)

where λ (·) represents the bigger eigenvalue of the
matrix.

These results give the proposition:

Proposition 14. Once selected the Qi matrices, for
each pair of N2 and Nu, if the matrix ZI , solution of
the discrete Lyapunov equation:

AT
BCZIABC −ZI = −I (62)

verifies that λ (ZI) > 0, then the closed loop of the
plant + MGPC is stable. Moreover, the quadratic func-
tion:

Ik = x̄(k−1)T Zx̄(k−1)

Z = lZI , l ≥ λ
(
T

T
K T Z−1

I

)
(63)

is a Lyapunov function of the closed loop, and it is a
upper bound for the cost index optimum value in all
the sampling periods:

Ik ≥ J∗k ∀ k (64)

Example 15. (Stirred tank reactor). The following ap-
plication example is based on the model of a stirred
tank reactor (Camacho and Bordons, 1995)(page 113)
given by the transfer matrix:

[
Y1(s)
Y2(s)

]

=









1
1+0.1s

5
1+ s

1
1+0.5s

2
1+0.4s









[
U1(s)
U2(s)

]

(65)

For this process, a state space MGPC controller is
designed with the following parameters:

• Sampling period: T = 0.05 minutes. N1 = 1. Error
pondering matrices: Qi = I i = N1, · · · ,N2. Control
action increment pondering matrices: Ri = 0 i =
1, · · · ,Nu. All the CARIMA observer poles are located
in 0 (maximum speed). References are constant. This
design operates with the process model without any
kind of decoupling.

This example only refers to the stability analyse, and
so, the simulations of the controlled process will not
presented.

Three different cases will be analysed:

(1) N2 = 20 and Nu = 1. In this case the closed loop
is unstable since λ (ABC) = 1.0134.
Proposition 12 gives λ (L) = 4.5656 and so L is not
negative definite, consequently this criteria does not
give information about stability.
Proposition 13 gives 1−ψ∗ = 1.24, the same situation
as before.
Proposition 14 gives λ (ZI) = −182.761, and so the
closed loop is unstable.
(2) N2 = 50 and Nu = 1. In this case the closed loop
is stable since λ (ABC) = 0.9582.
Proposition 12 gives λ (L) = 0.2857 and so L is not
negative definite, consequently this criteria does not
give information about stability.
Proposition 13 gives 1−ψ∗ = 1.0321, the same situa-
tion as before.
Proposition 14 gives λ(ZI) = 1.4658, and so the
closed loop is stable.
Figure 1 compares the cost index optimum value and
the alternative quadratic function, and as can be seen,
the alternative quadratic function is always an upper
bound for the optimum value. In this case, J∗k is not a
Lyapunov function.
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Fig. 1. Comparison between J∗k and Ik

(3) N2 = 50 and Nu = 2. In this case, the closed loop
is stable since λ (ABC) = 0.9014±0.0064 j.
Proposition 12 gives λ (L) = −0.0076 and so L is
negative definite, consequently under this criteria the
closed loop is stable too. In this case, J∗k is a Lyapunov
function.
Proposition 13 gives 1−ψ∗ = 0.9618, the same situa-
tion as before.
Proposition 14 gives λ(ZI) = 1.0002, and so the
closed loop is also stable with this criteria.

6. CONCLUSIONS

(1) The state space CARIMA model is a minimal
realisation under smooth conditions.
(2) The existence and uniqueness of the uncon-
strained control law has been analysed in depth.
(3) Some results about stability have been presented.
All are related with the unconstrained case and R = 0.
(4) A more powerful stability result, not based on
the property that J∗k is a Lyapunov function, has been
developed.
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