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Abstract: Feedback error learning method was recently proposed by Kawato et.al.
(M. Kawato and Suzuki, 1987) as a possible architecture of brain motor control which
is supported by experimental results in neurophysiology. In this paper, we analyze it as
a two-degree-of-freedom adaptive control for general time invariant linear plant with
adaptive controller in the feedforward path. A time delay is allowed in the feedback
loop as in the neuronal pathways of motor control. We derive stability condition of the
feedback error learning method based on the strict positiveness of the closed loop system.
The control performance of the feedback error learning method as a design strategy of
adaptive control has been demonstrated by simulation results.

Keywords: time delay; motor control; adaptive control; feedforward systems; inverse
system

1. INTRODUCTION

Feedback error learning method (FEL) was proposed
by Kawato et. al. (M. Kawato and Suzuki, 1987) as
a cerebellum model of motor control. This control
scheme is considered as an adaptive version of two-
degree-of-freedom control scheme with adaptive ca-
pability in the feedforward controller (Fig.1). The sta-
bility of FEL algorithm was discussed in (Miyamura
and Kimura, 2000)(Miyamura, 2001) for delay free
cases. In this paper, we extend the results to plants
which have large time delay in feedback loop. Ac-
tually, the existence of large time delay is a salient
feature of neuronal pathways and it is exactly the
reason why the brain adopts feedforward controllers
in addition to feedback.

In this paper, we set up the problem of FEL method
with time delay in the simplest framework of linear
time-invariant systems and give a stability condition of
FEL algorithm with time delay based on the positive
realness of the closed loop system. The main purpose

is to establish control theoretical foundation of the
FEL which is now a central focus of brain motor
control. Another important point of this paper which
was not dealt with in Kawato’s work and dealt with in
this paper is the problem of non-invertibility of plant,
which is the big nuisance for adaptive control.

2. FEL WITH TIME DELAY

2.1 Problem Formulation

Fig.1 illustrates the feedback error learning architec-
ture with time delay in the feedback loop. The objec-
tive of control is to minimize the error e = r−y where
r is the command signal and y is the plant output. The
input u to the plant P is composed of the output uf f of
feedforward controller Q(θ) which contains tunable
parameters θ , and u f b of feedback controller K1. If we
disregard the learning part of the architecture, this is a
typical two-degree-of-freedom control system. If P is
known and P−1 exists and stable, choosing Q = P−1
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Fig. 1. Feedback Error Learning Scheme with Time
Delay

makes the tracking perfect. Indeed, from the relations
u f f = P−1r, u f b = K1(r−y) and y = P(u f f +u f b), we
easily see that y = r.

The basic premise of FEL is that the cerebellum cor-
tex acquires a model of outer world through learning
while it is engaged in actual motor control (M. Kawato
and Suzuki, 1987). This implies that the motor control
is essentially a sort of adaptive control. The crucial
factor, which has been neglected in formulating motor
control as an adaptive control, is the signi£cant time
delay caused by neurotransmittance and visual percep-
tion.

In this section we discuss FEL from the viewpoint
of adaptive control. The feedforward controller K2 is
chosen to be identical to the inverse P−1 of P if P
is known and P−1 exists. Since P is unknown, we
must employ some adaptive scheme for K2 so that K2

converges to P−1. Note that the time-delay e−τ s, which
is identical to the time delay contained in the feedback
loop, is introduced to the reference signal to produce
the feedback error consistent with adaptation law. We
£rst make the following assumptions:

(A1) The plant P is stable and has stable inverse P−1.
(A2) The upper bound of the order of P is known.
(A3) The high frequency gain k0 = lim

s→∞
P(s) is as-

sumed to be positive.
(A4) The time delay τ is known.

The assumption (A1) is rather restrictive in the context
of control system design. This may be relaxed later.

If k0 is negative in (A3), the subsequent results are
valid by taking −P(s) instead of P(s). Hence, (A3)
is relaxed to the assumption that the sign of the high
frequency gain is known. For the sake of the simplicity
of exposition, however, we retain (A3) for simplicity
of exposition.

