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Abstract: A control system design procedure is proposed for a widely applicable class of
discrete-time, non-linear systems in which the system nonlinearities are incorporated into
a linear model structure in the form of State-Dependent Parameter (SDP) functions. The
identification and estimation of both non-parametric and parametric SDP models is
discussed briefly. The SDP NMSS model structure is defined, and the SDP Proportional-
Integral-Plus (PIP) control algorithm is derived using an optimal LQ technique. The
practical utility of the design methodology is illustrated by numerical example.
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1. INTRODUCTION

The control system design procedure described in
this paper is a novel nonlinear extension of the linear
Proportional-Integral-Plus (PIP) controller design
proposed by Young et al. (1987). This linear PIP
controller derives from a Non-Minimal State Space
(NMSS) formulation of the linear system equations
(Hesketh 1982, Young et al. 1987). In the case of
single input systems described using the discrete-
time backward-shift operator, the non-minimal state
variables consist entirely of measurable variables: the
present and past values of the output variable; the
past values of the input variable; and an integral-of-
error state variable included to ensure type-one
servomechanism performance. This basic non-
minimal state vector can also be augmented with
other measured variables, such as disturbance inputs,
if these have an appreciable effect on the system
dynamics.

A major advantage of the PIP control design method
is that the NMSS variables are all measurable,
permitting the use of any state variable feedback
(SVF) technique without recourse to the
implementation of a state reconstruction or observer
system, such as the Kalman Filter. This avoids
unwarranted complexity in the PIP system design
and reduces the dependency of the controller on the
model of the system, with obvious advantages in
terms of robustness (see e.g. Bitmead et al, 1990).
The PIP controller in this form can be regarded as a

logical extension of the well-known classical multi-
term Proportional-Integral (PI) and Proportional-
Integral-Derivative (PID) controllers, to which
additional feedback and forward-path compensators
have been added to improve the PI/PID action. These
extra compensators are derived automatically from
the NMSS state feedback control law. PIP controllers
have been successfully implemented in a wide range
of applications (Chotai, et al. 1991, Lees, et al. 1995,
Chotai, et al. 1998, Taylor et al. 2000).

State-dependent parameter (SDP) models (Young,
1993, 1998, 2000, 2001a; Young et al, 2001) have
the same basic structure as linear Time Variable
Parameter (TVP) transfer function models. However,
the temporal variation of the parameters is not caused
by some slow variations in the system characteristics
but is assumed to arise because the parameters are
actually functions of other variables, such as the non-
minimal states.  In this manner, the SDP model is
able to provide a description for a widely applicable
class of nonlinear systems that includes chaotic
processes (see examples in the above references).

As we shall see, when SDP models are applied
within a control context they lead to control system
gains that are also state dependent, revealing an
obvious connection with certain gain scheduling
design methods. The value of using linear parameter-
varying systems as the basis for gain-scheduled
control has been expounded in various references
(e.g. Becker and Packard 1994, Apkarian and Adams
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1998). The main advantage of such systems is the
applicability of many aspects of linear systems
theory. This is clearly also relevant to SDP modelled
systems and it means that conventional SVF design
procedures can be exploited in the design of the
nonlinear SDP-PIP controller, resulting in a closed-
loop system with state-dependent SVF gains.

Section 2 discusses briefly the statistical
identification and estimation of SDP models and the
application of these methods to the modelling of a
typical nonlinear system that can be modelled in SDP
terms. The development of the SDP non-minimal
state space description is described in Section 3,
where the design principles are demonstrated by
application to the SDP model derived in Section 2.

