Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

A PETRI NET BASED APPROACH FOR AGV DISPATCH SCHEDULING AND FLEET SIZE
DETERMINATION

Chin-l Liu and P. A. loannou

Center for Advanced Transportation Technologies
University of Southern California, Los Angeles, CA 90089-2562

Abstract: In machine job shops with automated guided vehicles (AGVs) as mean of transportation
of job parts, it's usually hard to determine the optimal fleet size of AGV's for achieving a desired
performance. In this paper a heuristic AGV dispatching algorithm is constructed based on the
concept of ideal pipeline and Petri Net theory to balance the job part scheduling and AGV
dispatching that minimize the number of AGVs for achieving zero idle time of the machine. The
problem is formulated as polynomial equations owing to the mathematical property of Petri Net and
since obtaining the optimal solution is computationally difficult, a way to circumvent the difficulty
is necessary for the real application of the algorithm. A heuristic dispatching algorithm that
schedules the dispatch of AGV's on a selected window basis is used to reduce the computation time
and makes the dispatching algorithm capable of real time implementation. Copyright £7 2002 IFAC
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1. INTRODUCTION

In machine job shop with AGVs as mean of materia
handling, due to the unbalance of job scheduling and
AGV dispatching, the phenomenon is well known that
the machines in a job shop usually experience repeated
cycles of busy periods interleaved with idle periods.
The machines may be busy and find many jobs waiting
in front of them, while sometimes they’re idle without
any job to be processed. Deployed more AGVs than
required not only increase the operation cost, but also
may result in increased congestion that cause delays in
completing their tasks. Using too few AGV's results in
underutilization of machining resources. It's desirable
to achieve the performance requirements by using the
smallest number of AGVs.

In order to resolve the required number of AGVsto be
deployed, several approaches can be found in the
literature. Maxwell (1982) presented an AGV
operational featured, time-independent analytical model
to estimate the minimum number of AGVs to support
the material handling needs in their pioneer work.
Egbelu (1987) presented four non-simulation
deterministic analytical procedures for estimation the
required number of AGVs. Sinriech (1992) developed a
multi-criteria optimization model that considers trade-
off ratio between cost and throughput to determine the
AGYV fleet size.

Heuristic methods with appeal stems from their ability
to obtain near optimal solution in polynomial time by
restricting the search domain toward feasible, efficient
schedules have become an important area of research
and application. Pipeline is a well-known technique that
is used to improve the throughput performance of
production lines and some electronic devices. Petri Net

as a tool for the optimal scheduling by through the
token planning that reduce the number of transitions
fired or cycle time of a manufacturing systems is well
known (Sun, 1994 & Jeng 1999). In this paper, a
heuristic AGV dispatch scheduling algorithm that
constructs an AGV dispatch schedule based on the
concept of idea pipeline and Petri Net theory is
introduced. The pipeline concept together with the
token movement behavior in a Petri Net model can
make a balanced dispatching schedule of AGV s through
the marking planning. That is, AGV's are represented by
tokens and the planned marking in the places governs
the dispatching of the AGV in a way that the AGVs
supplies jobs for machine and makes the machine as
busy as possible. Due to the mathematical feature of
Petri Net, the problem can be formulated as a set of
polynomial equations, and the AGV's dispatching
becomes that follows the solutions of the polynomial
equations. For large number of job parts, the solution
can't be obtained without long time computation. A
heuristic algorithm that applies small schedule window,
i.e. schedules a few AGVs' dispatches at a time, can
greatly reduce the calculation time and make the
algorithm capable of real time implementation. In the
simulation, we see that very good performance can be
obtained using the proposed dispatching algorithm.

The rest of the paper is organized as follows. Section 2
is the problem formulation. The proposed scheduler
model is presented in section 3. The exact solution is
discussed in section 4 and the heuristic dispatching
algorithm is presented in section 5. Section 6 is a
simulation example and section 7 is the conclusion.

