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Abstract: The purpose of the paper is to compare timed and time Petri nets with constraint
satisfaction problems and activity-on-arc graphs in the context of manufacturing. It is shown
that constraints are not defined in the same way but that timed and time Petri nets could
be translated into a set of activity-on-arc graphs. This translation is only straightforward for
p-timed and p-time Petri nets.
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1. INTRODUCTION

Petri nets are commonly used to define resource al-
location mechanisms for flexible manufacturing sys-
tems. They can be enriched by temporal inscriptions
in different ways (t-timed, t-time, p-timed and p-time
Petri nets) allowing thus the specification of com-
plex constraints involving time and resources. Con-
straint Satisfaction Problems (CSP) and activity-on-
arc graphs (AOA graphs) are also commonly used for
the analysis of temporal constraints encountered in
scheduling issues for manufacturing. The purpose of
the paper is to compare the two approaches and to
show that it is possible, from a Petri net model, to
derive scenarios (partial orders on a set of transition
firings), each one corresponding to an AOA graph
when time constraints are taken into account.

2. ORDINARY PETRI NET AND CSP

2.1 Some definitions

Let us first recall what are CSPs (Tsang, 1993) and
Petri nets (Murata, 1989).

Definition 1. A constraint satisfaction problem (CSP)
is defined as a triple (X,D,C). X � fx�� � � � � xng is a
set ofn variables.D � fd�� � � � � dng is the set of the
domains of the variables.C � fc�� � � � � ceg is a set of
e constraints, each constraintci being defined by: the
set of variablesX�ci� � X involved in constraintci
and a relationR�ci� on the variables ofX�ci�.

Definition 2. A Petri netP is defined as a 4-tuple
(P ,T ,Pre,Post). P is a finite set of placespi. T is
a finite set of transitionstj . Pre is an application
P � T � N (N is the set of natural numbers), it
defines the input arcs of the transitions.Post is an
applicationP � T � N, it defines the output arcs
of the transitions.

Definition 3. A markingM is a distribution of tokens
in the places, it is an applicationP � N.

In a Petri net a transitiont can only be fired if
it is enabled by the current markingM that is if
Pre��� t� �M . Let tij be thejth firing of transition
ti. Let us consider an unordered list of transition fir-
ings to be firedsc (a list of event that should oc-
cur). Let sc be the firing vector corresponding tosc
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Fig. 1. Petri net fragment

(sc�ti� � k if sc containsk firings of ti). If we con-
sider a Petri netP between the two markingsM and
M ��Post�Pre��sc, it defines precedence relations
on the list of transition firingssc. These precedence
relations have to satisfy a set of constraints. Is it pos-
sible to express this set of constraints under the form
of a CSP?

We underline here the fact that if the Petri net repre-
sents the resource allocation policies of a shop, any
short term scheduling issue can be expressed under
the form of the computation of the optimal firing dates
of a set of transitions transforming an initial marking
(current state of the shop) to a final marking (desired
state at the end of the horizon).

2.2 Constraints on precedence relations defined by
Petri nets

If we want to derive a CSP defining the same con-
straints as the Petri net with a marking and a list
of transitions, we have first to define the variables.
Precedence constraints can be characterized by means
of Boolean variablesxi�j�k�l. If xi�j�k�l � � this means
thattij must precedetkl. If xi�j�k�l � � then no prece-
dence relation is imposed andtij may occur before or
after tkl, unless a precedence relation can be derived
by combining two or more existing ones (for example
xi�j�m�n � � andxm�n�k�l � �).

Let us consider for example the Petri net in figure 1 for
a markingM such that there are two tokens in place
P� and for the list of firings:

sc � t�
�� t�

�� t�
�� t�

�� t�
�� t�

�

A search for possible firing sequences shows that the
fact that placep� connects transitionst� andt� entails
thatx������� � �.

Each place ofP defines constraints between its input
and output transition firings (for eachM andsc). For
example, placep�, in the above example, generates
two unary constraints (a constraint involving a unique
variable):x������� � � andx������� � �.

When a place has more than one input transition or
more than one output transition, the generated con-
straint is no longer unary. In the above example, place
p� generates the following binary constraint:

x������� � � and x������� � �
or x������� � � and x������� � �

Let us now consider the precedence relations involv-
ing the second firing oft�. If t� has already been fired
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Fig. 2. The two partial orders

(a consequence ofx������� � �) then it is necessary to
fire t�. Otherwise, it is necessary to firet�. This means
that the constraint is:

if x������� � � then x������� � � else x������� � �

The constraint has aprocedural form, this means that
it is necessary to know which decisions have been
made in the past in order to verify the preceding
constraints and to write the constraint at hand in a
CSP-like form.