2.2 Parameterization of unknown systems

Now, we describe a method of adaptive construction
of a desired K2 under the assumption that τ is known
a priori. Throughout this paper, we use the following
parameterization of the unknown system K2:

dξ1(t)
dt

= Fξ1(t)+gr(t), (1)

dξ2(t)
dt

= Fξ2(t)+gu(t), (2)

u f f (t) = c(t)T ξ1(t)+d(t)T ξ2(t)+ k(t)r(t), (3)

where F is any stable matrix and g is any vector with
{F,g} being controllable. In (1)-(3), c(t), d(t) and k(t)
are unknown parameters to be estimated. This is a
standard parameterization of adaptive controller used
in [(Narendra and Valavani, 1989)]. Assume that the
true system is written as

dz1(t)
dt

= Fz1(t)+gr(t), (4)

dz2(t)
dt

= Fz2(t)+gud(t), (5)

ud(t) = cT
0 z1(t)+dT

0 z2(t)+ k0r(t). (6)

It is easy to see that taking u(t) = ud(t) and appropri-
ate selection of parameters c(t) = c0, d(t) = d0 and
k(t) = k0 can yield an arbitrary transfer function from
r(t) to u f f (t). To see this, let the matrix F and vector
g in a controllable canonical form

F =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

− f1 − f2 − f3 · · · − fn




, g =




0
0
...
0
1




.

From (1), (2), and (3), the transfer function from r(t)
to ud(t) is given by

Gudr =
k0 + cT

0 (sI −F)−1g

1−dT
0 (sI −F)−1g

=
k0sn +( fnk0 + cn)sn−1 + . . .+( f1k0 + c1)

sn +( fn −dn)sn−1 + . . .+( f1 −d1)
,

c0 =
[

c1 c2 . . . cn
]T

,

d0 =
[

d1 d2 . . . dn
]T

.

Therefore, we can construct any transfer function of
degree less than or equal to n by selecting parameters
c0, d0 and k0 appropriately.

2.3 Adaptation Law

In the ideal situation, K2 is identical to P−1. In that
case, e(t) = 0, u(t) = u f f (t) = ud(t) = P−1(s)r(t).
The true values c0, d0 and k0 of c(t), d(t) and k(t),
respectively, satisfy

k0 + cT
0 (sI −F)−1g

1−dT
0 (sI −F)−1g

= P−1(s). (7)

The error signal e(t) is de£ned as

e(t − τ ) = r(t − τ )− y(t − τ ).



The cost function is de£ned as

J(t) =
1
2

t∫
0

e2(σ)dσ . (8)

Since the unknown parameters c(t),d(t) and k(t) must
be updated so that the error signal e(t) decreases, the
adaptation law is given as,

θ(t) =
[

c(t)T d(t)T k(t)T
]T

,

dθ(t)
dt

=−α
∂ ¢J(t − τ )

∂θ

=−α
∂e(t − τ )

∂θ
· e(t − τ ). (9)

We choose K1 =const. Then, it follows that

e(t) =
u(t)−u f f (t)

K1
.

Using the approximation u(t) ∼ ud(t), we have

dθ
dt

=
α
K1

∂u f f (t − τ )
∂θ

e(t − τ ). (10)

From (3),

u f f (t) = θ(t)T ξ (t),

where ξ (t) :=
[

ξ1(t)T ξ2(t)T r(t)
]T

. Then, (10) can
be written as,

dθ
dt

=
α
K1

e(t − τ )ξ (t − τ ). (11)

We delayed the time of adaptation in accordance with
the time-delay in the feedback loop, rather than taking
the real time signal.

2.4 Convergence of algorithm

Now u(t) and ud are written as

u(t) = ud(t)−P−1(s)e(t − τ ),

ud(t) := P−1(s)r(t).

Then, if we de£ne ∆u(t) = u f f (t)−ud(t), we have

∆u(t) = (c(t)− c0)T ξ1(t)+(d(t)−d0)T ξ2(t)

−dT
0 (sI −F)−1gP−1(s)e(t − τ ). (12)

Since F is stable, we use the asymptotic relations

ξ1(t)→ z1(t),

ξ2(t)→ z2(t)−dT
0 (sI −F)−1gP−1(s)e(t − τ ).

