Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

ON STRUCTURAL IDENTIFIABILITY OF SYSTEM
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Abstract: Investigation of structural identifiability of even linear dynamical models
requires complicated algebraic manipulations with use of computer algebra methods.
In present work very efficient approach to testing both local and global identifiability
of system parameters is offered which does not require too complex algebraic
computations and therefore allows to increase the dimension of testable models. In
addition to consideration of general case two widely used classes of model structures
are studied. TNustrative example is given to show advantages of the approach.
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1. INTRODUCTION

The first step of parameter identification proce-
dure is formulating the model structure. As a
result we obtain a set of models M = {M () : 8 €
Q C RP} parametrized with vector of unknown
parameters 6 from admissible parametric space 2,
see (Ljung, 1987). The next step is determining
“the best” model in the set M. On this step the
situation may take place when there are several
such ”"best” models equally well describing the
process under study. In other words the prob-
lem of estimating the unknown parameters of the
model has non-unique solution. If that’s the case
the model structure is called nonidentifiable.

Let us give stronger definitions of structural iden-
tifiability borrowed from (Walter and Pronza-
to, 1990). Denote the equality of the model in-
put/output maps obtained for two values 6 and
6* of the parameter vector by M(6) ~ M(6%).
This property is also called indistinguishability
of the models from input/output observations.
The parameter §; is called structurally globally
identifiable (s.g.i.) if for almost any * € Q (with
the exception of subsets of Q of measure zero)
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M(0)~M(0‘):>0,-:0;‘;

it is structurally locally identifiable (s.l.i.) if for
almost any 0* there exists a neighbourhood v(6*)
such that if § € v(6*), then

M) ~ M(0") = 6; = 6]

A parameter that is not s.Li. is structurally non-
identifiable (s.n.i.). A model is s.g.i.(s.1.i.) if all its
parameters are s.g.i.(s.].i.). A model is s.n.i. if any
of its parameters is s.n.i.

Substantial literature was devoted to the problem
of structural identifiability of linear and nonlinear
dynamical models during last three decades. The
most important results were combined in book
(Walter(Ed.), 1987). At present one could say
about existence of sufficiently complete theory
and methodology giving a variety of methods and
algorithms for identifiability analysis. However,
there is a certain difficulty in practical application
of suggested methods. The point is that iden-
tifiability analysis is executed before parameter
estimation (a priori) and independently of par-
ticular values of the parameters (structurally).
Therefore all computations must be carried out in
the symbolic {analytic) form. Program systems for
symbolic computations are a good tool. However,



to rely only on the computing power could be
disappointing because most suggested algorithms
generate very complicated computations resulted
in the impossibility to obtain an answer even for
models of low dimensions.

We propose an approach to testing structural lo-
cal and global identifiability of linear dynamical
models which does not generate such complicat-
ed computations. The approach is based on the
conditions for identifiability analysis presented in
(Glover and Willems, 1974), but it is not simply
development of these conditions in the direction
of practical application. First, we substantially
reduce dimensions of matrices in the identifiability
conditions, which is very significant for symbolic
computations. Second, imposing some restrictions
on the model structure we obtain identifiability
conditions for two important classes of model
structures. The more restrictions we impose, the
easier conditions we have. In addition, for each
class we propose necessary conditions (order con-
ditions) being very simple for testing that can
be very useful at the beginning of the identi-
fication procedure to reject a great number of
non-identifiable model structures. Third, in the
majority of papers the result of testing model
structure identifiability is simply an answer: yes or
no. But what to do in case of non-identifiability?
Within the bounds of our approach possibility
of obtaining additional information about non-
identifiable model structure, which is useful in or-
der to eliminate non-identifiability, is considered.

It is worth to mention of promising differential
algebra approach (Ljung and Glad, 1994) and
recently developed computer algebra algorithm
(Audoly et al., 1998). The first method is not
particularly efficient for linear models. The second
one has advantages mostly when applied to lin-
ear compartmental models. Moreover, implemen-
tation of the algorithm has been done by starting
from numerical point #. Approach presented in
our paper allows to obtain the same results purely
in the symbolic form and can be applied to any
linear state space model.

