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Abstract: In this paper, an extended linearized neural state space (ELNSS) topology is 
proposed, where an ELNSS based modeling and cont rol strategy for a class of nonlinear 
systems is presented. In terms of the modeling, the extended Kalman filter (EKF) 
algorithm is used to train the parameters inside the ELNSS model, where a high order 
correlation method is applied to validate the estimated model. This is then followed by 
the design of a one-step-ahead predictive controller for affine nonlinear systems. The 
stability of the so-formed closed loop control system is investigated, and several 
sufficient conditions that guarantee the local asymptotic stability are established. Two 
simulation examples are used to demonstrate the proposed algorithm and desired results 
have been obtained. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Since neural networks are powerful approximation 
tools, in recent years they have been used to the 
modeling and control of unknown, or partially 
unknown, nonlinear dynamic systems. A number of 
architectures for identification and control have been 
developed and examples are multilayer perceptron 
(MLP) and radial basis function (RBF) networks. In 
the neural network based control system design, the 
primary problem is to construct a neural network of a 
suitable type and architecture.  Once this has been 
solved, the controller design and system analysis can 
be readily carried out. 
 
 
 
*This works is supported by NSFC under grant 69974017, 
NSFC two-base international collaborative program 
(6010720098), SFC Guangxi China (0135065), the CSC 
returned scholar foundation, key teacher project of 
Ministry Education of China and Key laboratory of 
Ministry Education of China for Image processing and 
Intelligent control.  

In 1995 Suykens et al presented a neural state space 
model for the identification of nonlinear system. 
From then on, many researchers adopted this neural 
state space structure to model and design controllers 
of nonlinear systems (Liang et al .,1999; Pavel et al. 
1999; Zamarren et al. 2000; Zhao et al., 1998; Zhao 
et al., 1999a; Zhao et al., 1999b). Based upon these 
formulations, recently a pseudo-linear neural network 
(PNN) was presented (Wang et al . 1999a; 1999b), 
where the scheme for the system modeling has been 
developed. Both the one-step and the multi-step 
predictive controllers of a typical chemical process 
were made. It has been shown that the convergence 
of PNN training process can be guaranteed, and the 
asymptotic stability of the closed loop PNN-based 
control system has been established, where some 
sufficient conditions, that guarantee the closed loop 
stability, were obtained. 
 
Based on the PNN model, an extended linearized 
neural state space model (ELNSS) is proposed in this 
paper. The ELNSS is composed of multi-layers 
neurons, where the first hidden and output layers are 
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the same as those used in a standard MLP neural 
network. In specific, the second hidden layer consists 
of neurons with algebraic multiplications, whose 
outputs are the products of the inputs of ELNSS and 
the outputs of the first hidden layer.  
 
The problem to be solved here is whether this new 
type of neural state space model can approximate 
arbitrary nonlinear discrete dynamic systems in the 
same way as that of an MLP neural network. In this 
paper, the existence of ELNSS as a universal 
approximator to a class of nonlinear systems is 
proved under some conditions. The parameter 
identification for the ELNSS employs the well-
known extended Kalman filter (EKF) algorithm.  
This is the same as the situation when the EKF is 
applied to the training of the MLP neural network.  It 
has been shown that the convergence of the training 
algorithm can be guaranteed if the associated 
learning rate is correctly chosen.  
 
It is well-known that the one-step-ahead predictive 
control is an effective scheme in linear adaptive 
control. For nonlinear systems, a one-step-ahead 
controller using a MLP neural network was proposed 
by Tan and Cauwenberghe (1996), where the 
gradient-based optimization was adopted. Since the 
neural state space model exhibits a quasi- linear 
character, the one-step-ahead controller design can 
also be applied to the ELNNS models. In this paper, 
the stability analysis of the ELNSS-based one-step-
ahead predictive control system is proposed using the 
well-known Lyapunov theory, and the sufficient 
conditions for the local asymptotic stability of the 
ELNSS control system are derived. 
 
The proposed approaches are illustrated with two 
simulated examples, including the control of an 
affine nonlinear system. Desired closed loop 
responses are obtained. 
 
