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Abstract: The paper outlines an optimal, maximum likelihood formulation of the continuous-
time transfer function estimation problem and shows how the Refined Instrumental Variable
(RIVC) algorithm provides an iterative solution to this problem. With the help of a simulation
example, it then compares and contrasts the performance of the RIVC algorithm with that of
two other, sub-optimal, continuous-time transfer function estimation procedures that have
been suggested more recently. Copyright c© 2002 IFAC
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1. INTRODUCTION

Since the early 1960’s, numerous different approaches
have been suggested for the identification and esti-
mation 2 of continuous-time, linear Transfer Function
(TF) models from normal operating data (see e.g. the
reviews by Young, 1981, and Unbehauen and Rao,
1997). The present paper revisits one of the algo-
rithms first suggested many years ago in this con-
text, the iterative or recursive-iterative 3 Refined In-
strumental Variable (RIVC) algorithm (Young and
Jakeman, 1980). The paper shows how, by virtue of
its special exploitation of adaptive prefilters on the
input-output signals, the RIVC method can be inter-
preted in optimal, maximum likelihood terms. This
revisitation appears justified since, despite its many
advantages, the RIVC method still appears to be rel-

1 The author is most grateful to Professor Hughes Garnier for
providing the IVGPMF algorithm (as part of their CONTSID
Matlab R©Toolbox) and for his advice on the use of the algorithm.
2 Here I use the statistical meanings of these words: ‘identification’
is the definition of the most appropriate model order; and ‘esti-
mation’ is the estimation of the parameters that characterize this
identified model.
3 An on-line, recursive form of the algorithm has also been devel-
oped (see e.g. Young, 1984).

atively unknown. Moreover, the algorithm is now
widely accessible in the CAPTAIN Matlab Toolbox
(see http://www.es.lancs.ac.uk/cres/captain/) and has
recently been incorporated in the CONTSID Matlab
Toolbox (see http://www.cran.uhp-nancy.fr/
cran /i2s/contsid/contsid.html).

The RIVC algorithm has been used for many years in
practical applications (e.g. most recently, Price et al.,
1999). In the present paper, however, its advantages
in comparison with other algorithms are demonstrated
on the simulation example used in the recent paper by
Wang and Gawthrop (2001: WG from here on). The
RIVC estimation results obtained in this manner are
compared with those obtained by WG, as well as those
obtained using another IV algorithm: the IVGPMF
algorithm of Garnier et al. (1995). This third algorithm
uses the so-called Poisson Moment Functional (PMF)
implementation of the State Variable Filter (SVF)
concept and it also relates very closely to much earlier
work by the present author (Young, 1970a and the
prior references therein), who referred to the PMF
filter chain as the ‘Method of Multiple Filters’ (MMF).

In contrast to the other two algorithms, the RIVC
approach does not require the user to specify any as-
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pect of the prefilters (SVFs) other than their dynamic
order. Rather these prefilters, which are so important
in continuous-time TF estimation, are adjusted in an
iterative fashion, so that they can perform two simul-
taneous functions: first to optimally filter the data and
so make the estimation more statistically efficient (i.e.
lower and, in the Gaussian normal case, minimum
variance parameter estimates); and secondly, to gen-
erate the filtered derivatives of the input and output
signals. In this second role, they perform a similar
function to the prefilters used by WG and IVGPMF
for this same purpose but their prefilters are normally
restricted to having real eigenvalues 4 . In addition, the
iterative, adaptive mode of solution used by the RIVC
algorithm not only ensures that, on convergence, the
estimates have statistically optimum properties, it also
generates information on the parametric error covari-
ance matrix. This information is useful for subsequent
Monte Carlo Simulation (MCS) analysis, as well as
providing the standard error bounds on the parameter
estimates.

2. THEORETICAL OVERVIEW

2.1 The RIVC Algorithm

The RIVC approach to continuous-time linear model
identification and estimation suggested by Young and
Jakeman (1980) derives from the equivalent RIV ap-
proach for discrete-time systems (see Young, 1984
and the prior references therein). It is also a logi-
cal development of the earlier, more heuristic meth-
ods developed by the author (Young, 1970a and the
prior references therein). The theoretical basis for the
method can be outlined by considering the following
SISO system, although MISO and MIMO extensions
are straightforward:

x(t) =
B(s)
A(s)

u(t− δ)

y(t) = x(t) + e(t)

(1)

Here A(s) and B(s) are polynomials in the derivative
operator s = d/dt of the form:

A(s) = sn + a1s
n−1 + ...+ an−1s+ an

B(s) = b0s
m + b1s

m−1 + ...+ bm−1s+ bm

and δ is any pure time delay in time units. This model
structure is denoted by the triad [n,m, δ]. In (1), u(t)
is the input signal, x(t) is the ‘noise free’ output
signal and y(t) is the noisy output signal. Initially,
the noise e(t) is considered as zero mean, white noise
with Gaussian amplitude distribution and variance σ2,

4 The MMF/PMF implementation of prefilters is constrained to
prefilters with real eigenvalues. The WG prefilters are not so re-
stricted but, for simplicity, WG impose such a constraint in their
numerical examples.

although we will see later that this assumption is not
restrictive.

Following the usual Maximum Likelihood (ML) ap-
proach, a suitable error function that defines the like-
lihood is given by,

ε(t) = y(t)− B(s)
A(s)

u(t− δ)

=
1

A(s)
{A(s)y(t)−B(s)u(t− δ)}

which is the basis for the response or output error es-
timation methods. However, since the operators com-
mute in this case, the 1/A(s) filter can be taken inside
the brackets to yield the expression,

ε(t) = A(s)y∗(t)−B(s)u∗(t− δ) (2)

or,

ε(t) = sny∗ (t) + a1s
n−1y∗ (t) + ...+ any

∗(t)

−b0smu∗(t− δ)− ...− bmu∗(t− δ)

where the ∗ superscript indicates that the associated
variable has been ‘prefiltered’ by 1/A(s). The advan-
tage of this transformation is that (2) is now linear
in the unknown parameters ai, i = 1, ..., n; bj , j =
0, ...,m, so that the associated estimation model can
be written in the form:

sny∗(t) = z∗(t)Ta + e(t) (3)

where,

z∗(t) =[
−sn−1y∗(t)...− y∗(t) smu∗(t− δ)...u∗(t− δ)

]T
a = [a1 ... an b0 ... bm]T

As a result, all of the prefiltered derivatives appearing
as variables in this estimation model are measurable
as the inputs of the integrators that appear in the
realization of the prefilter 1/A(s). Thus, provided we
assume that A(s) is known, the estimation model (3)
forms a basis for the definition of a likelihood function
and ML estimation.

There are two problems with this formulation. The
obvious one is, of course, that A(s) is not known
a priori. The less obvious one is that, in practical
applications, we cannot assume that the noise e(t)
will have the nice white noise properties assumed
above: it is likely that the noise will be a coloured
noise process, say ξ(t). Both of these problems can be
solved by employing a similar approach to that used
in the RIV algorithm for discrete-time (backward shift
operator TF) system identification and estimation (see
Young, 1984 and the prior references therein). Here,
a ‘relaxation’ optimization procedure is devised that
adaptively adjusts an initial estimate Â0(s) of A(s)
iteratively until it converges on an optimal estimate



of A(s). And the coloured noise problem is solved
conveniently by exploiting IV estimation within this
iterative optimization algorithm.

The continuous-time version RIVC of this RIV algo-
rithm is described fully in Young and Jakeman (1980).
Like most IV methods, it exploits an IV variable
x̂(t) generated from the following ‘auxiliary model’
(Young, 1970a):

x̂(t) =
B̂(s)
Â(s)

u(t− δ) (4)

and an associated IV vector defined as,

x̂∗(t) =[
−sn−1x̂∗(t)...− x̂∗(t) smu∗(t− δ)...u∗(t− δ)

]T
The iterative RIVC algorithm 5 can then be summa-
rized as follows:

The RIVC Algorithm

(1) Select the initial Â0(s) polynomial either auto-
matically or manually (see explanation below)

(2) Use Â0(s) to generate the pre-filtered variables
y∗(t) and u∗(t) and obtain estimates Â1(s) and
B̂1(s) using linear least squares.

(3) Iterate: k = 2 : ni (default ni = 4)
(i) Using Âk−1(s) and B̂k−1(s) to replace A(s)
and B(s), respectively, generate both the pre-
filtered data vector z∗(t) and the prefiltered in-
strumental variable vector x̂∗(t), the latter using
the IV variable x̂(t) generated by the auxiliary
model (4).
(ii) Calculate the IV estimate

â = C−1b

C =
N∑
i=1

x̂∗(ti)z∗(ti)T

b =
N∑
i=1

x̂∗(ti)sny∗(ti)

where ti denotes the ith of N sampling instants.
(4) Generate an estimate of the parametric covari-

ance matrix P using the symmetric version of the
IV algorithm (Young, 1970b, 1984), i.e.

