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Abstract: In machine job shops with automated guided vehicles (AGVs) as mean of transportation
of job parts, it’s usually hard to determine the optimal fleet size of AGVs for achieving a desired
performance. In this paper a heuristic AGV dispatching algorithm is constructed based on the
concept of ideal pipeline and Petri Net theory to balance the job part scheduling and AGV
dispatching that minimize the number of AGVs for achieving zero idle time of the machine. The
problem is formulated as polynomial equations owing to the mathematical property of Petri Net and
since obtaining the optimal solution is computationally difficult, a way to circumvent the difficulty
is necessary for the real application of the algorithm. A heuristic dispatching algorithm that
schedules the dispatch of AGVs on a selected window basis is used to reduce the computation time
and makes the dispatching algorithm capable of real time implementation. Copyright  2002 IFAC
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1. INTRODUCTION1

In machine job shop with AGVs as mean of material
handling, due to the unbalance of job scheduling and
AGV dispatching, the phenomenon is well known that
the machines in a job shop usually experience repeated
cycles of busy periods interleaved with idle periods.
The machines may be busy and find many jobs waiting
in front of them, while sometimes they’re idle without
any job to be processed. Deployed more AGVs than
required not only increase the operation cost, but also
may result in increased congestion that cause delays in
completing their tasks. Using too few AGVs results in
underutilization of machining resources. It’s desirable
to achieve the performance requirements by using the
smallest number of AGVs.

In order to resolve the required number of AGVs to be
deployed, several approaches can be found in the
literature. Maxwell (1982) presented an AGV
operational featured, time-independent analytical model
to estimate the minimum number of AGVs to support
the material handling needs in their pioneer work.
Egbelu (1987) presented four non-simulation
deterministic analytical procedures for estimation the
required number of AGVs. Sinriech (1992) developed a
multi-criteria optimization model that considers trade-
off ratio between cost and throughput to determine the
AGV fleet size.

Heuristic methods with appeal stems from their ability
to obtain near optimal solution in polynomial time by
restricting the search domain toward feasible, efficient
schedules have become an important area of research
and application. Pipeline is a well-known technique that
is used to improve the throughput performance of
production lines and some electronic devices. Petri Net

                                                          

as a tool for the optimal scheduling by through the
token planning that reduce the number of transitions
fired or cycle time of a manufacturing systems is well
known (Sun, 1994 & Jeng 1999). In this paper, a
heuristic AGV dispatch scheduling algorithm that
constructs an AGV dispatch schedule based on the
concept of ideal pipeline and Petri Net theory is
introduced. The pipeline concept together with the
token movement behavior in a Petri Net model can
make a balanced dispatching schedule of AGVs through
the marking planning. That is, AGVs are represented by
tokens and the planned marking in the places governs
the dispatching of the AGV in a way that the AGVs
supplies jobs for machine and makes the machine as
busy as possible. Due to the mathematical feature of
Petri Net, the problem can be formulated as a set of
polynomial equations, and the AGV’s dispatching
becomes that follows the solutions of the polynomial
equations. For large number of job parts, the solution
can’t be obtained without long time computation. A
heuristic algorithm that applies small schedule window,
i.e. schedules a few AGVs’ dispatches at a time, can
greatly reduce the calculation time and make the
algorithm capable of real time implementation. In the
simulation, we see that very good performance can be
obtained using the proposed dispatching algorithm.

The rest of the paper is organized as follows. Section 2
is the problem formulation. The proposed scheduler
model is presented in section 3. The exact solution is
discussed in section 4 and the heuristic dispatching
algorithm is presented in section 5. Section 6 is a
simulation example and section 7 is the conclusion.

2. PROBLEM FORMULATION

In this paper, we focus on solving the AGV dispatch
scheduling and the AGV fleet size problems on one job
type and one machine job shop, with constant
deterministic job processing time and known parameters
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associated with machine and AGVs. Since delay of
AGVs caused by conflicts is usually inevitable, in our
model, we allow delay of AGVs. The problem is
formulated as follows. There is only one job type with
M job parts stored in the shop that needs to be processed
by one machine. The tools for transporting the job parts
are unit-load AGVs and the processing orders of parts
by the machine is based on first come first serve rule
with constant service time serviceT required for each part.
The machine can handle at most one job part at a time
and the AGV is assumed to stay there until the machine
finished the part it carries before it can be dispatched
again. It is also assumed that initially the AGVs stay in
the machine area, and only one get dispatched every

serviceT . Since it is easy to reach the zero idle time of the
machine by using much more AGVs than required and
introduce more operation cost. It is desirable to find the
minimum number of AGVs for achieving the required
performance. In this paper we will minimize the number
of AGVs subjecting to zero idle time of the machine.
More precisely, the problem is to determine the
minimum number of AGVs and scheduling the
minimum number of AGVs in a way that achieves the
zero idle time of the machine. The problem will further
be expressed in mathematical formulation.