2. RANK AND ORDER CONDITIONS FOR
TESTING IDENTIFIABILITY

Consider the following model structure in state
space form:

where ¢ is time variable, z € R", u € R*, y € R™
are state, control and observation vectors (2(0) =
0), 8 € Q is vector of unknown parameters of the
model, A € R™** B € R***,C € R™",D ¢
R™*k are system matrices.

In this paper we consider natural parametriza-
tion when elements of system matrices are un-
known parameters of the model. Such parameters
are called system parameters. There are several
reasons to choose system parameters. First, this
allows us to decrease the dimensions of symbolic
matrices in the identifiability conditions and to
derive different conditions for several classes of
model structures. Second, system parameters fre-
quently have physical significance and their esti-
mation is of interest for the appropriate specialist.
Third, testing identifiability of system parameters
can be an intermediate stage in making identi-
fiable final parametrization of system matrices.
We offer to divide one complex task of testing
structural identifiability into two easier tasks: at
first testing identifiability of system parameters,
then special task of studying possibility of deter-
mining final parameters from identifiable system
parameters. For deciding the first task we develop
general approach presented in this paper.

Let sT = (AT, BT,C7, DT) - vector composed of
all elements of system matrices row by row - be
the vector of system parameters. As it will be clear
later, to achieve identifiability of model structure
we have to impose constraints on s. We propose
the following form of presenting constraints con-
venient for further consideration

I's= FQ, (2)

where T and I'g are numerical matrix and vector
of dimensions r x N and r x 1, N = a(n +
m + k) + mk. Let rankl’ = r,r < N, then r
components of vector s depend on other elements.
Let in (1) vector # of unknown parameters
be vector of dimension (N — r) consisting of
independent system parameters. Note that choice
of independent elements from vector s is not
unique.

Our method is based on similarity transformation
approach for linear models. In accord with this
approach we search for the set of all state-space
models with the same input/output map as (1):

$(8) = A"2"(8) + B u(t), ,
{y(t) = C*z*(t) + D u(d), 3)

and the same model structure (the same struc-
tural constraints)

T's* = Fo, (4)

where s* = (A*T,B*T,C'*T,D_*T)T is vector of
system parameters for the model (3). From the
system (4) we also can determine vector §* of
independent system parameters.

It is known that under assumption of controllabil-
ity and observability of models (1) and (3) the



state vectors ¢ and z* are related by nonsingular
similarity transformation z* = Tz, where trans-
formation matrix T € GL{n) = {T : detT # 0}
is determined by the following system:

A*T — TA(9)
B — TB(6)
c*T-C(9)
D™ — D(6)
T'(s* — s(9))

(5)

(1 I A I
coocoo

where dependence on § means that all elements
of vector s are expressed through its independent
elements. If the system (5) has only one solution
(T = I,s* = s) (there are no models indistin-
guishable with the initial model), the model is
s.g.1. If we have continuous set of solutions to the
system, the model is s.n.i. Otherwise, if several
solutions are isolated points in the parametric
space, the model is s.1.i. Note, that if there are no
constraints on system parameters, the last equa-
tion is removed from the system (5). In this case
the model is s.n.i., because for each nonsingular T
there is a solution for s*.

Write down the system (5) in general form:

F(T,s";8) = 0. (6)

The system (6) gives transformation F' : GL(n) x
RN x RN-r — RN+7 1t is clear that F is a C’
function. Let us fix an arbitrary point 8 in RVN-".
Note, that the point (T = I, s* = s) is solution to
the equation (5). Consider Jacobian of the system
(5) for variables (T, s™):

_ OF(T,s*;6)

F'= .
a(Ta S*) (T=1;,8*=s)

Suppose that all columns of matrix F’ are linearly
independent, i.e.

rank (F') = rank (Fy | Fl.) = n* + N, (7)

where Fj and F.. are (N+r)xn? and (N+r)x N
submatrices of matrix F’. Then by the implicit
function theorem there are neighbourhoods N; C
RN-", of point # and N» C GL(n) x RN of
point (I, s), and also single-valued transformation
N; — Ns. Therefore at point @ there is locally
unique solution of the equation (6).