2. SDP MODELS: IDENTIFICATION AND
ESTIMATION

The idea of using SDP models to represent nonlinear
dynamic systems goes back to Young (1978), who
showed how the forced logistic growth equation
could be represented, identified and estimated in
SDP form. However, the practical development of
these ideas is of a more recent origin (Young, 1993,
1998, 2000, 2001a; Young et al, 2001).  The simple
SDP transfer function (SDTF) model considered in
the present paper can be written in the following
TVP form:
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where the notation ( )i kwα  indicates that any SDP

iα  is a nonlinear function of a variable kw : Below,
the ( )i kwα  are denoted as simply ,i kα , for
convenience of notation. However, it is important to
emphasise that they are state dependent and not
‘slowly variable’ functions of time, k.  In general,

kw  is defined in terms of any variables on which the
parameters are identified as being dependent and so
it could be defined as any element of the NMSS
vector kx  (see later). In the present context,
however, each SDP is assumed to be a nonlinear
function its associated past input or output variable,
i.e.,
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Young (2000, 2001a) and Young et al (2001)
describe an identification and estimation strategy for
SDP models of this general type. The details of this
strategy are given in these references and it will
suffice here to outline the main features of the
approach.

The SDP model identification and estimation process
is based on analysis of the input-output data set and
consists of three main stages:

1. First, identification of the most appropriate SDP
model structure and order based on a special form of
non-parametric estimation that exploits recursive
fixed interval smoothing and special data sorting
utilised within an iterative ‘back-fitting’ algorithm
(see above references). This yields an appropriate
minimal model order and an estimate of each
constituent SDP which, when plotted against the
associated dependent variable, reveals the nature of
the associated nonlinearity. In this non-parametric
(graphical) form, the SDTF model can be simulated
in SIMULINK™ using look-up tables to represent the
graphically defined SDP nonlinearities.

2. Second, an initial parametric identification and
estimation stage, where the non-parametrically
defined nonlinearities obtained in stage 1. are
parameterised in some manner in terms of their
associated dependent variable: for example by
defining an appropriate parametric model in some
convenient form, such as a polynomial or
trigonometric function; a radial basis function or a
more general neuro-fuzzy relationship; or  a neural
network. Initial identification and estimation of this
parametric function is then based, for example, on
least squares optimization of the function against the
non-parametric SDP estimate, as in the example
below.

3. Third, a final estimation stage in which the
parameters of the parametric nonlinear model
obtained in stage 2. are estimated directly from the
input-output data using some method of dynamic
model optimization: e.g. deterministic nonlinear least
squares or, preferably, a more statistically efficient
stochastic method, such as maximum likelihood
based on prediction error decomposition, where the
nature of the noise processes are also taken into
consideration (see the above references).

2.1 An Illustrative Example

A typical example of an SDP model is the following
forced logistic equation with a soft limited input
nonlinearity based on a tanh function:

xk = (2 − 2xk−1)xk−1 + 0.01(tanh(uk−1) + 0.02uk−1)

yk = xk + ek                     ek = N (0,σ 2)
(4)

The variance of ku  is 2 8uσ =  and the output noise

ke  is σ 2 = 4x10−6 , producing a 20% level of noise
by standard deviation. The SDP estimation results are



shown in figure 1. The estimated SDP ˆ a 1(yk−1)  for
the state (internal) nonlinearity, as shown in the left
panel of figure 1, is clearly a linear function of yk −1,
as expected. Consequently, simple least squares
estimation yields the following linear relationship
a1(yk −1) =α 1 + β1yk−1, with associated parameter
estimates,

1 1̂ˆ 1.994(0.009) and =-1.988(0.0019)  α β=
where the standard errors on the estimates are shown
in parentheses. The estimated input nonlinearity, as
plotted in the right panel of figure 1, is clearly a soft
limiting function and simple least squares estimation
of the linear-in-the parameters tanh-type relationship,
b0 (uk −1).uk−1 =α 0tanh(uk−1) + β 0uk−1, yields a good
representation of the nonlinearity, with the following
parameter estimates and standard errors:
        ˆ α 0 = 0.010(0.001) ; 0

ˆ 0.000188(0.0003)β = .
If we consider this SDP estimation as an initial
identification stage in the modelling, then we could
obtain final parametric estimates of the constant
parameters in the model (4) using Maximum
Likelihood estimation, as mentioned above. For the
purposes of the present illustrative example,
however, it will suffice to use the above parameter
estimates as the basis for SDP-PIP control system
design. This has the added advantage that the larger
estimation errors will serve to evaluate the sensitivity
of this design to such parametric modelling errors.