2. PROBLEM FORMULATION

In this paper, we focus on solving the AGV dispatch
scheduling and the AGV fleet size problems on one job
type and one machine job shop, with constant
deterministic job processing time and known parameters



associated with machine and AGVs. Since delay of
AGVs caused by conflicts is usualy inevitable, in our
model, we alow delay of AGVs. The problem is
formulated as follows. There is only one job type with
M job parts stored in the shop that needs to be processed
by one machine. The tools for transporting the job parts
are unit-load AGVs and the processing orders of parts
by the machine is based on first come first serve rule
with constant service time T, required for each part.
The machine can handle at most one job part at a time
and the AGV is assumed to stay there until the machine
finished the part it carries before it can be dispatched
again. It is also assumed that initially the AGVs stay in
the machine area, and only one get dispatched every

Tenice - SiNCe it is easy to reach the zero idle time of the

machine by using much more AGVs than required and
introduce more operation cost. It is desirable to find the
minimum number of AGVs for achieving the required
performance. In this paper we will minimize the number
of AGVs subjecting to zero idle time of the machine.
More precisely, the problem is to determine the
minimum number of AGVs and scheduling the
minimum number of AGVs in a way that achieves the
zero idle time of the machine. The problem will further
be expressed in mathematical formulation.

. Ideal Minimum Number of AGVs

The detail of the AGV movement cycle in the shop can
beillustrated by atimed place Petri Net model as shown
in Figure 1. The minimum mean movement cycle time
of AGVs and N, the ideal minimum number of AGVs

required for achieving the zero idle time of the machine
is investigated. Then N,;, will be used as the initial

number of AGVs in the proposed agorithm. The
minimum mean movement cycle time of AGV will be
used as the criterion for determining the minimum
number of AGVsin the schedule window. In the model,
circles are places that represent the operation status of
the AGVs and bars are transitions that represent events
for separating different operation statuses and tokens
denote AGVs. A complete AGV movement cycle is the
AGV complete the seguence

{Po t2s Pu t3, P2y tas Pasts, Pt} - The placespg, py, ps,
p; and p, represent the operation statuses of AGV that

are serving by the machine, traveling to load a job part,
loading the job part, traveling back to the machine and
waiting in the machine's queue respectively. The
transitions t;,t,,t;,t, and t; represent the events that
the AGV is the first one in the machine's queue,
finished the service by the machine, arrived at the job
part destination, finished the loading of the job part and
arrived at the machine respectively. The processtimeis
associated with places and the transitions are timeless.
Followed Figure 1, as the time of each place specified,
the movement cycle time of AGV for job part K, equals

Tcyclq :Ttraveilk +Tloadk +Ttrave| 2 +TquaK +Tservice (1)

Ttravellk = + Tdd ayl,

Vunloaded

%

Ttravelzk = + Tde| ay2,

loaded

where subscript k represents job part K, and v, qa0q @Nd
Vieded &€ the AGV's speed when it is unloaded and
loaded respectively, and d, .d, are the total travel

distances from the machine to the job part and from the
job part to the machine respectively. These two
distances can be easily calculated for a given job shop
configuration. Ty, and Ty, are the times that the

AGVs need to stop to avoid collision for traveling from
machine to the job part and from the job part to machine
respectively. The time for processing the job part by a
machine or the time the AGV staying in the machine

areaequalsT,, . . - Tioaq, ISthe time required for the AGV
to load the job part and T, is the time the AGV waits

in the queue to be served by the machine. If there is no
other AGV in the queue before the arrival of an AGV,
Tque, iSO for that AGV.

t1: frist onein the queue
t2:finished the service

t3:arrivesat job part destination
T
t5:arrives at machine o P2

t4:finished loading
TSVIDQ

Py serving by the machine t
Py:travelling to load ajob N 3
part p. Tiravel2 °
P, loading ajob part 3
Py travelling back to
machine L

ts

P,:waiting in the queue

Ps Tawe

Figure 1: A timed place Petri Net model of an AGV
movement cycle

Let the total delay time, T, , for ajob part K be the

summation of Tyyan + Teay, aNd Ty, , and the real

work time required for the job part be T, , then

Tdelayk :Tdelay:lk +Tde|ay2k +Tquq< (2)

va:)rkk = Tcycl e Taa ay, (3)