To obtain expression for F’ we present the system
(5) in the following form:

(It

X*(s*,ﬂ)(T—fn)-l-(s* — 5(60)) 0,
{r@'-qm) 0, 8

where T and I, are vectors obtained from ele-
ments of appropriate matrices row by row,

A @I, — I, ® AT(9)
—I, ® BT(8)
C*" 1,
Q

X*(s*,0) =

Differentiating the system (8) with respect to T
and s* and evaluating the result at point (T =
I,s* = s) we obtain

P = [0 17,

where

AB) @ I, — I, ® AT(0)
-1, ® BT(0)

X(0) = X*(s(6),0) = C)® I,
0

Introduce matrix F’:

Fr=r [—ﬁ?fa) I?V] = [—Fg((") IF]'

It is evident that

rank(F') = rank(ﬁ") = N + rank(T X (6)).
Now we can formulate our main result.

Theorem 1. (rank condition for s.1.i.).

Necessary and sufficient condition for the mod-
el (1) with constraints on model structure (2) to
be structurally locally identifiable under assump-
tion of controllability and observability is that for
almost all 8 excluding sets of measure zero

rank TX(#) = n’ (9)

Corollary 2. (order condition).
Necessary condition for model structure defined
in theorem 1 to be s.1.i. is

r > n?,
Remark 3. Note, that the result of testing the
condition (9) does not depend on choice of in-
dependent components from vector of system pa-
rameters. Moreover, if we choose arbitrary set of
estimated parameters (not system one) connect-
ed with set of independent system parameters
through one-to-one relation, the results of s.li.
analysis will be the same (of course, it doesn’t
concern identifiability of individual parameters).

Remark 4. From the forth equation of system (5)
it is clear that all elements of system matrix D
are always s.g.i. as distinct from other system
matrices. So, as also seen from the structure
of matrix X(6), restrictions on the elements of
matrix D do not influence on the result of analysis.



Therefore in the identifiability analysis one can
consider the case D = 0 for simplicity.

In case the condition (9) does not satisfied, the
model structure is s.n.i. But along with non-
identifiable parameters s.n.i. model can contain
sli. and even s.g.i. parameters. In (Avdeenko
and Je, 2000) we presented development of the
approach intended for studying identifiability of
each parameter considered separately. If the con-
dition (9) (and hence the condition (7)) is not
satisfied, there exist matrices L{#) and A(f) com-
posed of null space vectors for the matrix F':

Fp - L(0) + F.. - A(9) = 0. (10)
Rows of these matrices correspond to the elements
of system vector s. If matrix A(6) has zero row, ap-
propriate system parameter is s.1.i. Moreover, this
matrix can help to change model structure so as
to eliminate nonidentifiability. In (Gorsky, 1993)
method of computation of estimable parametric
functions on the basis of matrix A(f) is given.
Such functions can be chosen as new parameters
of the locally identifiable model structure.

To find A(8) we use relation between matrices F
and F’

[l Lkl [

From the structure of matrix F” one can see that
A(#) = 0. Thus, matrix A(f) is determined from

A() = -X(0)L, TX(O)L=0.

Now turn to the question of global identifiability.
Premultiplying the first equation in (8) by I' and
taking into account the second equation, we have

T X*(s*,0)(T - I,) = 0. (11)

It is evident that if matrix TX*(s*,6) has full
column rank, then T = I, and from the system
(8) s = s, i.e. the model structure is s.g.i. Now
we can formulate sufficient condition for global
identifiability.

Proposition 5. (rank condition for s.g.1.).
Sufficient condition for model structure defined in
theorem 1 to be structurally globally identifiable
is that the equality

rank TX*(s*(67),0) = n?  (12)

be not satisfied solely for § or §* belonging to
subsets of measure zero in the parametric space.

The following corollary gives constructive (but not
very efficient) method for practical application.

Corollary 6.

Sufficient condition for model structure defined in
theorem 1 and satisfying rank condition (9) to be
s.g.. is that factorization

det[(TX*)TTX"] =

=[Je®) []ait6) TT ma(6,67)
i Fj .

do not contain multipliers of the form h;(4,6*).