2.3 Partial order among the set of transition firings

Whenxi�j�k�l � � thejth firing of ti must occur before
the lth firing of tk. If the markingM � �Post �
Pre��sc is reachable fromM in Petri netP, this
means that there exists at least one set of variables
xi�j�k�l verifying all the constraints. This set defines a
partial order among the transitions firings ofsc which
can be represented by a directed graph. The nodes
of the graph are the elementstij of sc, there is an
arc betweentij and tk

l if and only if xi�j�k�l � �.
For example, if we consider the Petri net in figure 1
(M and sc as defined above) two partial orders are
possible. They are represented in figure 2.

Since the expression of the constraints requires the
knowledge of the past decisions, the unique way to
translate them under a CSP is to list all the possible
partial orders. A unique constraintc�, involving all the
variables is then derived. For the above example, the
relationR�c�� is:

�x������� � x������� � x������� � x������� � ��
or �x������� � x������� � x������� � x������� � ��

2.4 Conclusion

It is therefore possible to translate the set of con-
straints generated by a Petri net, an initial marking
and a list of transition firings under the form of a
CSP. However it is a degenerated form with a unique
constraint which is the disjunction of the set of solu-
tions. Is there any mathematical tool to compute this
set of solutions (the possible partial orders)? Recent
developments about Petri nets and Linear logic offer a
solution.

3. USING LINEAR LOGIC TO FIND A PARTIAL
ORDER

Typically, in Petri net theory, reachability analysis is
based on firing sequences in which transition firings



occur in a total order. In the framework of Linear
logic, it is possible to derive partial orders. We will
just give here the main points in order to understand
the approach. For more detail about Linear logic the
reader can refer to (Girard, 1987) and for more detail
about Petri nets and Linear logic to (Gehlot, 1992) and
(Pradin-Chézalvielet al., 1999).

3.1 Basic concepts on Linear logic

Linear logic has been defined in the framework of
sequent calculus. A sequent (the left part is a list of
hypotheses and the right one a list of conclusions) is
proved if and only if it is syntactically correct, that
is if it can be proved that each connective can be
introduced by using a set of rules. Linear logic can
be seen as a restriction of classical logic in order to
deal with resources as logical propositions. Atoms
corresponding to logical propositions may be counted,
produced and consumed exactly like tokens in Petri
net places. It is the reason why there is an equivalence
between reachability in a Petri net and the provability
of some Linear logic sequents.

In this paper we will just use two Linear logic con-
nectives. The connective� represents the simultane-
ous availability of some resources. The connective�
corresponds to the linear implication and represents
causality because the atoms on the left side of� have
to be consumed in order to produce those on the right
part.

3.2 Translating Petri nets into Linear logic

A marking M is a monomial in� (for instance
p��p��p� corresponds to a marking for which place
p� contains two tokens and placep� one token). A
transitiont is a formula of the formM��M� where
M� andM� are partial markings. The monomialM� is
another notation for the column of matrixPre corre-
sponding tot (denoting the input places oft) andM�

for the corresponding column ofPost.

The sequentM� sc � M � wheresc is an unordered
list (separated by commas) of transition formulas, rep-
resents the reachability ofM � from M by firing the
corresponding transitions (if a transitiont i is firedn
times, thesc containsn times the formula correspond-
ing to ti). The condition

M � � M � �Post � Pre��sc
is a necessary but not sufficient condition. On the
contrary, the proof of this sequent is equivalent to that
of the reachability. This means that during the proof
all the constraints generated by the Petri net and the
initial marking are checked.

3.3 Deriving a partial order

The first step of the proof consists in removing the
connective� within the initial marking. This means
that in place of operating on a marking (the token
location at a given time point), it is possible to operate
with a list of tokens (logic atoms) which are logically
independent and thus not necessarily simultaneously
present. During the proof, these tokens correspond
to precedence relations. If a token is produced by a
transition firingtij and is consumed bytkl, this means
thatxi�j�k�l � �. At the end of a proof it is sufficient to
collect all the tokens which have appeared, each one
corresponds to one precedence relation and the whole
set exactly defines the partial order.

The proof can be seen as a rewriting process, each step
allows the elimination of one transition formula. At
each step, a transition formulatij is removed fromsc;
the tokens consumed bytij are removed fromM and
the produced one added;M � remains unchanged. The
sequent is proved whensc is empty andM is the list
of the tokens inM �.

If at a given step more than one elimination is possible
and if the concerned transitions and tokens are all
disjoint, this means that the resulting proof will be
the same whatever the order of the eliminations. If
transitions or tokens are shared (token conflicts or
transition conflicts as defined in (Pradin-Ch´ezalvielet
al., 1999)), then one proof tree for each order has to
be derived because each one characterizes a different
partial order.

3.4 Example 1

Let us consider the example in figure 1 again. The
initial marking isp��p� and the final markingp��p�.
List sc contains two formulas corresponding tot�
(p��p�), two ones corresponding tot�, and one for
t� and fort�.

