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Abstract: In this paper, an extended linearized neural state space (ELNSS) topology is
proposed, where an ELNSS based modeling and control strategy for a class of nonlinear
systems is presented. In terms of the modeling, the extended Kaman filter (EKF)
agorithm is used to train the parameters inside the ELNSS model, where a high order
correlation method is applied to vaidate the estimated model. This is then followed by
the design of a one-step-ahead predictive controller for affine nonlinear systems. The
stability of the so-formed closed loop control system is investigated, and severa
sufficient conditions that guarantee the local asymptotic stability are established. Two
simulation examples are used to demonstrate the proposed algorithm and desired results
have been obtained. Copyright ©2002 IFAC
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1. INTRODUCTION

Since neural networks are powerful approximation
tools, in recent years they have been used to the
modeling and control of unknown, or partialy
unknown, nonlinear dynamic systems. A number of
architectures for identification and control have been
developed and examples are multilayer perceptron
(MLP) and radial basis function (RBF) networks. In
the neural network based control system design, the
primary problem isto construct a neural network of a
suitable type and architecture. Once this has been
solved, the controller design and system analysis can
be readily carried out.
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(6010720098), SFC Guangxi China (0135066), the CSC
returned scholar foundation, key teacher project of
Ministry Education of China and Key laboratory of
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In 1995 Suykens et al presented a neura state space
model for the identification of nonlinear system.
From then on, many researchers adopted this neural
state space structure to model and design controllers
of nonlinear systems (Liang & al.,1999; Pavel et al.
1999; Zamarren et al. 2000; Zhao et al., 1998; Zhao
et al., 199a Zhao e al., 1999b). Based upon these
formulations, recently a pseudo-linear neura network
(PNN) was presented (Wang e al. 1999a; 1999b),
where the scheme for the system modeling has been
developed. Both the onestep and the multi-step
predictive controllers of a typical chemica process
were made. It has been shown that the convergence
of PNN training process can be guaranteed, and the
asymptotic stability of the closed loop PNN-based
control system has been established, where some
sufficient conditions, that guarantee the closed loop
stability, were obtained.

Based on the PNN model, an extended linearized
neura state space model (ELNSS) is proposed in this
paper. The ELNSS is composed of multi-layers
neurons, where the first hidden and output layers are



the same as those used in a standard MLP neurd
network. In specific, the second hidden layer consists
of neurons with algebraic multiplications, whose
outputs are the products of the inputs of ELNSS and
the outputs of the first hidden layer.

The problem to be solved here is whether this new
type of neural state space model can approximate
arbitrary nonlinear discrete dynamic systems in the
same way as that of an MLP neurd network. In this
paper, the existence of ELNSS as a universa
approximator to a class of nonlinear systems is
proved under some conditions. The parameter
identification for the ELNSS employs the well-
known extended Kaman filter (EKF) algorithm.
This is the same as the sStuation when the EKF is
applied to the training of the MLP neural network. It
has been shown that the convergence of the training
algorithm can be guaranteed if the associated
learning rate is correctly chosen.

It is well-known that the one-step-ahead predictive
control is an effective scheme in linear adaptive
control. For nonlinear systems, a one-step-ahead
controller using a MLP neural network was proposed
by Tan and Cauwenberghe (1996), where the
gradient-based optimization was adopted. Since the
neural state space modd exhibits a quasklinear
character, the one-step-ahead controller design can
aso be applied to the ELNNS models. In this paper,
the stability analysis of the ELNSS-based one-step
ahead predictive control system is proposed using the
well-known Lyapunov theory, and the sufficient
conditions for the loca asymptotic stability of the
ELNSS control system are derived.

The proposed approaches are illustrated with two
simulated examples, including the control of an
affine nonlinear system. Desired closed loop
responses are obtained.

The paper is organized as follows. The proposed
ELNSS model, its parameters identification and the
convergence analysis are described in Section 2. The
design of an ELNSS-based one-step-ahead predictive
controller presented in Section 3, where the closed
loop stability is also analyzed. This is followed by
the presentation of some simulation results in Section
4. Finaly, conclusion is given in Section 5.

2. THE EXTENDED LINEARIZED NEURAL
STATE SPACE MODEL AND ITS MODELING

2.1 The architecture of the ELNSS

Consider the nonlinear dynamic system

() = f(x(), u(t))

y(t) = h(x(t))
where x is the state vector, u is the input and y is the
output. Thisisagenera nonlinear expression and its

direct control formulation is difficult to perform. To
overcome this difficulty, Friendland (1996) proposed
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the following extended linearization model of
nonlinear system

x=A(X)x+ B(x)u
= )X+ BOY @

y =Cx

where A(X) and B(x) are genera nonlinear functions

of the state x. In this paper, only mode (2) will be

used.