Therefore, the minimum AGV total work time for M
job parts in the shop to be moved by the AGVs to the
machine and served by the machineis

M
Tmin_total = kZ-I—wv:)rkk (4)
=1
The minimum mean time of AGV movement cycleis
Toi total
Tmin_mean = % (5)

Then, N, , the ideal minimum number of AGV's that

needs to be deployed in the shop to achieve the zero idle
time of the machineis

N.. =ceil min_mean 6
weef=g O

where ceil(x) denotes the smallest integer greater than x.

e The Minimum Number of AGVs Required in the
Worst Case

Let T,q.be the time that an AGV departs from a

machine for a job part and bring the job part back to the



machine without including the time waiting in the
gueue and the time served by the machine, i.e.

Tcycle :Tcycle ~Tservice _Tque (7)
For the worst case, suppose that all of the job parts have

TCycle max(TCyde) and let M, bethe minimum number

of AGVsrequired for achieving the zero idle time of the
machine. In the beginning, after the first AGV is
dispatched, there are M,,,-1 AGVs before the
dispatched AGV to be served by the machine. The AGV
needs to be back to the machine before time
(M in =D XTeice 10 keep the machine busy. Therefore,

M rin » needs to SatISfy (M min _z)szsrvice < max(-FcycIe)

S(Mpin D) *XTeice - T IS
Omax(T,qe) 0
M in =ce|l[-)£m+l (8)
H Tenice B
After the N,;, and M, are obtained, the one machine

job shop AGV scheduling problem becomes searching
the real minimum number of AGVsSN, N, < N<M .,

min =
to achieve the zero idle time of the machine and it can
be formulated as
Minimize (N)
Sst. N,, <NsM

Tidle =0

M =N

Tiqe IS theidle time and the number of job parts M needs
to be greater than N the minimum number of AGVs.

3. PROPOSED MODEL

An ideal pipeline is that if ajob can be divided into n
even portions of sub-jobs and each sub-job can be
processed by one machine, then line up the n machines
and ignore the overhead, the throughput of the line can
be n times faster. The ideal pipeline is modeled using
Petri Net as shown in Figure 2 that the pipeline has n
stages, represented by the resource places p,to p,. The

place p,and p,ae input and output buffers
respectively. The processing time of each stageis T, that
is the transitions t;, i=1,..,n+1, can be fired every time T,
if the place °t; is marked.

t: fired every Tif ot ismarked

@+®~I~@I~@+®

t p,t Pit P

out

input Sagel ... Sagen-1 Sagen output

Figure 2: Petri Net Model of ideal pipeline.

Let d be the smallest integer greater than T, divided
bY Tenice s 1-€

.IT
d :cenHTH—CW'e E 9)
Since the time for the machine to process a job part is
equal t0 Tg.ie, Dy the time d x T, &fter the
dispatched of the AGV from the machine area for a job
part, the AGV will carry the job part back to the

machine. If the time T IS treated as the time for a
stage of an ideal pipeline, then initialy the job part as
shown in Equation (9), is d stages away from the
machine. Since the AGV after dispatched is moving
toward the machine, every T.. AGV is one stage
closer to the machine and finally it will reach the
machine at time d x T, . The AGVs moving in the
shop can be viewed as the products moving in a
pipeline stage by stage.