P = σ̂2

[ N∑
i=1

x̂∗(ti)x̂∗(ti)T
]−1

(5)

where σ̂2 is the variance of the model residuals.
The square root of the diagonal elements of P
provides the standard errors on â (see theorem
below).

5 recursive-iterative and on-line recursive versions of this algorithm
are easily implemented: see Young and Jakeman (1980).

Comments

1. The initiation of the above RIVC algorithm involves
the selection of a suitable Â0(s) prefilter polynomial.
This is not a difficult task and there are several alter-
natives available to the user in the CAPTAIN Toolbox.
An automatic option is based on the user specifying
a suitable sub-sampling interval for initial discrete-
time estimation (this can often be the actual sam-
pling interval, since the discrete-time RIV algorithm is
quite robust and works well even with rapidly sampled
data). The discrete-time model obtained in this manner
is then automatically transformed to continuous-time
form using the Matlab d2cm tool and provides the
Â0(s) polynomial. Manual options include the user
specification of a suitable single pole value to generate
an all-pole MMF/PMF prefilter or a full order prefilter.
The latter two options can be specified without itera-
tive adaption, in which case the former is equivalent to
IVGPMF.

Of course, the final estimates are quite robust to the
specification of Â0(s) since the prefilter is thereafter
adaptively adjusted by the algorithm: Â0(s) is simply
required as a device to allow for the initial least
squares estimation step. In the example below, for
instance, automatic Â0(s) selection via a discrete-
time model based on the actual sampling interval is
clearly the simplest user-option, but identical results
are obtained if the all-pole filter option (MMF/PMF)
is selected for any specified pole value in the range
-0.007 to -6. In effect, therefore, this latter option
is simple to use and virtually automatic. Based on
experience, it is the author’s preferred option.

2. An associated RIVCID order identification algo-
rithm allows the user to automatically search over a
whole range of different model orders (see example
below); a very useful option in practice.

3. The RIVC algorithm is computationally efficient:
in the example below, for instance, it is 5.3 times
faster than the IVGPMF algorithm (cpu time 0.17 sec.
compared with 0.9 sec.). And the RIVCID algorithm
takes only 9.9 sec. to search over all models in the
range [1,1,0] to [5,5,3].

2.2 Theoretical Justification for the IV Variable in
RIVC

The following theorem is a generalization of a simi-
lar theorem for discrete-time TF models proven rig-
orously by Pierce (1972) and later by Young (1984,
p.213-215) using simpler and somewhat less rigorous,
prediction error analysis.

Theorem

(i) If the e(t) in (1) is a zero mean, Gaussian white
noise process;

(ii) the parameter values are admissible (i.e. the model
is stable and identifiable); and



(iii) u(t) is persistently exciting, then the ML esti-
mate âN , obtained from the data set of N samples,
possesses a limiting normal distribution, such that the
asymptotic covariance matrix of the estimation errors
associated with the estimate âN is of the form:

P = σ̂2

[ N∑
i=1

x̂∗(ti)x̂∗(ti)T
]−1

(6)

Proof Modification of the proof in Pierce (1972) and
Young (1984) to the continuous-time case.

Although there is no formal proof, simple arguments
based on the nature of the IV iterations, comprehen-
sive MCS studies, and all experience over the last 20
years, has shown that the algorithm is strongly con-
vergent. Provided the above conditions are satisfied,
therefore, the converged RIVC estimates are optimal
in a ML sense.

3. THE WG EXAMPLE

The WG example concerns the identification and esti-
mation of the following continuous-time TF model:

y(t) =
−2s+ 1

s3 + 1.6s2 + 1.6s+ 1
u(t) + e(t) (7)

using a total of 3000 samples obtained from an ex-
periment in which the system (7) is enclosed within a
feedback loop in series with a switch and a relay with
hysteresis (see WG for details). The noisy data set
generated in this manner is shown in figure 1, which
has the same general form and noise level as that used
by WG.
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Fig. 1. Input (upper panel) and output (lower panel)
data obtained from the WG ‘relay experiment’.