The paper is organized as follows. The proposed 
ELNSS model, its parameters identification and the 
convergence analysis are described in Section 2. The 
design of an ELNSS-based one-step-ahead predictive 
controller presented in Section 3, where the closed 
loop stability is also analyzed.  This is followed by 
the presentation of some simulation results in Section 
4.  Finally, conclusion is given in Section 5.  
 
 

2.  THE EXTENDED LINEARIZED NEURAL 
STATE SPACE MODEL AND ITS MODELING 

 
2.1 The architecture of the ELNSS  
 
Consider the nonlinear dynamic system  
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where x is the state vector, u is the input and y is the 
output.  This is a general nonlinear expression and its 
direct control formulation is difficult to perform.  To 
overcome this difficulty, Friendland (1996) proposed 

the following extended linearization model of 
nonlinear system  
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where A(x) and B(x) are general nonlinear functions 
of the state x.  In this paper, only model (2) will be 
used. 
 
For system (2), Wang et al (1999a) presented a 
pseudo- linear neural network (PNN), where the 
system modeling and a one-step and multi-step 
predictive control of a continuous stirred tank reactor 
(CSTR) were successfully performed. Based on the 
PNN, an extended linearized neural space state 
model can be established, which is a recurrent 
network model of the following form 
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where, X(k), Y(k) and U(k) are state, output and input, 
respectively, and σ(•) is a sigmoid function.  
 
Consider an SISO nonlinear system and suppose that 
matrix A is of a controllable companion canonical 
form, then the architecture of the ELNSS is shown in 
Figure 1. 

Fig.1 The architecture of ELNSS 

Different from the widely used multiplayer 
perceptrons (MLP), the “X circle” in Fig.1 
symbolizes the multiplication neurons, which 
perform the algebraic multiplications between the 
input of ELNSS and the output of the first hidden 
layer. In addition, “+” symbolizes the algebraic sum 
and “h” stands for the well-known sigmoid functions. 
At each sample time t, the inputs of ELNSS are 
I(t)=[x1(t), …xn(t), u(t-1),… u(t-m)]T, and {aj(t), bj(t)} 
are the outputs of the j-th of the first hidden neurons.  
xn(t+1) is the output of the network and ym(t) is the 
output of system. W in Fig. 1 represents the weights 
from the input layer to the first hidden layer. The 



 

     

input-output relationship of such an ELNSS can be 
formulated to give: 
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where X(t)= [x1(t),x2(t),…,xn(t)]
T is nth order state 

vector, U(t)=[u(t-1),…,u(t -m)]T is mth order control 
vector and parameter matrices are of the following 
form: 
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The advantage of ELNNS models is that each 
element of A  or B may be the combination of linear 
part {ai,,bi} and nonlinear time varying part 
{ai’(t),bi’(t)}. As a result, the well-established linear 
system approaches can be readily extended to the 
controller design for the ELNSS represented system.  
 
2.2   Parameters identification of the ELNSS 
 

The extended Kalman filtering (EKF) algorithm 
(Gintaras and Lee, 1994) is adopted in training the 
ELNSS model.  Since the learning rate in EKF can 
be adapted, a proper tuning of the learning rate can 
be naturally realized for the gradient-based search 
scheme.  This ensures a fast convergence for the 
training algorithm.  
  
The principle of EKF is as follows: 
 
Considering the nonlinear system described by (1) 
that is modeled by an ELNNS. Denote the 
parameters of the ELNNS as θ, and then the 
nonlinear state space equation of the ELNNS can be 
rewritten as 

θ(t+1)=θ(t)                                 (6)  
ym(t)=f(θ(t))+v(t)                       (7) 

where v(t) is a noise. 
 