The Petri Net pipeline scheduler is shown in Figure 3,
that place p, represents the resource place where the

machine located, and the processing time of the
machine for a job part is Tg... When the machine

finished processing a job part, the finished job part goes
to place p,, and the AGV goes to the transient place
Perp Where AGV's get dispatched. The place p,, , the

output buffer for holding the done job parts can be
treated as infinite size. The model is worked in such a
way that when the machine in p, finished processing a

job part, or every T, al thetransitions ¢, i =1,...,n
will be fired, if the t; is marked. It will make the AGV
inthe places { p;, p,, ..., p,} Move one place forward, i.e.
the tokens in places { p, p,...., p,} move to the next
places closer to the place p, . At the same time, if there
is a token in place p,, it goes to place p,,to be
dispatched for a new job part by firing one of the
transitionsin {T,, T,,.., T} . The move of the token from
Pot0 pegpand  from  p,,, to any places in
{ P, P2, Po} Can be treated as timeless, that is the

dispatching of the AGV can be viewed as simultaneous
activity as the moving forward of the tokens in places

{ Pu P2y P} -

Since each place in {py, p;,.., py} IS a stage of the
pipeline, from optimization point of view each place
can only be occupied by one AGV. Therefore, in order
to have optimal schedule the AGV when dispatched can
only be assigned to pick up the job parts that make the
AGV fill in the empty places. Since the fired of
transitions T, will move the token from place

Perp 10 Py » @nd the d is dependent on T, of the job
part K that the AGV is going to pick, or the place p, is
the dth place apart from place p,. Therefore the

assigning of an AGV to ajob part K is governed by

choosing the part K with T, or the firing of transition

.F
Ty with d satisfiesm,, =0 and d = ETWAE The length
of AGV pipeline scheduler is dependent on M, the

minimum number of AGV required for the worst case.
Therelation of M, with theindex nin Figure 3 is that

M., = ntl. Before further investigating the

dispatching algorithm, there are some definitions and
properties that related to Petri Net (Murata 1989) and
the scheduler model need to be illustrated.
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Figure 3: A Petri Net model of the AGV pipeline
scheduler of one machine AGV system.

Definition 1: Since the marking of the Petri Net may
change every T.... by the firing of some transitions
in{t,,t,q,...tg} and in {T,,T,,.... T}, a step i is the
period between the two firing of the transitions. A
schedule state S is defined as the marking of the places
instepi.

Definition 2: For a Petri Net with x transitions and y
places, the incidence matrix A = [&;] isan xxy matrix of
integers and its typical entry is given by a; =aj -a;,

where a; =w(i,j) is the weight of the arc from transition
i to its output place j and a; =w(j,i) is the weight of the

arc from transition i to itsinput place|.

Definition 3: For an ordinary Petri Net, i.e. al of its arc
weights are 1's, with x transitions, the firing vector U =
[u] isaxx1 matrix of integers and its typical entry u; =

if thei transition isfired, otherwise u;= 0. Then theU =
[u]; isthe firing vector of the jth step.

Property 1: The AGV pipeline scheduler model is stable
and controllable.

Proof: Since the place p,,, istransient and timeless and

can be treated as input place for the places
{ P, Pp, - P} @nd the size of pyy is assumed to be

infinite. We should only concern about the marking of
places { p,, Pny.-» Po} - L€t the incidence matrix

between the trangtions {t,,t,_,,...to}and places
{ Pn: Paey. - Po} P A @Nd the incidence matrix between
transition {T,,,T,... T} and places { p,, Ppy, - Po} b€

B, then
31 0 0 . 00 @ 0O0 .. 00
0 O O
mo-10 . 0 ®10..03
. .0 4 .0
A=0 0B=0 O
0- . . .0 o - - - - -0
0 - 0 0
Qo o 1 0} %) 00 .. 13
O 0 .. 1 -1 @00 .. oa
where A is (n+1)x(n+l) and B is (n+1l)xn. The
schedule state equation can be written as
Om, O Om, O Ot, O aT, O
%n O 0 % 0 O
o O Poa O n-1] n-1[]
O.0 O, 0 0.0 0.0
0 O=0" 0 +A0 O +BO O (10)
O- 0 O 0 g- 0 O- 0
Opn O On O 0; O O O
Oh0 OO0 00 OO
Empﬂ a gmpo a—l @to Q-l ETI Q—l
where [mp m, . my, mpo]iT is the schedule state