Proposition 5 gives only sufficient condition for
s.g.i. On the basis of this condition we have de-
veloped efficient method for full analysis based on
checking compatibility of the equalities h; (6, 0") =
0 with the initial system of equations.The ap-
proach allows to decrease the degree of polyno-
mials in the initial system of equations (5).

3. IDENTIFIABILITY CONDITIONS FOR
TWO CLASSES OF MODEL STRUCTURES

In this section we apply identifiability conditions
obtained in previous section for two frequently
used classes of model structures and develop easier
test for them. First, suppose that D = 0 (see
Remark 4), i.e. the dimension of vector of system
parameters is reduced.

3.1 First class of model structures

Consider model structure in which control and
observation matrices are numerical and do not
depend on the unknown parameters. In this case
B*=B,C*=C and

v 0 O
I'=|(0 I, 0 |,
0 0 I,

Matrix T'X in condition (9) has the form:

YAB) ® In — I ® AT (0)]
_In ® BT(G)
cel,

IX(6) = (13)

Let U and V be upper triangular matrices of
transformation of matrices BT and C to the
column echelon forms BT and C:
BT =BTU; C=cV. (14)
Assuming without loss of generality that rank B =
k and rankC = m, matrix BT has (n — k)
columns consisting of zeros, and matrix C' has
(n — m) such columns. Let the numbers of zero
columns of B~T and C form sets J! and J2. Define
U=U(J"), V = V(J?) - submatrices of matrices



U and V consisting of columns with numbers from
J* and J2.

Multiply matrix TX(#) in (13) by nonsingular
matrix V @ U. As a result we obtain

YAV QU -V @ ATU]

TX(VeU)= -v®BTU }
CVeU

It is not difficult to check that matrix TX(V QU)
has full column rank if and only if its submatrix
Y[AV @ U — V ® ATU] of less dimension 74 x
(n — k)(n — m) has full column rank. Taking into
account that rank(LX) = rank(TX(V @ U)), we
can formulate the following proposition.

Proposition 7. (rank condition for s.1.i.).

Letin (1) D =0, B and C be arbitrary numerical
matrices, vector of system parameters s = A, r,
independent constraints

¢fi = l[JO, (15)
be imposed on A. Necessary and sufficient condi-
tion for such model to be s.1.i. under assumption of
controllability and observability is that for almost
all § excluding sets of measure zero

rank yX(0) = (n—k)(n—m), (16)

where X(8) = A(0)V @ U — V@ A(6)TU.

Corollary 8. (order condition).
Necessary condition for model structure defined
in the proposition 7 to be s.l.i. is that

ra > (n—k)(n—m).

Note, that result of corollary 8 was first derived
in paper (Delforge, 1980) in a more intricate way
with the help of modal matrix approach.

If the model is s.n.i. we can investigate identi-
fiability of individual parameters analyzing ma-

trix A = —X(@)ﬁ, where L is determined from
$X ()L = 0, see also (Avdeenko and Je, 2000).

3.2 Second class of model structures

Let each column of B and each row of C contain
only one nonzero element. Renumbering compo-
nents of the state vector, such matrices can be
presented in the form:

(17)

where By = diag{by,---,bx},C1 = diag{e1, -, cq},

Cy = diag{cqs1, -, ¢m},q <= k. Denote J; =

{k+1,---,n} and Jo = {g+1, - kk+m-
g+ 1, ---,n} — sets consisting of numbers of zero
columns of matrices BT and C.

Let b = (b1,---,bk)T, c = (c1, -, cm)T be vectors
consisting of nonzero elements of B and C. Let
constraints on A be presented in form (15). By
analogy constraints on the nonzero elements of B
and C are presented as follows:

¢b = ¢o, &c=&o. (18)
Renumbering elements of system vector such that
nonzero elements of matrices B and C' stand
before their zero elements, matrix of constraints
T can be transformed to the form:

p»00 0 0
060 O 0
00¢ O 0
0 00 In-1yk 0
000 O Itn—1ym

It is not difficult to check that matrix ' X for that
class of models has full column rank if and only if
its submatrix of less dimension r 44, X [(n — k) (n —
m) + (k+m — q)] (rase = 74 + 1 + 7 Is total
number of constraints on A,b and ¢). Form of the
latter matrix is given in the following proposition.