Fig.1 SDP non-parametric estimation results: true
functions (dashed lines); estimated functions (full
lines); standard errors on estimated functions (dotted
lines).

3. SDP-NMSS SYSTEMS

In SDP systems, the variables associated with the
state dependency are normally the elements of the
NMSS vector and the control input ku . However,
variables other than this may also be incorporated
into the state vector, or regarded as ‘virtual’ states to
avoid unnecessary dimensional enlargement.

3.1 The NMSS Description

The plant equation represented by transfer function
(1) is expressed in NMSS form as:
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where rk is the reference input variable, and xk is the
non-minimal state vector,
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The state transition matrix kF and the vectors

kg , h and d are defined as
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3.2 SDP-PIP Non-linear Control

Assuming that the SDP-NMSS system,
],,,[ hdgF kk , is fully controllable for all k, then the

vector of state-dependent feedback gains, kv , that
will form the SVF control law associated with the
SDP-NMSS model (5) is defined in the usual
fashion:

kkku xv−= (6) 

The vector, vk, is derived from:
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in which R is a positive scalar for a SISO system, and
P is taken to be the invariant symmetrical positive-
definite matrix solution to an SDP algebraic Riccati
equation (ARE). The ‘frozen-parameter’ system,

],,,[ hdgF kk ′′ , is defined as a single sample member
of the family of systems, ],,,[ hdgF kk , and may be
used with the linear quadratic (LQ) cost function:

{ }�
∞

=
+=

0

2

i
ii

T
i RuJ Qxx

in which Q is an invariant symmetrical positive-
definite matrix, to produce the discrete-time matrix
ARE:

-4 -2 0 2 4

-0.01

-0.005

0

0.005

0.01

Estimated Input Nonlinearity

In
pu

t N
on

lin
ea

rit
y

Delayed Input
0.49 0.5 0.51

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02
Estimated State SDP

SD
P

Delayed Output



QFPggPggPFFPFP +′′′′+′′−′′= −
k

T
kk

T
kk

T
kk

T
k R 1)(

from which the feedback vector (7) is derived.
Incorporating the control law (6), the SDP-NMSS
closed-loop system becomes
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If the NMSS system (5), is fully controllable for all
k, then the stability of the closed-loop system (8) can
be demonstrated using Liapunov's stability theorem.
The vector of varying gains, kv , defined in (7), can
also be expressed as:
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in which: kil ,  are the feedback gains associated with
the present and past output variables; kim ,  are the
feedback gains associated with the past input
variables; and kIk ,  is the integral gain. Defining the
feedback polynomials as:
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then the general arrangement of the closed loop is as
depicted in figure 2.

Figure 2: The Nonlinear SDP-PIP-controlled closed
loop in feedback configuration.

3.3 Illustrative Example Continued

The deterministic part of the identified SDP model
(4) can be written in the form:
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‘Freezing’ the NMSS system at the equilibrium
point: 0== kk ux  (k = 0, 1, 2, …), the solution to
the ARE is:
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from which the vector of state-dependent gains is
derived as:
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The SDP-PIP controller is simulated by applying it to
the control of the actual system (4), initially without
the additive noise, so evaluating the system
performance in the presence of the parameter
estimation errors.

The responses of closed-loop system to a repeated
step reference input are shown in figure (3). The
output displays a small amount of overshoot as
transient effects are overcome, but settles into a
excellent tracking response by the third change in the
reference input. Note that the control input response
is negative where the output response is positive, and
vice versa. This is due to the existence of a second
equilibrium point in the original nonlinear system at
the point: 5.0=kx (k = 0, 1, 2, …): this requires the
control input to be negative for 0 0.5kx≤ ≤  and
positive elsewhere. If the additive noise ke  in (4) is
introduced, the response shown in figure 3 is not
affected very much: there are just additional small,
noise-induced perturbations about the output
response.