that represents the marking of the places {p,, pr.1.... Po}
a ith sep, and [t t., t, tJl,and
[Tn T - - Tl]iT_1 are the firing vectors of transitions
{to, tyegs ot} @nd {T,,,T,... T} respectively. Since the

firing vector of {t,, t..4,..., to} at step i—1 is based on the
marking of the places 't;, j0{1, 2, ... ,n}, that is exactly
the schedule state at step i—1. Therefore, the firing

vector [t, - o]l Of {t, tog, ot} @ StEP i-1 iS
equal to the schedule state [mpn mpo]iT-l' The

state equation (10) can thus become

Om, O © 0 O . otim, O ar, O
0
%anD a 0 0. O%npmﬂ %”_”:l
a. o o . . . O g. o
O O=0g O +BO O (11)
0 - % o - - - % % O- 0
g o
Dmplmg)o..oomplD BB
gmpo a @ 1 O@mpo a—l ET]- Q—l
u
Replace the schedule state [mpn mpo] by

Sand firing vector [T, T, . T byuandlet

m oo . . 0O
0

Hoo. . of
a . . 0
A=T] 0,
0 . .0
0

0 0 0g
0 1 of

Then state equation (11) becomes
§ =AS;+BU, (12)
By looking at equation (12), we can verify the stability
and controllability as follows:
Sability: Since al of the eigenvalues Ay, Ay,...., ApsiOf
matrix A are within the unit circle, i.e. \j|< 1, j 0§ 1, 2,
.,n+1}, the system is stable.
Controllability: Since its controllability matrix has full
row rank, i.e. rank[B, AB,......, A”BJ= n+1, the system is

controllable.

Definition 4: A sequential schedule state S, of S isthat
the tokens in places p,,, in step i move to the places
p,instepi+1.

Definition 5: An admissible schedule set is a set of
schedule states such that any two adjacent schedule
states S, and §, S, 1S asequentia schedule state of
S, and each schedule state in the set has its places
po marked, i.e. m, =1.

Theorem 1: For one machine AGV system scheduling
using AGV pipeline scheduler, let F be a sequence of
firing vectors, if F makes a set of schedule states 8 and

6 O then the sequence F is a schedule that will
achieve zero idle time of the machine.

Proof: The schedule set 6 is a subset of admissible
schedule set that has the place p, always marked. Since

Py IS aways marked, it means that the machine is
aways busy, i.e. the idle time of the machine is zero.



The AGVs follow the sequence of firing vector F can
achieve the zero idle time of the machine. Therefore,
the sequence F is a schedule that achieves zero idle time
of the machine.

Without loss of generality, let matrix B" be an identical

matrix |(n+ 1)x(n+1) and U’ = [Tn Tha . T O]T ,
then state equation (12) can be written as
§ =AS,+BU/; =AS, +Ui, (13)

Therefore, the zero idle time of machine job shop using
minimum number of AGV's scheduling problem is that:
To find the minimum number of AGVsNand a job part

associated with the AGVswith T, ineach stepi, st.
S =AS,+Ui,
m,, =1 for each schedule state §

m, +m, +...+m, =N

cenBT_CV—deEL d
Hlrvice H

M =N , Misthetotal number of job parts
4. EXACT SOLUTION

By expanding the formulation above for M job parts
scheduling, the solution of the zero idle time using
minimum number of AGVs scheduling problem by
enumerating all of the possible cases is equivalent to
solve the following two procedures iteratively.