Proposition 9. (rank condition for s.1.i.).

Let in (1) D = 0, B and C be of the form
(17), constraints (15), (18) be imposed on A and
nonzero elements of B and C, vector of system
parameters s = [AT, b7, cT]. Necessary and suf-
ficient condition for such model to be s.1.i. under
assumption of controllability and observability is
that for almost all # excluding sets of measure zero

rank yx(8) = (n — k}(n —m) + (k+ m — q),

% 00 a(Ji,Jy) o

where v = [0 ¢0:|,X(0): [ 0 —-BT

0 ¢
a(Ji i) = AOI() @ In(h) = I(J1) ®
ATI,(J2) (In(Jh) and I,(J2) are submatrices of
the identity matrix [, containing columns with
numbers from J; and jg), & = [81] - |Gkem—ql,
& = A(0)QL — L@ AT (As, I; and AT are the i-
th columns of matrices A, I,, and AT), BT and &
are submatrices of matrices BT and C consisting
of the first (k + m — ¢) columns, 6 is vector of
independent system parameters of the dimension

(n?4+k+m—ran)

R

k)

Corollary 10. (order condition).
Necessary condition for the model structure de-
fined in the proposition 9 to be s.l.i. is

Tabe > (n—k)(n—m)+ (k+m—gq).



If the model is s.n.i. we can investigate identifi-
ability of individual parameters analyzing matrix
A = —x(6)L, L is determined from the equation
x(0)L = 0.

Sufficient conditions for testing global identifiabil-
ity for two considered classes of model structures
are obtained from condition (12) perfectly in the
same way as conditions for local identifiability.

4. EXAMPLE

To illustrate advantages of proposed conditions we
consider an example being slight modification of
case study presented in (Audoly et al., 1998). Note
that our approach permits to test models of much
larger dimensions, but we can not present them
here because of lack of space.

Let model structure be determined by the follow-
ing numerical control and observation matrices
and six constraints on matrix A:

1000
01007,
0010
4 4

@13 = a3z = g4 = Qg2 = E a; = E a;s = 0.
i=1 =1

BT =(1000),C=

Thus, we have 10 independent system parameters
— T
6 = (a12,ai4, as1, @23, a3z, G433, A34, G41, @43, d4q)" .

To test identifiability of the model structure we
compute the following matrix Y X* (6*,6) =

0 ajy; 0

0 0 0

0 0 0

an 4+ a19 4+ azs —agze O
—an 0 —an

* - *
ajy+ a3y + ay + a1z + a3z —azz 0

To test s.li. we use proposition 7 and check
condition rankyX(0) = (n — k)(n — m) = 3,
where X () = )2"(0,0). It is clear from column
echelon form of this matrix that rank condition for
s.l.i. is valid. To test s.g.i. we have to determine
sets in the parametric space for which condition
ranky X*(6*,6) = (n—k)(n—m) = 3 is not valid.
One can see that it is not valid only if a4; = 0 or
if a7, = a3, = 0, i.e. on sets of measure zero in
the parametric space. Therefore we conclude that
the model structure is s.g.i.

It is interesting that with use of our approach
we can foresee consequences of imposing some
additional constraints on model structure. For
our example it is seen from the form of matrix
¥ X (0) that adding constraint as; = 0 may lead
to non-identifiable model structure. Indeed, one
can check that matrix ¥ X (f) in that case (of

dimension 7 x 3) has zero column. Thus, resulting
model structure is s.n.i.

5. CONCLUSION

In this paper we have presented conditions for
testing local and global identifiability of system
parameters of linear state space models. The con-
ditions proved to be much simpler for symbolic
computation than those generated by other meth-
ods. To test rank condition for local identifia-
bility one can apply built-in procedures of rank
computation accessible in most computer algebra
packages. As for testing global identifiability we
can not simply apply built-in procedure. On the
basis of sufficient condition for s.g.i. we develop an
algorithm being combination of Gaussian method
of exclusion with Buchberger algorithm for eval-
uation of Grobner basis. The method is imple-
mented in MAPLE V and ensures fulfillment of
both necessary and sufficient conditions for global
identifiability.
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