For system (2), Wang et a (19998 presented a
pseudo-linear neural network (PNN), where the
system modeling and a one-step and multi-step
predictive control of a continuous stirred tank reactor
(CSTR) were successfully performed. Based on the
PNN, an extended linearized neura space state
model can be established, which is a recurrent
network model of the following form

X(t+1) = AX (1) X(t) +B(X (DU (t)

Y(t) = CX(t)

ACX (1)) =s (X(1),W,) (3
B(X(t)) =s (X(t),W,)

1- exp(x)

s(9= 1+exp(x)

where, X(K), Y(k) and U(k) are state, output and input,
respectively, and s(-) is a sgmoid function.

Consider an SISO nonlinear system and suppose that
matrix A is of a controllable companion canonical
form, then the architecture of the ELNSS is shown in
Figure 1.

Fig.1 The architecture of ELNSS

Different from the widdy used multiplayer
perceptrons (MLP), the “X circle’ in Figl
symbolizes the multiplication neurons, which
perform the algebraic multiplications between the
input of ELNSS and the output of the first hidden
layer. In addition, “+" symbolizes the algelraic sum
and “h” stands for the well-known sigmoid functions.
At each sample time t, the inputs of ELNSS are
1(0=Dxa(0), - Xn(0), U(t-1),...u(t-m)], and (), o}
are the outputs of the j-th of the first hidden neurons.
Xa(t+1) is the output of the network and y,(t) is the
output of system. Win Fig. 1 represents the weights
from the input layer to the first hidden layer. The



input-output relationship of such an ELNSS can be
formulated to give:

X(t+1) = AX(t) +BU (t)

4

Yo =CX ) @

where X(t)= [xl(t),xz(t),..,xn(t)]rT is nth order date

vector, U(t)=[u(t-1),...u(t-m)] is mth order control

vector and parameter matrices are of the following
form:

eo 1 -0 U én(tu
&+ 01 oy o %Y
Sh TR Lok I
&, () - a0 &, ()
C:[Cl ...... Cn

The advantage of ELNNS models is that each
element of A or B may be the combination of linear
pat {a,b} and nonlinear time varying part
{a’ ®).b (t)}. As aresult, the well-established linear
system approaches can be readily extended to the
controller design for the ELNSS represented system.

2.2 Parameters identification of the ELNSS

The extended Kaman filtering (EKF) algorithm
(Gintaras and Lee, 1994) is adopted in training the
ELNSS moddl. Since the learning rate in EKF can
be adapted, a proper tuning of the learning rate can
be naturdly redized for the gradient-based search
scheme. This ensures a fast convergence for the
training algorithm.

The principle of EKF is as follows:

Considering the nonlinear system described by (1)
that is modeled by an ELNNS. Denote the
parameters of the ELNNS as g, and then the
nonlinear state space equation of the ELNNS can be
rewritten as

q(t+1)=q(t) (6)
Ym(t)=F(a(t))+v() (7)

where v(t) is a noise.

For system (6)-(7), the EKF learning algorithm for
updating the parameters of the ELNNS is given by

q(t)=a(t-1)+ h(OKO(y(O)-ym(t) — (8)
K(6)=POHO[(H (OPOHO+R(®)] ©)
P(t+1)=P(t)-K(O)HT () P(t) (10)

where K(t), P(t) and R(t) are matrices as used in the
Kaman filter and h(t) is the learning rate. In the
SISO system, R(t)=r(t), which isin fact an etimate
of covariance of noisev(t). In this case, we have

r()=r(t-1)+n)[(y(t)-yn(t))?-r(t-1)] (11)

n(t)="1t (12)
q =[c; () Wi (t) Wi 01" (13

_ Ty(®) _ Ty(t)
P (1) = W, Q; (1) __ﬂ\M)ij (14)

R (® =s"(a(t- )X (t- X;(t- D

(15)
+a,(t+DR (t- 1
Qj(t) =cs (b (t- D)X (t- Hu(t- 1) 6
+Can(t- Ds'(bi(t- 2)%(t- 2)u(t- 2) (16)
_éy(®u
H(t) = g0
€19 th=q(- 1
I%,(t-1) ifg; =c; (17)
=icR(D)  ifa; =Wy
L Qi) ifg; =Wy

2.3 The Universal Approximation Ability of ELNSS

It is well known that the MLP neural network, with
at least one hidden layer, can approximate arbitrary
continuous nonlinear functions defined on a compact
st As a reault, it can be used as a universa
nonlinear discrete dynamic model (Liu and Feng,
1995). When the PNN B used to model a nonlinear
discrete dynamic system, its universal approximation
ability was aso proved (Wang et al., 1998a, 1999a).
Because ELNSS is an extenson of PNN, its
approximation ability to a nonlinear discretetime
mode can aso be judtified. This means that ELNSS
can approximate, at a pre-specified accuracy, any
nonlinear dynamic systems (Wang et al, 1998b).