For system (6)-(7), the EKF learning algorithm for 
updating the parameters of the ELNNS is given by 

θ(t)=θ(t-1)+η(t)K(t)(y(t)-ym(t))               (8) 
K(t)=P(t)H(t)[(HT(t)P(t)H(t)+R(t))]-1           (9) 
P(t+1)=P(t)-K(t)HT(t)P(t)                      (10) 

where K(t), P(t) and R(t) are matrices as used in the 
Kalman filter and η(t) is the learning rate. In the 
SISO system, R(t)=r(t), which is in fact an estimate 
of covariance of noise v(t).  In this case, we have  

r(t)=r(t-1)+µ(t)[(y(t)-ym(t))²-r(t -1)]          (11) 
µ(t)=1/t                                                       (12) 
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2.3 The Universal Approximation Ability of ELNSS  
 

It is well known that the MLP neural network, with 
at least one hidden layer, can approximate arbitrary 
continuous nonlinear functions defined on a compact 
set.  As a result, it can be used as a universal 
nonlinear discrete dynamic model (Liu and Feng, 
1995). When the PNN is used to model a nonlinear 
discrete dynamic system, its universal approximation 
ability was also proved (Wang et al., 1998a, 1999a). 
Because ELNSS is an extension of PNN, its 
approximation ability to a nonlinear discrete-time 
model can also be justified.  This means that ELNSS 
can approximate, at a pre-specified accuracy, any 
nonlinear dynamic systems (Wang et al , 1998b).  
 
 

2.4 Convergence of the training process of ELNSS 
 

With respect to the convergence of learning process, 
the following theorem can be established. 
 
Theorem 1: The convergence of ELNSS can be 
guaranteed if )(tη  in equation (8) is chosen as  

max

2
)(0

g
t << η                             (18) 

where  
 

)()()()(max)(maxmax tAtHtPtHtgg T
tm ==   (19) 

 1)]()()()([)( −+= tHtPtHtRtA T                (20) 

The optimalη  is  
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Proof: 
By choosing the Lyapunov function as 
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and approximating the modeling error as 
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it can be shown that 
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If (18) is satisfied, then 0)( <∆ tV , which guarantees 

that the predictive error e(t) is decreasing and the 
training process is convergent. 
 
2.5 Validation of ELNSS Models 
 

A number of model validity tests for nonlinear model 
identification procedures have been developed.   
Typical examples are the statistical chi-square test, 
the Akaike Information Criterion (AIC) (Ljung, 
1987), the predicted squared error criterion (Zhao et 
al. 1999a) and the high-order correlation tests 
(Billings and Voon, 1986). The validity of an ELNSS 
model can be assessed using the following high-
order correlation tests: 
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where ε is the model residual and 2u is the time 

average of 2u . These tests look into the cross 
correlation amongst model residuals and inputs.  
 
Normalization should be carried out to give all test 
data a range between ±1. Also, the approximation 
should be performed at 95% confidence bounds for 

,/96.1 N where N is the number of testing data. 
These pre-data processing will make the tests 
independent of signal amplitudes and easy to 
interpret.  
 
If these correlation tests are satisfied, then the model 
residuals are random sequences and are not 
predictable from the model inputs. This provides an 
additional evidence of the validity of the identified 
model. 
 
 

3. AN ELNSS-BASED ONE-STEP-AHEAD 
PREDITIVE CONTROL 

 
 

3.1 The one-step-ahead predictive control law 
 

Because the ELNSS model can approximate general 
nonlinear system and represent pseudo-linearity, 
many linear control design approaches, such as  
model reference adaptive control and predictive 
control, can be applied to the nonlinear system 
modeled by the ELNSS. In this section, a one-step 
ahead predictive control method is introduced. The 
configuration of ELNSS based closed loop control 
system is shown in Figure 2. 
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Fig.2 Configuration of ELNSS based closed loop 
control system 

For a general nonlinear system (1), one can consider 
the following cost function 
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where )1( +tyr  is the reference trajectory, 0>λ  is a 
pre-specified control update weighting factor, 

)1()()( −−=∆ tututu , and )1( +ty p is the one-step-

ahead prediction produced from an ELNSS model. 
Using the gradient-search optimization approach, the 
output of the optimal controller that minimizes J can 
be obtained as 
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where )1()1()1( +−+=+ tytyte pr                     (28) 

 
The convergence of this control algorithm is 
summarized in the following theorem.  
 
Theorem 2: If the parameter λ>0, the control 
algorithm given in (27) will be convergent. 
 