In the identification stage of the analysis, two statis-
tical measures are used to choose between a range of
model orders. These are theR2

T and Y IC criteria (e.g.
Young, 1989), which are defined as follows, where
np = n+m+ 1:

R2
T = 1− σ̂2

σ2
y

Y IC = loge

{
σ̂2

σ2
y

}
+ loge

1
np

i=np∑
i=1

σ̂2pii

θ̂2
i

Here, σ2
y is the variance of the output signal; θ̂2

i is the
squared value of the ith estimated parameter; and pii is
the ith diagonal element of the RIVC estimated para-
metric error covariance matrix P. The R2

T criterion
will be recognized as a Coefficient of Determination
based on the simulated model errors (note: not the
one-step-ahead prediction errors). The YIC criterion is
more complex and provides a measure of how well the
parameters are defined statistically: the more negative
the YIC, the better the definition.

3.1 RIVC and WG Analysis

In this case, RIVCID applied over the range [1,1,0]
to [5,5,3] identifies two models as strong contenders:
the [2, 2, 0] model has the most negative Y IC (-9.08),
with an associated R2

T = 0.91. However, the correct
[3, 2, 0] model has the second best Y IC = −8.54,
which is still very negative implying very well defined
estimates, and itsR2

T = 0.94 is significantly better. So
the two criteria, taken together, suggest that the correct
[3, 2, 0] model is superior in these terms. All other
possibilities are rejected: the [3, 3, 0] model estimated
by WG has almost the same R2

T but its Y IC =
−2.25 suggests over-parameterization; while [4, 4, 0]
and [5, 5, 0] models have similar R2

T values to the
[3, 2, 0] model but their Y ICs are 0.60 and −1.44,
respectively, so they are decisively rejected.
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Fig. 2. Comparison of [3, 2, 0] model output (full
line) and the deterministic output of the true
simulated system (7), shown dashed. The error
(+8) is shown above.

The estimated parameters in the [3, 2, 0] model are as
follows:

â1 = 1.5917(0.0442); â2 = 1.6037(0.0229);
â3 = 1.0066(0.0319); b̂0 = −2.0013(0.0599);
b̂1 = 0.9923(0.0176);

where the figures in parentheses are the estimated
standard errors. These results are very good and a



significant improvement on those obtained by WG
(see Young, 2001). The parameter estimates are very
close to the actual parameter values from (7) and, not
surprisingly, the model output matches the determin-
istic output of the true simulated system very well, as
shown in figure 2.

Finally, Table 1 shows the results of an MCS exercise
similar to that carried out by WG. Here, the WG simu-
lation was repeated 50 times, each time with different
and independent additive random noise. The data from
each such realization were then used to estimate the
model parameters and Table 1 compares the standard
errors on the estimated parameters obtained from the
MCS analysis (second row) with those obtained from
the RIVC estimated P matrix (first row). The results
demonstrate clearly that the RIVC algorithm is per-
forming optimally and verify the theory behind the
optimal RIVC methodology.

Table 1: RIVC Standard Error Comparison

Param. â1 â2 â3 b̂0 b̂1

RIVC 0.044 0.023 0.032 0.060 0.018
MCS 0.044 0.023 0.030 0.056 0.021

3.2 RIVC and IVGPMF Analysis

This second comparative analysis is based on the
1000 sample data set shown in figure 3, which was
generated as a random realization, again using the WG
simulation. This shorter data set provides a greater
estimation challenge than the longer data set in figure
1, particularly since the input excitation is rather poor.

RIVCID identification again suggests the correct
[3,2,0] model order 6 and automatic initial prefilter
selection was used in the RIVC algorithm. In contrast,
the prefilter parameter α (see Garnier et al., 1995) in
the IVGPMF has to be specified manually by the user.
In order to ensure that the algorithm performed as well
as possible, therefore, this parameter was selected as
the value that produced parameter estimates as close
to the true values as possible (i.e. a prefilter param-
eter α = 2 and an associated prefilter 1/C(s) with
C(s) = (s+2)4). This means that the IVGPMF results
obtained here are the best achievable in practice.

The comparative estimation results obtained in the
above manner are given in Table 2 7 . As expected
from theory, the RIVC results are superior, even
though the IVGPMF prefilter parameter is set at its
best possible value. However, the author has been
informed (H. Garnier pers. comm.) that an experi-
enced user will be able to choose a prefilter parame-
ter that achieves similar performance. This being so,
the IVGPMF results are perfectly acceptable in most

6 The IVGPMF algorithm uses a somewhat different order conven-
tion and the model is designated [3,1,0] in these terms.
7 The IVGPMF algorithm does not provide standard error esti-
mates.
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Fig. 3. Input (upper panel) and output (lower panel)
data used in the IVGPMF analysis.

practical terms. Even in this more difficult, low sample
size situation, with rather poor input excitation, only
one of the IVGPMF parameter estimates (â1 = 1.552)
appears not so good, but it still lies within the bounds
computed by the RIVC algorithm. And in relation to
the true system, the associated model step and fre-
quency responses are not too much worse than those
of the RIVC estimated model.