During the proof two tokens are inevitably produced
in placep�. The first is produced byt�� and consumed
by t��. The second is produced byt�� and consumed
by t��. This means thatx������� � � andx������� � �.

When the first token, produced byt��, appears inp�
there is a conflict because the elimination oft�

� and
of t�� are both candidates. In consequence two proofs
have to be done. In the first casex������� � � is derived
and in the second onex������� � �. In the first case
t�

� is eliminated by consuming the second token inp�
(t�� in the second case). The elimination rewriting rule
is used 6 times becausesc initially contains 6 firings.
Finally (derivation details are skipped), the two partial
orders in figure 2 are obtained.
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Fig. 4. A first partial order
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Fig. 5. A second partial order

3.5 Example 2

Let us now consider an elementary case of a manu-
facturing system with two part routes to be executed
and a shared resource (see figure 3). Initial and final
events aret�� and t�

�. The first part route consists
in two operations (t�� and t�

�) and the second one
in (t�� andt��). Operationst� andt� share the same
resource. The initial marking isp��p� and the final
one isp��p	.

There is a conflict after the elimination oft�� when
the list of tokensp�� p�� p� is reached because botht��

andt�� are candidates and both consumesp�. The two
partial orders in figures 4 and 5 are then derived. It can
be noted that labelp� appears three times. It is because
there is initially one token inp� which is consumed by
t�
� (in the first partial order) and produced again. It is

then consumed and produced again byt�
�.

4. INTRODUCING TIME CONSTRAINTS

4.1 Petri nets and manufacturing

In the context of scheduling in manufacturing, Petri
nets are typically used when cyclic policies are re-
quired because the constraint corresponding to the
cyclic behavior is easily represented by a Petri net.
In the approach presented in this paper, Petri nets are
used to represent the structure of the manufacturing
systemi.e. the part routes and how the machines are

shared among the operations. Some deadlock avoid-
ance policies may also be represented as well as some
intermediate storage limitation.

The current state of the manufacturing system is the
current marking and scheduling a set of operations
is equivalent to find the best partial order among the
transition firings corresponding to the operations to be
done and their optimal firing date. The Petri net model
has to be complemented by time constraints (operation
durations, due dates etc..) and the set of variables
xi�j�k�l by the set of the firing dates of the transitions
(xfi�j is the date of thejth firing of transitionti; f
stands for firing). It has been shown above that a
Petri net could be translated into a CSP for a list
of transition firings. In the sequel this comparison
includes timing considerations. In this paper only four
propositions will be explored: p-timed and t-timed
Petri nets, and p-time and t-time Petri nets.

4.2 Temporal constraint satisfaction problem

Definition 4. A temporal constraint satisfaction prob-
lem (TCSP) is a particular class of CSP where the
setX of variables denotes a set of time entities (time
points, time intervals, durations) and constraints (C)
represent the possible logical or numerical temporal
relations between variables. All TCSP constraints are
binary (Schwalb and Vila, 1998).

Definition 5. An activity-on-arc graph (AOA
graph) (Elmaghraby, 1977) is a graph such that the
nodes represent the variablesX and the edges the
constraints. With each edgei � j a binary constraint
cij is associated. An AOA graph can be associated
with a TCSP. Nodes represent events or steps related
to start or end of a set of activities. The length of an
arc represents the duration of the activity attached to
this arc. It is a time constraint between two events.

4.3 p-timed Petri net

Definition 6. A p-timed Petri net is a Petri netP with
a function associating a durationdi with each placepi.
Each token has to stay at leastdi when it arrives inpi
before being consumed by a transition firing.

It has been shown in the preceding section that from
P, M and sc a set of partial orders verifying the
logical constraints could be derived. Each partial or-
der can be represented by a graph whose nodes are
the transition firings and whose arcs correspond to
precedence relations between two firings. The arcs are
labeled by places (see figures 4 and 5). If we replace
each transition firingtij by the variablexfi�j and each
arc labelpk by its durationdk then we have translated
the set of constraints generated by the p-timed Petri
net into a set of AOA graphs.
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Fig. 7. The AOA graph for a t-timed Petri net

Since the structure of these graphs is that of a partial
order, they are acyclic and it is always possible to
find a solution. By means of p-timed Petri net it is
indeed only possible to represent operation durations,
due dates are not taken into account.

4.4 p-time Petri net

Definition 7. A p-time Petri net is a Petri netP with
a function associating a minimal durationdimin and
a maximal durationdimax with each placepi. Each
token has to stay at leastdimin in pi and has to be
consumed by a transition firing beforedimax.