2.4 Convergence of thetraining process of ELNSS

With respect to the convergence of learning process,
the following theorem can be established.

Theorem 1. The convergence of ELNSS can be
guaranteed if h(t) in equation (8) is chosen as

O<h(t) <

(18)

max

where

Gmax = MaX|gim(1)] = maxt‘HT OPOHOA®| (19)

A(D) = [R() +HT(OPOH O (20)
The optimalh is
h" =1/gmna (21)
Proof:
By choosing the Lyapunov function as
1
V() =€ (helt) (2

and approximating the modeling error as
= Je(t), v
De(t) =[ 1 ]" Do
=-H" (OPOHOAbe() (23)

=-h(t)gn et
it can be shown that

DV (t) = De(t)[e(t) + De(t)]

(24)
=-h({)gm(D[1- 1/2h(t)gm(D]1E* (1)



If (18) is satisfied, then DV (t) < 0, which guarantees

that the predictive error e(t) is decreasing and the
training process is convergent.

2.5 Validation of ELNSS Models

A number of mode! validity tests for nonlinear model
identification procedures have been developed.
Typical examples are the dtatistical chi-square test,
the Akake Information Criterion (AIC) (Ljung,
1987), the predicted squared error criterion (Zhao &
al. 1999a) and the high-order correlation tests
(Billings and VVoon, 1986). The vdidity of an ELNSS
model can be assessed using the following high
order correlation tests:

Fe =Ele(t-t)e(®)] =d(t) "t
Fue =E[u(t-t)e(t)] =0 "t

F. =E [uz(t-t)-uz(t)]e(t)}zo "t (25

F 2= E{ [u?(t-t)- UZ(I)]eZ(t)}:O "t
Feen = E[e(t)e(t- 1-t)u(t-1-t)]=0 "t

where e is the modd residud and u? is the time

average of u?. These tests look into the cross
correlation amongst model residuals and inputs.

Normalization should be carried out to give dl test
data a range between +1. Also, the approximation
should be performed at 95% confidence bounds for

1.96/4/N, where N is the number of testing data
These predata processng will make the tests
independent of signa amplitudes and easy to
interpret.

If these correlation tests are satisfied, then the model
residuals are random sequences and are not
predictable from the modd inputs. This provides an
additional evidence of the validity of the identified
model.

3. AN ELNSS-BASED ONE-STEP-AHEAD
PREDITIVE CONTROL

3.1 The one-step-ahead predictive control law

Because the ELNSS modé can approximate general
nonlinear system and represent pseudo-linearity,
many linear control design approaches, such as
model reference adaptive control and predictive
control, can be applied to the nonlinear system
modeled by the ELNSS. In this section, a one-step
ahead predictive control method is introduced. The
configuration of ELNSS based closed loop control
system is shown in Figure 2.

U(t) » system y(t) >»
+
d(t
ELNSS B
» Model S‘/(t
- = _
Optimizer e(t +I’ (t)

Fig.2 Configuration of ELNSS based closed loop
control system

For a general nonlinear system (1), one can consider
the following cost function

I =4y, (t+1) - y,(t+ D +1 D) (26)

where y, (t +1) isthe referencetrgjectory, | >0 isa
pre-specified control update weighting factor,
Du(t) =u(t)- u(t- 1), and y,(t +1) is the one-step-
ahead prediction produced from an ELNSS model.
Using the gradient-search optimization approach, the
output of the optimal controller that minimizes J can
be obtained as

fle(t+1)
Tu(t)
where et +1) = y, (t +1) - y,(t+1) (28)

ut)=u(t-1- 1+|| > e(t+1) (27)

The convergence of this control algorithm is
summarized in the following theorem.

Theorem 2: If the parameter | >0, the control
algorithm given in (27) will be convergent.

Proof: Take the partial derivative of cost criteria (26)
with respect to t, and it can be obtained that

0 _ fle(t +1) fu(t) flu(t)

T =e(t+1) TTORKT +1 Du(t) T (29)
Approximately,

D _ Te(t +1) Du(t) Du(t)

Substituting (27) into (30), it can be further obtained
that

_ - 2 et +1),-
D0 = G 31)

It is obvious that DJ is negative if | >0, thus the
control algorithm (27) is convergent.