•  Ideal Minimum Number of AGVs

The detail of the AGV movement cycle in the shop can
be illustrated by a timed place Petri Net model as shown
in Figure 1. The minimum mean movement cycle time
of AGVs and minN the ideal minimum number of AGVs
required for achieving the zero idle time of the machine
is investigated. Then minN  will be used as the initial
number of AGVs in the proposed algorithm. The
minimum mean movement cycle time of AGV will be
used as the criterion for determining the minimum
number of AGVs in the schedule window. In the model,
circles are places that represent the operation status of
the AGVs and bars are transitions that represent events
for separating different operation statuses and tokens
denote AGVs. A complete AGV movement cycle is the
AGV complete the sequence

},,,,,,,,,{ 1453423120 tptptptptp . The places 0p , 1p , 2p ,

3p  and 4p represent the operation statuses of AGV that
are serving by the machine, traveling to load a job part,
loading the job part, traveling back to the machine and
waiting in the machine’s queue respectively. The
transitions 1t , 2t , 3t , 4t  and 5t  represent the events that
the AGV is the first one in the machine’s queue,
finished the service by the machine, arrived at the job
part destination, finished the loading of the job part and
arrived at the machine respectively. The process time is
associated with places and the transitions are timeless.
Followed Figure 1, as the time of each place specified,
the movement cycle time of AGV for job part K, equals

servicequetravelloadtravelcycle TTTTTT
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++++= 21     (1)
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where subscript k represents job part K, and unloadedv  and

loadedv  are the AGV’s speed when it is unloaded and
loaded respectively, and 

kk
dd 21 ,  are the total travel

distances from the machine to the job part and from the
job part to the machine respectively. These two
distances can be easily calculated for a given job shop
configuration. 

kdelayT 1  and 
kdealayT 2 are the times that the

AGVs need to stop to avoid collision for traveling from
machine to the job part and from the job part to machine
respectively. The time for processing the job part by a
machine or the time the AGV staying in the machine
area equals serviceT .

kloadT is the time required for the AGV
to load the job part and 

kqueT is the time the AGV waits
in the queue to be served by the machine. If there is no
other AGV in the queue before the arrival of an AGV,

kqueT is 0 for that AGV.

t1: frist one in the queue
t2:finished the service
t3:arrives at job part destination
t4:finished loading
t5:arrives at machine

P0:serving by the machine
P1:travelling to load a job
part
P2:loading a job part
P3:travelling back to
machine
P4:waiting in the queue
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Figure 1: A timed place Petri Net model of an AGV
movement cycle

Let the total delay time, 
kdelayT , for a job part K be the

summation of 
kdelayT 1 ,

kdelayT 2  and 
kqueT , and the real

work time required for the job part be 
kworkT , then

kkkk quedelaydelaydelay TTTT ++= 21            (2)

kkk delaycyclework TTT −=                  (3)

Therefore, the minimum AGV total work time for M
job parts in the shop to be moved by the AGVs to the
machine and served by the machine is
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The minimum mean time of AGV movement cycle is
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Then, minN , the ideal minimum number of AGVs that
needs to be deployed in the shop to achieve the zero idle
time of the machine is
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where ceil(x) denotes the smallest integer greater than x.

•  The Minimum Number of AGVs Required in the
Worst Case

Let cycleT be the time that an AGV departs from a
machine for a job part and bring the job part back to the



machine without including the time waiting in the
queue and the time served by the machine, i.e.

queservicecyclecycle TTTT −−=                 (7)
For the worst case, suppose that all of the job parts have

)max( cyclecycle TT = and  let minM  be the minimum number
of AGVs required for achieving the zero idle time of the
machine. In the beginning, after the first AGV is
dispatched, there are 1min −M  AGVs before the
dispatched AGV to be served by the machine. The AGV
needs to be back to the machine before time

serviceTM ×− )1( min  to keep the machine busy. Therefore,
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After the minN and minM are obtained, the one machine
job shop AGV scheduling problem becomes searching
the real minimum number of AGVs N, minmin MNN ≤≤ ,
to achieve the zero idle time of the machine and it can
be formulated as

Minimize (N )
s.t.  minmin MNN ≤≤

0=idleT
NM ≥

idleT is the idle time and the number of job parts M needs
to be greater than N the minimum number of AGVs.