The relation (12) is written as

∆u(t) = ψ(t)T ξ (t)−dT
0 (sI −F)−1gP−1(s)e(t − τ ),

where

ψ(t) := θ(t)−θ0 =


 c(t)− c0

d(t)−d0

k(t)− k0


 . (13)

From the relations u(t) = u f f (t)+K1e(t−τ ), we have

e(t) = −(G(s)+K1e−τ s)−1ψ(t)T ξ (t), (14)

where G(s) is given by

G(s) = k0 + cT
0 (sI −F)−1g. (15)

On the other hand, from (11), we have

dψ(t)
dt

=
dθ(t)

dt
= α e(t − τ )K1(s)ξ (t − τ ). (16)

Then, combining the above relation with (14) yields

dψ(t)
dt

= −αξ (t − τ )Lτ (s)ξ (t − τ )T ψ(t − τ ), (17)

where

Lτ (s) = K1(G(s)+K1e−τ s)−1. (18)

Theorem 1: Consider a delay-differential equation
described as

dz(t)
dt

= −αξ (t)L(s)ξ (t)T z(t − τ ). (19)

Assume that the following conditions hold:
(i) The differential equation

dz(t)
dt

= −αξ (t)L(s)ξ (t)T z(t) (20)

where L(s) := {A,b,cT ,d} is stable;
(ii) ξ (t) is bounded, i.e., there exists M0 > 0 such that

‖ξ (t)‖ ≤ M0, ∀t ≥ 0.

Then, if α > 0 satis£es following condition

α <
λ

τM

(
1

dPR+(Mδ/δ)SPQ

)

the delay-differential equation (19) is asymptotically
stable. Here, Mδ , δ and λ are

‖eAt‖ ≤ Mδe−δt Mδ > 0,δ > 0

‖U(t,s)‖ ≤ Me−λ (t−s) M > 0,λ > 0

where U(t,s) is transition matrix of (20),and

P = sup
t

∥∥∥∥
[ −bξ T (t)

α dξ (t)ξ (t)T

]∥∥∥∥
Q = sup

t
‖ξ (t)cT‖ R = sup

t
‖ξ (t)ξ T (t)‖

S = sup
t
‖bξ T (t)‖



The proof of Theorem 1 can be given based on the
arguments in (Halanay, 1966). For the assumption (i)
in Theorem 1, we introduce Lemma 1 as follows,

Lemma 1 (B.D.O. Anderson, 1986): Let L(s) be a
strongly positive real transfer function and ξ (t) be an
arbitrary time-varying vector. Then, the solution z(t)
of the differential equation

dz(t)
dt

= −ξ (t)L(s)ξ (t)T z(t) (21)

tends to a constant vector z0 such that ξ (t)z0 → 0. If
ξ (t) satis£es the so-called persistent excitation (PE)
condition (Narendra and Valavani, 1989), the above
z0 is equal to 0.

From Lemma 1, we can use Theorem 1 to establish the
stability of delay-differential systems (17), provided
that Lτ (s) is s.p.r.

3. THE NON-INVERTIBLE CASE WITH
TIME-DELAY

3.1 Parameterization of K2(s)

In the previous section, we assumed that P−1(s) exists
and is stable. This implies that the relative degree
of P(s) is zero and the zeros of P(s) are all stable.
Now, we relax the £rst condition and introduce an
approximated inverse P̂−1 as P̂−1(s) = P−1(s)W (s),
where W (s) is a £lter with relative degree identical
to that of P(s). Using this approximation, the relative
degree of P(s) which is the cause of non-invertibility,
is compensated by the relative degree of W (s).

In this section we make, instead of (A1), the assump-
tion (A1’) and an additional assumption (A4):

(A1’) All the £nite zeros of P(s) are stable.
(A5) The upper bound of the relative degree of P is

known.

We parameterize the feedforward controller K2(θ)
in the same way as the previous section ((1)-(3)).
Assume that the plant P(s) has relative degree k (k ≤
n), so we can write P(s) generally as

P(s) =
bksn−k +bk+1sn−k−1 + . . .+bn

sn +a1sn−1 + . . .+an
(22)

We select a pre£lter W (s) with relative degree k as

W (s) =
wk+1

sk +w1sk−1 + . . .+wk
,

(wi, i = 1,2, . . .k +1)

Assume that P−1(s)W (s) is represented as

dξ1(t)
dt

= Fξ1(t)+gr(t), (23)

dξ2(t)
dt

= Fξ2(t)+gu0(t), (24)

u0(t) = cT
wξ1(t)+dT

wξ2(t)+ kwr(t), (25)

where F is given as before. Then, P−1(s)W (s) is
written as,

kwsn +( fnkw + cw,n)sn−1 + . . .+( f1kw + cw,1)
sn +( fn −dw,n)sn−1 + . . .+( f1 −dw,1)

, (26)

where

cw =
[

cw,1 cw,2 . . . cw,n
]T

,

d =
[

dw,1 dw,2 . . . dw,n
]T

.