Concerning the asymptotic stability of the ELNSS
based closed-loop control system, if the one-step
ahead predictive controller (27) is adopted, the
following theorem should aso hold.



Theorem 3: Suppose the Lyapunov function is
defined as follows,

V =11+ e’ (t+1)+(1+12)?De’(t +1)]  (32)

If one-step-ahead control (27) is used, the sufficient
condition for the asymptotic stability of the closed
loop system is

1

0<1 <= (33)
where f = Je+ (34)
Tlu(t)
Proof: Consider
1:1—\: =(1+1 2)e(t+1) “?(:(:)1) ﬂl;T(tt) .
+(@+1 e+ I I

Using the first order approximation, it can be
obtained that,

Te(t+1)
flu(t)

r+] 2)2De(t+1)%g)1)nu(t)

from (27) and using the fact that

Te(t+2)
flu(t)

it can be shown that

DV =1+ ?)e(t +1)

Du(t)
(36)

De(t +1) = Du(t) = fDu(t) (37)

DV =(-1 +12f2)e®(t+1)f 2 (39)

If o<l <f—12,then DV <0, and the closed loop

system will be asymptoticaly sable. Since
approximation (27) is used, the closed loop stability
is at least localy true.

4. EXAMPLES

Example 1: consider the affine nonlinear system:

yy = LDy (39)
1+y°(t- 1
The architecture of the ELNSS is 4-4-1, whose input
is 1(0=[x,(1), %(t), %(1), ut-1)]". Suppose that the
initial EKF identification parameters are P(0)=107,
R(0)=2*10", and controller factor | =0.65 with the
reference tragjectory yy(t+1) as

yq(t+1)=0.3sin(2pt/250)+0.2sin(2pt/100)  (40)

then the closed loop response is shown in Figure3,
where the mean squared of tracking error is4.9%10*.

""" Setpoint
0.6 — Output

300 400 500 600 700 800 900 1000
Sample [t]

Fig 3. Closed loop system response of example 1

Example 2: Consider another nonlinear plant:
t- Dy(t- 2)[y(t- 1)+0.3
1+y?(t- D+y*(t- 2)

The architecture of the ELNSS is again 44-1, and
the initid EKF identification parameters are
P(0)=4*10>*1, R(0)=2*10° and the controller factor
is selected as | =0.4. The whole training process has
used 1000 iterations. In order to overcome the

inaccuracy of the ELNSS model, the online
feedback correction method is adopted to give

Yot +D =y (t+ D) +h(y, (1) - ym(t) (42)

where h is an error correction factor. In this
simulation h=1. The reference trgjectory yq(t+1) is
selected as

Ya(t+1) =

1 0.25n( 2pt/ 250) + 0.35N( 2pt /100) 0 <t < 500
10.04€n( 2pt/ 25) + 0.28n( 2pt/ 250) 500 < t < 1000

yy =2 fut-1) (41)

(43)
The closed loop response is shown in Figure 4, and
the mean squared of tracking error is 5.72*10™.

""" Setpoint
— Output ||

Output

300 200 500 600 700 800
Sample [t]
Fig 4. Closed loop system response of example 2

5. CONCLUSION

In this paper, an extended linearized neural state
space model is developed, which can nodel a class
of nonlinear dynamic systems. Since the ELNSS
exhibits pseudo-linearity of the plant, most linear



system controller design approaches can be extended
to apply to the ELNNS models. In particular, the
ELNSS is an approximation of Volterra basis neura
networks in some cases. Therefore, the ELNSS is
asuitable to model the system with polynomid
characteristics. The extended Kaman filtering based
learning agorithm is adopted to estimate the
parameters of the ELNSS. The existence of ELNSS
as a universal model of the nonlinear dynamic
discrete system and the convergence of learning
process were established. Indeed, the convergence is
guaranteed when the learning rate is correctly chosen
according to the rule in this paper.

The onesep-ahead predictive control approach
based on the ELNSS was proposed. The stability
issues based on well-known Lyapunov theory were
investigated, and the corresponding sufficient
conditions for the loca asymptotic stability of the
ELNSS based control closedloop sysem were
derived. In fact the approach used in the stability
analysis is aso effective for that of the MLP based
control system. However, difficulty remains in the
stability analysis for genera nonlinear control
systems. Further investigation is therefore needed in
this respect.

The satisfactory control performances of simulation
examples showed that the presented ELNSS based
control scheme could handle some nonlinear process
control problems.
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