The variation in the controller gains is shown in
figure 4. Note the large changes that occur in the
gains during rapid variation of the states, compared
to the constant values obtained when steady-state
conditions arise. Of course, the gains are constantly
variable for acontinuously perturbing command
input, such as a sinusoid or random signal (see
below).



0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4
Output (solid); Reference Input (dashed)

0 50 100 150 200 250 300
-1000

0

1000

2000
Control Input

Samples

Figure 3: SDP-PIP-controlled closed loop responses.
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Figure 4: SDP controller gains.

As a final example, the SDP-PIP system was re-
designed to provide closed loop, dead-beat response.
This is quite a challenge in the case of this nonlinear
system because of the required rapid response of the
system. Even so, as shown in figure 5, the type-one
SDP-PIP controlled system is able to track a
sinusoidal reference input with the one sample delay
required for dead-beat response in this case.  The
nonlinearity of the system is obvious from the nature
of the control input.

Figure 5: SDP-PIP dead-beat control.

4. CONCLUSIONS

The State Dependent Parameter (SDP) transfer
function model is able to represent a wide range of
nonlinear stochastic, dynamic systems and yet it
retains some of the advantages of its constant or
slowly time variable parameter progenitors. As such,
it opens up the possibility of a whole new range of
SDP-based control and estimation theory
developments. In the present paper, we have
addressed just one of these: the development of a
nonlinear version of the Proportional-Integral-Plus
(PIP) controller and shown how it can be used to
control a typical nonlinear system with both internal
(state) and input nonlinearities. By its explicit
incorporation of state-dependent parameters, this
SDP approach unifies and extends earlier feedback
linearization and linear parameter varying ideas in a
fundamental and very useful manner.

Moreover, the results obtained in this paper suggest
that other SDP-based control systems are worthy of
investigation, such as SDP versions of delta operator
and robust  PIP systems, as well as SDP versions of
other more automatic control procedures, from
conventional three term PID to H∞  control.

Figure 6 SDP-KF estimation and multi-step-ahead
forecasting

It also seems possible that conventional state
estimation (Kalman Filter: KF) theory can be
extended by incorporating SDP models. The KF is
inherently a nonstationary form of estimation theory
and it can accommodate time variable parameters in
the model state equations, as well as associated time
variable hyper-parameters (i.e. noise variance-
covariance parameters). As a result, it is possible to
incorporate SDPs into the KF in a similar manner
(see Young, 2000). Figure 6 shows the results of
such an SDP-KF approach in the case of the
nonlinear model (4) but with, 2 41x10σ −=  and
added system noise with 2 52.5x10xσ −= . Here, the
one-step-ahead predictions (full line) are compared
with measured output (circular points) and the noise-
free state (dashed-dot line) up to sample 250 and,
thereafter, the SDP-KF generates a very good, true
multi-step-ahead forecast up to sample 275. The
standard error bounds are shown dotted.
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As in SDP-PIP control, the SDP-KF will not be
globally applicable and  its confident use in practical
terms will require considerable further research. If
successful, however, it could provide a method of
state estimation for a certain  class of nonlinear
systems that does not require re-linearization. Like
the re-linearized KF, however, such a SDP-KF could
only provide information on the first two statistical
moments (mean and covariance) associated with the
state estimation errors, even though the SDP model
is capable of producing state behaviour with highly
non-normal probability distributions.

Finally, SDP models can also be developed for
continuous-time systems (Young, 1993, 1998) and so
it is clearly possible to extend the continuous-time
linear PIP controller (Chotai et al., 1994; Chotai et
al., 1998) into a nonlinear SDP-PIP form. Research
on this and other SDP related systems and time series
analysis techniques is proceeding at Lancaster.
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