Hence, cw, dw and kw must satisfy the identity

kwsn +( fnkw + cw,n)sn−1 + . . .+( f1kw + cw,1)
sn +( fn −dw,n)sn−1 + . . .+( f1 −dw,1)

=
sn +a1sn−1 + . . .+an

b1sn−k +b2sn−k−1 + . . .+bn−k+1

· wk+1

sk +w1sk−1 + . . .+wk
.

Let f :=
[

f1 f2 . . . fn
]T

. The above identity yields
the relation

f −dw =




wk 0 . . . 0
wk−1 wk . . . 0

...
... . . . 0

w1 w2 . . . 0
1 w1 . . . wk

0 1 . . . wk−1
...

...
...

0 0 0 1







bn−k+1/b1

bn−k/b1
...

b2/b1




+
[

0 . . . 0 wk . . . w2 w1
]T

(27)

Let hi, i = 0, . . . ,n−1 be a sequence of solutions of a
difference equation

hi +hi−1w1 +hi−2w2 + . . .+hi−kwk = 0. (28)

Using (28), we have

[
h0 h1 h2 . . . hn−1

] · [ f −dw]

= w1hn−1 +w2hn−2 + . . .+wkhn−k.

The difference equation (28) has k independent solu-

tions h( j)
i , j = 1, . . . ,k; i = 0, . . . ,n− k as




h( j)
i = −w1h( j)

i−1 −w2h( j)
i−2 − . . .−wkh( j)

i−k, i ≥ k

h( j)
i =

{
0 , i �= j−1 i ≤ k−1,
1 , i = j−1.

Hence, we obtain






1 0 . . . 0 h(1)
k . . . h(1)

n−1

0 1
. . . 0 h(2)

k . . . h(2)
n−1

. . .
. . .

. . . . . . . . . . . . . . .

0 . . . 0 1 h(k)
k . . . h(k)

n−1




[ f −d]

=




h(1)
n−k+1 . . . h(1)

n−1

h(2)
n−k+1 . . . h(2)

n−1
. . . . . . . . .

h(k)
n−k+1 . . . h(k)

n−1







wk

wk−1
...
1


 . (29)

Using this relation, we can represent d1, d2, · · · , dk

as af£ne functions of the rest n − k parameters
dk+1, · · · , dn. More precisely, we have af£ne relations

d̄w = Md̂w +m

where M is a known matrix, m is a known vector and

d̄w =
[

dw,1 dw,2 · · · dw,k
]T

d̂w =
[

dw,k+1 dw,k+2 · · · dw,n
]T

.

The parameters dw,1, dw,2, · · · , dw,k are determined
once dw,k+1, · · · , dw,n are given. Hence, it is suf£cient
to estimate n− k unknowns d̂w for estimating dw.

3.2 Adaptation Law

Using the result of the previous section, we construct
an adaptation law. From Fig.2, the error signal e(t) is
de£ned as

e(t − τ ) = W (s)r(t − τ )− y(t − τ ).

The unknown parameters c(t),d(t),k(t) must be up-
dated so that the error signal e(t) decreases. Let

d̄(t) =
[

d1 d2 . . . dk
]T = Md̂(t)+m, (30)

d̂(t) =
[

dk+1 dk+2 . . . dn
]T

,

ξ2(t) =
[

ξ21 ξ22 . . . ξ2n
]T

, ξ̄2(t) =
[

ξ21 ξ22 . . . ξ2k
]T

,

ξ̂2(t) =
[

ξ2(k+1) ξ2(k+2) . . . ξ2n
]T

,

θ̂(t) =
[

c(t)T d̂(t)T k(t)
]T

, θ̂w(t) =
[

cT
w d̂T

d kw
]T

.

Note that the dimension of the unknown vector θ̂(t) is
now 2n− k instead of 2n in the previous section. The
output of K2(θ̂) is written as

u f f (t) = c(t)T ξ1(t)+ d̄(t)T ξ̄2(t)+ d̂(t)T ξ̂2(t)+ k(t)r(t)

= c(t)T ξ1(t)+ d̂(t)T (MT ξ2(t)+ ξ̂2(t))

+mT ξ̄2(t)+ k(t)r(t).