3. PROPOSED MODEL

An ideal pipeline is that if a job can be divided into n
even portions of sub-jobs and each sub-job can be
processed by one machine, then line up the n machines
and ignore the overhead, the throughput of the line can
be n times faster.  The ideal pipeline is modeled using
Petri Net as shown in Figure 2 that the pipeline has n
stages, represented by the resource places 1p to np . The
place inp and outp are input and output buffers
respectively. The processing time of each stage is T, that
is the transitions ti, i=1,..,n+1, can be fired every time T,
if the place •ti is marked.

Pin t P1 Pn-1
t Pn t Pout

Stage n output

t

t: fired every T if  •t is marked

Stage n-1Stage 1input

Figure 2: Petri Net Model of ideal pipeline.

Let d be the smallest integer greater than cycleT divided
by serviceT , i.e.
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Since the time for the machine to process a job part is
equal to serviceT , by the time d × serviceT  after the
dispatched of the AGV from the machine area for a job
part, the AGV will carry the job part back to the

machine. If the time serviceT  is treated as the time for a
stage of an ideal pipeline, then initially the job part as
shown in Equation (9), is d stages away from the
machine. Since the AGV after dispatched is moving
toward the machine, every serviceT  AGV is one stage
closer to the machine and finally it will reach the
machine at time d × serviceT . The AGVs moving in the
shop can be viewed as the products moving in a
pipeline stage by stage.

The Petri Net pipeline scheduler is shown in Figure 3,
that place 0p represents the resource place where the
machine located, and the processing time of the
machine for a job part is serviceT . When the machine
finished processing a job part, the finished job part goes
to place outp  and the AGV goes to the transient place

tempp where AGVs get dispatched. The place outp , the
output buffer for holding the done job parts can be
treated as infinite size. The model is worked in such a
way that when the machine in 0p finished processing a
job part, or every serviceT , all the transitions it , i =1,…,n
will be fired, if the •ti is marked. It will make the AGV
in the places }...,,,{ 21 nppp move one place forward, i.e.
the tokens in places }...,,,{ 21 nppp move to the next
places closer to the place 0p . At the same time, if there
is a token in place 0p , it goes to place tempp to be
dispatched for a new job part by firing one of the
transitions in },...,,{ 21 nTTT . The move of the token from

0p to tempp and from tempp  to any places in
}..,,,{ 21 nppp  can be treated as timeless, that is the

dispatching of the AGV can be viewed as simultaneous
activity as the moving forward of the tokens in places

}...,,,{ 21 nppp .

Since each place in }...,,,{ 10 nppp  is a stage of the
pipeline, from optimization point of view each place
can only be occupied by one AGV. Therefore, in order
to have optimal schedule the AGV when dispatched can
only be assigned to pick up the job parts that make the
AGV fill in the empty places. Since the fired of
transitions dT will move the token from place

tempp to dp , and the d is dependent on 
kcycleT of the job

part K that the AGV is going to pick, or the place dp is
the dth place apart from place 0p . Therefore the
assigning of an AGV to a job part K is governed by
choosing the part K with 

kcycleT or the firing of transition

Td with d satisfies 0=
dpm  and 










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cycle

T

T
d k . The length

of AGV pipeline scheduler is dependent on minM  the
minimum number of AGV required for the worst case.
The relation of minM  with the index n in Figure 3 is that

minM  = n+1. Before further investigating the
dispatching algorithm, there are some definitions and
properties that related to Petri Net (Murata 1989) and
the scheduler model need to be illustrated.



Pn tn Pn-1 P1 t1 P0 t0 Pout
t2

T1
Tn-1

Tn

Ptemp

ti: fired every Tservice,if  •ti marked
T1: assigned AGV to the job part with
    <= Tservice
Tn-1: assigned AGV to the job part with

<= (n-1) Tservice
Tn: assigned AGV to the  job part with

<= nTservice

pout: jobs done
P0: job is processing by machine
p1: job to be served by machine within time <= Tservice
pn-1: job to be served by machine within time <=(n-

1)Tservice
pn: job to be served by machine within time <= nTservice
ptemp: AGV dispatchingcycleT

cycleT

cycleT

Figure 3: A Petri Net model of the AGV pipeline 
scheduler of one machine AGV system.