Procedure 1 Find the firing  sequences

[(Tg,)o (Tg)p---(Tq, Imals s b =12,....that satisfy

(Tn)j +(Tn71)j +... +(T1)j :11 J :0,1,..._, M -1
g (mpn)k =(T)ka
mpn,l)k :(mpn)k—l +(T) i
% ' k=12,....,M
D .
D(mpl)k :(mpz)kfl +(T1)k71

E (mpo)k :(mpl)k—l

(m, ) #(m, ) +...+(m, ), =N,i=01..,M-1
(mpy)O s],(mpy)ls], ...... ,(mpy)M <1, y=12....,n
(m); =1 j=12....M
Procedure 2: Sequencing the job parts to satisfy any of
the firing sequences in [(Ty)o (Ty)geeereer (T w1y, Such

that each job part K withit's T, for an AGV satisfies

(14)

ceilHrWﬂHs[(d)k_l]h k=1...Mm (15)
b=1, 2, ... are the possible sequences obtained by
solving Equation (14). The segquences that have its final
scheduling state S, ={0,..0,11....3 with the places

poto py, marked and the M job parts satisfied

equation (15) is the dispatching schedule that the AGV's
can follow to achieve the zero idle time using the N
AGVs. If the M job parts in the shop can’t make any of
the firing sequences in the set b to have equation (15)
satisfied, increasing the number of AGVs by one, i.e. N

= N+1 and repeat the procedures 1 and 2, until equation
(15) issatisfied or N = M.

5. PROPOSED DISPATCHING ALGORITHM

As the computation for optimal scheduling has a
combinatory flavor, a scheduling for a smaller number
of job parts is required to avoid lengthy computation.
Therefore, a window that confines the number of job
parts to be scheduled at atime is applied and a criterion
for determining the minimum number of AGVs in a
scheduling window is also necessary. The size of the
window governs the number of job parts to be
scheduled and picked by AGVs. If the window size is
w, then only w job parts are scheduled to be picked by
the AGVsat atime.

5.1 The Criterion for Determining Minimum Number of
AGV in a Schedule Window

Since only w job parts are scheduled in a window, by
using arbitrary number of AGVs, the firing sequences
can be easily obtained using equation (14) and it may
also easy to find plenty set of w job parts that satisfy
equation (15). Therefore, since the use of window, a
criterion is required for determining the minimum
number of AGVs in the window. The minimum mean
cycle time of AGVsis used as the criterion to determine
the number of AGVs to be deployed, i.e. the number of
AGVs can achieve the zero idle time and also have the

ZTwork,
job parts satisfied = <

2Tin mean WheEre x= w, 2w,

3w,..is the number of job parts that have been scheduled
to be processed or already been processed by machine.

5.2 Time Lending and Time Borrowing

Since the schedule is on a window by window basis, the
first state of current window is the sequential state of
the last state in the previous window and the first state
of next window is the sequential state of the last state of
current window, and so forth. The scheduling of current
window is related to the schedule of the previous and
next windows. We know that, in order to reach the zero
idle time, the places p and p need to be aways

marked. If some AGVs are assigned to pick up the far
job parts, then there are some AGVs needed to be
assigned to the near job partsin order to have the places
poad p marked. Therefore, if in the previous
window, AGVs are assigned to pick up far job parts,
then in the current window, the AGV's may be forced to
pick up near job parts. The summation of the job parts,
Y Tuork » SCheduled in each window is dependent on the
adjacent window. Then the total real work time for the

w

& Twork, +Tlend =T

borrow
job parts in a window isT,;, =- ;
w

where T,y is the time borrowed by the previous
window and T, iS the time borrowed from the next
window.




5.3 Dispatching Algorithm

The dispatch of AGVs is scheduled in a window by
window basis. It is desirable to start from using the
ideal minimum number of AGVs N,,,to search the

schedule for meeting the zero idle time requirement. A
dispatch scheduling algorithm for generating a non-
delay schedule, a schedule in which the machine is kept
busy at any time when it could begin processing some
operation is now presented using the following steps.