As in the invertible case, we use the same adaptation
law (10), which can be written as

dθ̂(t)
dt

= α


 ξ1(t − τ )

MT ξ̄2(t − τ )+ ξ̂2(t − τ )
r(t − τ )


K1(s)e(t − τ )(31)

3.3 Stability Proof

As in the previous case, let

ψ̂(t) := θ̂(t)− θ̂w. (32)

be a vector of parameter errors. Differentiation with
respect to t results in

dψ̂(t)
dt

=
dθ̂(t)

dt
= −α ξ̂ (t − τ )K1(s)e(t − τ ), (33)

where

ξ̂ (t − τ ) :=


 ξ1(t − τ )

MT ξ̄2(t − τ )+ ξ̂2(t − τ )
r(t − τ )


 .

The equation (14) is written in this case as

(G1(s)+K1(s)e−τ s)e(t) = −ξ̂ (t)T ψ̂(t), (34)

where G1(s) = (1− cT
w(sI −F)−1gw)P−1(s). Due to

(26), we have

G1(s) = (kw + cT
w(sI −F)−1g)W (s)−1. (35)

Combining (35) with (31) yields

dψ̂(t)
dt

= −α ξ̂ (t − τ )L1τ (s)ξ̂ (t − τ )T ψ̂(t − τ ), (36)

where

L1τ (s) := K1(s)W (s)(kw + cT
w(sI −F)−1g

+K1(s)W (s)e−τ s)−1 (37)

The equation (36) is of the same form as (16), and we
can use the same reasoning as in the previous section.

Theorem 2: Under the assumptions (A1′), (A2)-(A5),
the FEL scheme (30) and (31) is stable and e(t) tends
to 0, if K1(s) is chosen such that L1τ (s) given by (37)
is strictly positive real.

Remark: In order that L1(s) in (37) is strictly positive
real, K1(s) must contain higher derivatives so that the
relative degree of K1(s)W (s) is not greater than two.
This seems to be a drawback of Theorem 2 which
depends on the notion of the strong positive realness.
However, since the error signal e(s) in Figure 2 is
given by e(s) = W (s)r(s)−P(s)u(s), and W (s)−1P(s)
is proper, W (s)−1e(s) = r(s)−W (s)−1P(s)u(s) is a
proper function. This implies that W (s)−1e(s) can
be generated if the state of the plant is available
for feedback. Thus, for any proper U(s), u(s) =
U(s)W (s)−1e(s) can be constructed. Then, K1(s) =
U(s)W (s)−1 satis£es the requirement. Hence, it is not
dif£cult to implement K1(s) such that the relative de-
gree of K1(s)W (s) = U(s) is not greater than two.
Moreover, the invertible and delayed-free cases have
already done in which case L1τ (s) can be written in
more simple form.



4. SIMULATION RESULT

We show a simulation result for a plant, P(s) = (s +
1)/(s2 +7s+12). This plant has no stable inverse. The
McMillan degree of this system is 1. By parameteriz-
ing this system as written in Section 4, the feedforward
controller K2 is written as,

K2 =
ks2 +(5k + c2)s+(2k + c1)

s2 +(5−d2)s+(5−d1)
. (38)

On the other hand we write the unknown plant P(s) as,

P(s) =
b1s+b2

a0s2 +a1s+a2
, (39)

Hence when W (s) = 10/(s+10), the desired object of
adaptation is written as,

P−1(s)W (s) =
10a0s2 +10a1s+10a2

b1s2 +(10b1 +b2)s+10b2
. (40)

From (38) and (40) we obtain the following constraint
on parameter d1.

d1(t) = 55+10d2(t) (41)

So d1(t) is tuned by (41). Figure 2 shows the result of
simulation with time delay 50 steps. Adaptation starts
from 700 steps and after that the error signal converges
to zero and the tracking performance is obviously
better than before adaptation.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5
−:y(t),−−:r(t)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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0.5

1
error signal e(t)

Fig. 2. A simulation result

5. CONCLUSION

In this paper FEL proposed as an architecture of brain
motor control has been investigated from the view-
point of two-degree-of-freedom adaptive control. One
of the advantages of FEL is its ability to surmount
the dif£culty of time delay. We have investigated its
capability of compensating time delay through feed-
forward control. It is our intuition that adaptive control
can overcome time delay by slowing down the speed
of adaptation and it has been shown that the conver-
gence of FEL for the plant with time delay by making

the updating rate small. It may be interesting to exploit
physiological ground of these equations, as well as to
investigate mathematical properties of these equations
in depth to obtain less conservative stability conditions
of these equations.
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