With this model two constraints are associated with
each precedence relation. One is for the minimal du-
ration. The other one, in the reverse way, specifies the
maximal duration. Figure 6 is the AOA graph corre-
sponding to the first partial order of the Petri net in
figure 3 (for simplicity we have deleted the arcs cor-
responding to the initial and final tokens). It is clearly
possible to have positive circuits which means that the
set of constraints is inconsistent. P-time Petri nets are
indeed capable of taking into account due dates and
are more general than p-timed Petri nets. In addition,
the search of a solution may be done by means of
linear programs as in (Bonhomme, 2001).

4.5 t-timed Petri net

Definition 8. A t-timed Petri net is a Petri netP with a
function associating a durationdi with each transition
ti. When firingti a timedi elapses between consum-
ing the input tokens and producing the output ones.

Before relabeling the nodes and the arcs, we have to
transform the partial order graph because now tran-
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Fig. 8. The AOA graph for a t-time Petri net
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Fig. 9. Petri net with two parallel branches

sitions are no longer events: activities are attached
to them. Each node is thus transformed into an arc,
labeled by the corresponding transition firing. The
nodes are now beginnings and ends of firings (the
actual variables are firing beginnings). The result of
such a transformation is represented in figure 7 for
the fragment betweent�� andt��. Then each place is
replaced by 0 (it remains a simple precedence relation)
and each firingtij by di. The obtained graph is acyclic
and therefore there is always a solution to the set of
constraints.

4.6 t-time Petri net

Definition 9. A t-time Petri net is a Petri netP with
a function associating a minimal durationdimin and
a maximal durationdimax with each transitionti.
Transitionti has to remain enabled at leastdimin and
at mostdimax before being fired.

As for p-time Petri nets, arcs with negative length
dimax have to be introduced to bound the enabling
duration ofti. Whenti has more than one input place,
the enabling event is not known: it is the end of the
firing of the transition which produces the last token.
Figure 8 represents the AOA graph (betweent�

� and
t�

� and for the first partial order) whent� is enabled
by the firing oft�.

Proposition 10. If M ��Pre�Post��sc is reachable
in P then the set of constraints associated with any t-
time Petri net built onP is always consistent for the
initial markingM and the firing listsc.

This is a direct consequence of the fact that there
are no positive circuit in the corresponding AOA
graph. When translating a t-time Petri net into an
AOA graph, the circuits generated by transitions
having a unique input place are not positive (the
length isdimin � dimax). More interesting circuits
are generated if the Petri net contains two parallel
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branches as shown in figures 9 and 10. In the graph
fragment (b 1) of figure 10 there exists the circuit
�djmin� dnmin��dnmax��dimax�. The negative arc
attached to�dnmax connects the node corresponding
to the end of firing oftn to that ofti. It is only correct
if ti has produced a token aftertj . Let� be the produc-
tion date of the token inpi and�� be the production
date of the token inpj . We have the relation:�� � �.

Let �k be the date of the end of firing oftk, we know
that � � ��k � dimin	�k � dimax
 and
�� � ��k�djmin	�k�djmax
. It can then be derived
thatdjmin � dimax.

The length of the interesting circuit in AOA graph
(b 1) is � � djmin � � � dnmin � dnmax � dimax

and sincednmin � dnmax anddjmin � dimax, then
the length is negative or equal to zero.

A symmetric proof can be done for graph (b 2) in
figure 10.

5. CONCLUSION

By showing how an ordinary Petri net could be trans-
lated into a CSP, this paper has pointed out that the
constraints were specified in a procedural way by a
Petri net and in a declarative one by a CSP. Linear
logic allows computing all the partial orders among
the transition firings satisfying the logical constraints
generated by a Petri net for an initial marking and a
list of firings.

The translation of Petri nets with time into AOA
graphs has pointed out that it is more natural to as-
sociate the durations with places than with transi-
tions because precedence constraints are generated by
places. In addition, if an AOA graph can be associated
with each partial order for p-time Petri nets, it is not
the case for t-time Petri nets. Finally, it seems difficult
to deal with due dates using t-time Petri nets because
the inconsistencies which may be introduced will not
be easily pointed out.

A scheduling approach may be derived from this
study. If the logical constraints defined by the ordinary
Petri net (deadlock avoidance and storage regulation)
are sufficiently strong, or if a heuristic is available to
get some good partial orders, then time can be intro-
duced by means of p-time Petri nets and an optimal
(for the corresponding partial order) solution can be
derived by linear programming.
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Pradin-Chézalviel, B., R. Valette and L.A. K¨unzle
(1999). Scenario duration characterization of t-
time petri nets using linear logic. In:IEEE
PNPM’99. Zaragoza, Spain, September 6-10.
pp. 208–217.

Schwalb, E. and L. Vila (1998). Temporal constraints:
a survey.Constraints: an International Journal
2, 129–149.

Tsang, E.P.K. (1993).Foundations of constraint satis-
faction. Academic Press Ltd. London.