Step 1 Calculate the minimum mean time of the AGV
movement CycleT, i, e » the ideal minimum number of

schedule state §,={0,.., 0, 1,...,1} with N_;, (N) of 1's
intheplaces pyto p . Theideal minimum number
of AGVsisN,, and the window size is w=5 for al
Cases. The'rcycle of the selected partsislisted in the table
from the smallest to the biggest. The minimum number
of AGVs N, the machine idle time, and the scheduled
sequence of the exact solution and heuristic algorithm
are listed in the table separately. The results show that

the heuristic solutions are the same as the exact
solutions for al of the random selected cases.

Table 1: Comparison of exact solutions and heuristic
solutions for 6,7 and 8 job parts

B H o = Nrin Exact solution Heuristic solution
AGVs N,;, and the length of the pipeline scheduler n. T e of iob
of oy N Idie Scheduled job part | Trimmean| N Idle Scheduled job part
1 M min . parts (sec.) ;I'ime) Sequence 'zime) Sequence
— — H 1_mear parts SEC. SEC.,
Tmin_mean - szorkk ’ Nmin = cell and
M & Tearvice 6 | 567,775,167 6 | 6 | 0 2502, 1167, 1410] 1677 | 6 | 0 2502, 1896, 774,
141.9,189.6, 250 1896, 56.7, 7.1 116.7,56.7, 1419
. Dnax(l’cyde) 0 7 | 54351792 | 6 | 6 | 0 264.6,1293, 792,| 1663 | 6 | 0 1533, 2175, 2646,
n=cel ————-1 1293, 1532, 217, 2175,1533, 54.3, 56.1, 79.2,129.3, 54,
) 264.6 56.1
= Teervice =
e 8 | 411,747,966, | 6 | 6 | 0 2325,2092,747, | 16425 | 6 | 0 164.4, 96.6, 2292,
Step 2 Initialize the schedule state S to be {0..., 0, 1, 107.4, 1314, 164) 107.4, 41.4, 164.4, 2325, 74.7, 1074,
2202, 2325 96.6, 1314 41.4,131.4

1,..,1} with N, of I'sin the places p,to p - L€t
N =N_. and determine the window size w.

min

Step 3 Use window size w, the length of the scheduler n,

N and the initial state of the window S, to find the
possible firing sequences F for the N AGV's such that F
= [(Tg,)o (Tg)peweeeros (Ty, ) w-a] SAiSFies equation (14), with
M replaced by win (14).

Step 4 Find the w job parts with T, satisfies that

cenETTWﬂE:[(d)k_l]b k=1..,w

service

(16)

for the d of Ty'sin each set of firing sequence and with

ZTWOFki +Tlend _Tbormw

(Tuin)o == v for the firing sequence
b such that

[¢)

z (Twin)c + (Twin)b

c=1

2 Tmin_mean

g+1 (17)

where g is the number of windows that have been
scheduled before current window.

Step 5 If afiring sequence b satisfies equation (17), then
the firing sequence b is the schedule to be followed and
the job parts satisfy eguation (16) are the parts
scheduled to be processed and goes to step 6. Otherwise
increase N by 1,i.e N =N +1, and goesto step 3.

Step 6 Execute the tasks by following the selected firing
sequence and job parts. Use the final state of the current
window as §, of the next window and goes to step 3 to
find the schedule for the next window, until no more job
parts in the shop or the process needs to be ended.

6. SMULATION

In the simulation, we only compare 6, 7 and 8 job part
cases and the results are shown in Table 1. The job parts
are randomly selected from a shop. Initialy, the AGVs
depart from the machine area every T, 1.6 initia

7. CONCLUSION

In this paper, a heuristic AGV dispatching agorithm
based on the concept of ideal pipeline and Petri Net
theory is constructed and implemented for balancing the
dispatching of AGVs to achieve the zero idle time of
machine using minimum number of AGVs. Since the
algorithm applies small schedule window that only
schedules a few AGVsS dispatches at a time, the
calculation time for finding the suitable solution is
greatly reduced so that makes the algorithm capable of
real time implementation. The simulation result shows
that the use of the proposal algorithm obtains very close
result as the optimal solution in some random selected
cases.
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