Proof: Take the partial derivative of cost criteria (26) 
with respect to t , and it can be obtained that 
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Approximately,  
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Substituting (27) into (30), it can be further obtained 
that 
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It is obvious that J∆ is negative if λ>0, thus the 
control algorithm (27) is convergent. 
 
Concerning the asymptotic stability of the ELNSS 
based closed-loop control system, if the one-step 
ahead predictive controller (27) is adopted, the 
following theorem should also hold. 
  
 



 

     

 
 
Theorem 3: Suppose the Lyapunov function is 
defined as follows, 
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If one-step-ahead control (27) is used, the sufficient 
condition for the asymptotic stability of the closed 
loop system is 
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Proof: Consider  
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Using the first order approximation, it can be 
obtained that, 
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from (27) and using the fact that  

)()(
)(

)1(
)1( tuftu

tu
te

te ∆=∆
∂

+∂=+∆            (37) 

it can be shown that 

2222 )1()( ftefV ++−=∆ λλ                   (38) 

If 
2

1
0

f
<< λ , then 0<∆V , and the closed loop 

system will be asymptotically stable. Since 
approximation (27) is used, the closed loop stability 
is at least locally true. 
 
 

4. EXAMPLES 
 

Example 1: consider the affine nonlinear system: 
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The architecture of the ELNSS is 4-4-1, whose input 
is I(t)=[x1(t), x2(t), x3(t), u(t-1)]T. Suppose that the 
initial EKF identification parameters are P(0)=10 5I, 
R(0)=2*10-5, and controller factor λ=0.65 with the 
reference trajectory yd(t+1) as  

yd(t+1)=0.3sin(2πt/250)+0.2sin(2πt/100)     (40) 

then the closed loop response is shown in Figure3, 
where the mean squared of tracking error is 4.9*10-4. 
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Fig 3. Closed loop system response of example 1 
 

Example 2: Consider another nonlinear plant: 

)1(
)2()1(1

]3.0)1()[2()1(
)( 22 −+

−+−+
+−−−= tu

tyty
tytyty

ty    (41) 

The architecture of the ELNSS is again 4-4-1, and 
the initial EKF identification parameters are 
P(0)=4*105*I, R(0)=2*10-5 and the controller factor 
is selected as λ=0.4. The whole training process has 
used 1000 iterations. In order to overcome the 
inaccuracy of the ELNSS model, the on-line 
feedback correction method is adopted to give  
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where h is an error correction factor. In this 
simulation h=1. The reference trajectory yd(t+1) is 
selected as  
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The closed loop response is shown in Figure 4, and 
the mean squared of tracking error is 5.72*10-4. 
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Fig 4. Closed loop system response of example 2 
 
 

5. CONCLUSION 
 

In this paper, an extended linearized neural state 
space model is developed, which can model a class 
of nonlinear dynamic systems. Since the ELNSS 
exhibits pseudo- linearity of the plant, most linear 



 

     

system controller design approaches can be extended 
to apply to the ELNNS models. In particular, the 
ELNSS is an approximation of Volterra basis neural 
networks in some cases. Therefore, the ELNSS is 
suitable to model the system with polynomial 
characteristics. The extended Kalman filtering based 
learning algorithm is adopted to estimate the 
parameters of the ELNSS. The existence of ELNSS 
as a universal model of the nonlinear dynamic 
discrete system and the convergence of learning 
process were established. Indeed, the convergence is 
guaranteed when the learning rate is correctly chosen 
according to the rule in this paper. 
 
The one-step-ahead predictive control approach 
based on the ELNSS was proposed. The stability 
issues based on well-known Lyapunov theory were 
investigated, and the corresponding sufficient 
conditions for the local asymptotic stability of the 
ELNSS based control closed- loop system were 
derived. In fact the approach used in the stability 
analysis is also effective for that of the MLP based 
control system. However, difficulty remains in the 
stability analysis for general nonlinear control 
systems.  Further investigation is therefore needed in 
this respect. 
 
The satisfactory control performances of simulation 
examples showed that the presented ELNSS based 
control scheme could handle some nonlinear process 
control problems.  
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