Table 2: RIVC and IVGPMF Estimation Results

TRUE 1.6 1.6 1.0 -2.0 1.0

RIVC 1.605 1.605 0.993 -1.990 1.033
SE(P) 0.083 0.042 0.059 0.109 0.032

IVGPMF 1.552 1.597 0.957 -1.948 1.030

Of course, single estimation simulations such as this
are not a reliable way to evaluate the overall esti-
mation performance of an algorithm. This is better
accomplished by MCS analysis, the results of which
are shown in Table 3 for an ensemble of 100 ran-
dom realizations. We see that both the mean param-
eter values and the mean standard errors of the RIVC
estimates are better than the IVGPMF estimates, al-
though the difference is not great because the best
possible MMF/PMF prefilter parameter was utilized
for all realizations in the MCS analysis (again being
extra specially fair to the algorithm). Also the RIVC
standard errors conform with those predicted by the
RIVC estimated covariance matrix P, once more con-
firming the efficacy of the background theory.

Table 3: RIVC and IVGPMF MCS Results

SE (P) 0.076 0.039 0.056 0.100 0.031

RIVC 1.605 1.605 1.004 -2.009 1.003
MCS SE 0.068 0.031 0.048 0.083 0.028
IVGPMF 1.611 1.607 1.008 -2.014 1.005
MCS SE 0.102 0.050 0.075 0.138 0.036

4. A COMMENT ON PREFILTERS

Obviously, one of the main differences between the
RIVC and both the WG and IVGPMF estimation al-
gorithms is the way in which the prefilters are chosen.
In particular, the optimal RIVC prefilter is generated



within the algorithm via an iteratively updated, adap-
tive optimization procedure. In the WG example, this
yields a prefilter 1/A(s), withA(s) = s3+1.5917s2+
1.6037s + 1.0066 upon convergence of this iterative
procedure (compared with the optimal s3 + 1.6s2 +
1.6s + 1.0). In the WG and IVGPMF approaches, on
the other hand, the prefilter is fixed and defined as
1/C(s) using either (i) a much more computationally
intensive optimization procedure (see WG paper), or
(ii) manual selection (IVGPMF). In this example, WG
find that C(s) = (s+2)3 following optimization. The
best manual selection for the MMF/PMF filter chain
is C(s) = (s+ 2)4.
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Fig. 4. Comparison of Bode plots for the opti-
mal RIVC (full), optimized WG (dashed) and
IVGPMF (dash-dot) prefilters

The Bode plots for these prefilters are compared in
figure 4. We see that, although the characteristics
are broadly similar, there are differences, with the
IVGPMF filter more closely approximating 1/A(s)
over the most important part of the passband. In partic-
ular, the pass-band of the RIVC filter gain character-
istic (upper panel, full line) is somewhat narrower and
there is a small resonant peak (with related differences
in the phase characteristics, as shown in the lower
panel). This is the main reason for the differences in
the estimation results. The RIVC filter is more pre-
cisely defined in relation to the passband of the system
and so its noise attenuation properties are better than
the WG and IVGPMF prefilters, with the result that
the statistical efficiency is correspondingly higher.

5. CONCLUSIONS

This paper outlines the optimal RIVC algorithm for
the identification and estimation of continuous-time
TF models and compares its performance with that of
two other, alternative algorithms, WG and IVGPMF.
It is shown to be both more statistically and compu-
tationally efficient than these other algorithms. The
IVGPMF alternative performs quite well in the com-
parative study provided one assumes prior knowledge
is available to help choose the prefilter parameter (not
required by RIVC). It is interesting to note that, de-
spite these obvious advantages of the RIVC algorithm,

it is not widely used. Perhaps this is because RIVC
exploits iteratively adaptive prefilters and so it is in-
correctly perceived as too complicated and not robust
enough for practical usage. The present paper demon-
strates that this is clearly not the case. The RIVC algo-
rithm involves a simple, rapidly convergent, iterative
optimization procedure and appears to be very robust
in practical terms. Indeed, despite its optimality, it is
rather easier to use than the IVGPMF algorithm, since
it does not require manual specification of the prefilter
parameters and, as we have seen, it is computationally
quite a lot faster.
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