Definition 1: Since the marking of the Petri Net may
change every serviceT  by the firing of some transitions
in }...,,,{ 01 ttt nn −  and in },...,,{ 11 TTT nn − , a step i is the
period between the two firing of the transitions. A
schedule state Si is defined as the marking of the places
in step i.
Definition 2: For a Petri Net with x transitions and y
places, the incidence matrix A = [aij] is an x×y matrix of
integers and its typical entry is given by −+ −= ijijij aaa ,

where +
ija =w(i,j) is the weight of the arc from transition

i to its output place j and −
ija =w(j,i) is the weight of the

arc from transition i to its input place j.
Definition 3: For an ordinary Petri Net, i.e. all of its arc
weights are 1’s, with x transitions, the firing vector U =
[ui] is a x×1 matrix of integers and its typical entry ui =1
if the i transition is fired, otherwise ui = 0. Then the Uj =
[ui]j is the firing vector of the jth step.

Property 1: The AGV pipeline scheduler model is stable
and controllable.
Proof: Since the place tempp is transient and timeless and
can be treated as input place for the places

}...,,,{ 21 nppp  and the size of pout is assumed to be
infinite. We should only concern about the marking of
places }..,,,{ 01 ppp nn − . Let the incidence matrix
between the transitions }...,,,{ 01 ttt nn − and places

}...,,,{ 01 ppp nn − be 1A and the incidence matrix between
transition },..,,{ 11 TTT nn − and places }..,,,{ 01 ppp nn −  be
B, then
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where 1A  is (n+1)×(n+1) and B is (n+1)×n.  The
schedule state equation can be written as
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where [ ]T
ipppp mmmm

nn 011
..

−
is the schedule state

that represents the marking of the places {pn, pn-1,.., p0}
at ith step, and [ ]T

inn tttt 1011 .. −− and

[ ]T
inn TTT 111 .. −− are the firing vectors of transitions

}..,,,{ 01 ttt nn − and },..,,{ 11 TTT nn −  respectively. Since the
firing vector of {tn, tn-1,..., t0} at step i−1 is based on the
marking of the places •tj, j∈ {1, 2, … ,n}, that is exactly
the schedule state at step i−1. Therefore, the firing
vector [ ]T

in tt 10.... − of }....,,,{ 01 ttt nn − at step i−1 is

equal to the schedule state  [ ]T
ipp mm

n 10
....

−
. The

state equation (10) can thus become

11

1

1

.

.

.
.
.

01..00
00..00
......
......
0..001
0..000

.

.

0

1

1

0

1

1

−

−

−


























+





















































=



























−−

i

n

n

ip

p

p

p

ip

p

p

p

T

T
T

B

m
m

m
m

m
m

m
m

n

n

n

n

(11)

Replace the schedule state [ ]Tppp mmm
nn 01

...
−

by

S and firing vector [ ]T
nn TTT 11 ...− by U and let
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Then state equation (11) becomes
11 −− += iii BUASS                         (12)

By looking at equation (12), we can verify the stability
and controllability as follows:
Stability: Since all of the eigenvalues λ1, λ2,…., λn+1of
matrix A are within the unit circle, i.e. |λj| ≤ 1, j ∈ { 1, 2,
….,n+1}, the system is stable.
Controllability: Since its controllability matrix has full
row rank, i.e. rank [ ]BAABB n......,,, = n+1, the system is
controllable. 

Definition 4: A sequential schedule state 1+iS of iS is that
the tokens in places 1+zp  in step i move to the places

zp in step i+1.
Definition 5: An admissible schedule set π is a set of
schedule states such that any two adjacent schedule
states 1+iS and iS , 1+iS is a sequential schedule state of

iS , and each schedule state in the set has its places

0p marked, i.e. 1
0

=pm .

Theorem 1: For one machine AGV system scheduling
using AGV pipeline scheduler, let F be a sequence of
firing vectors, if F makes a set of schedule states θ and
θ ∈ π, then the sequence F is a schedule that will
achieve zero idle time of the machine.
Proof: The schedule set θ is a subset of admissible
schedule set that has the place 0p  always marked. Since

0p is always marked, it means that the machine is
always busy, i.e. the idle time of the machine is zero.



The AGVs follow the sequence of firing vector F can
achieve the zero idle time of the machine. Therefore,
the sequence F is a schedule that achieves zero idle time
of the machine.

Without loss of generality, let matrix B′ be an identical
matrix I(n+1)×(n+1)  and U′ = [ ]T

nn TTT 0... 11− ,
then state equation (12) can be written as

1111 −−−− ′+=′′+= iiiii UASUBASS            (13)
Therefore, the zero idle time of machine job shop using
minimum number of AGVs scheduling problem is that:
To find the minimum number of AGVs N and a job part
associated with the AGVs with cycleT  in each step i, s.t.
         11 −− ′+= iii UASS
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4. EXACT SOLUTION

By expanding the formulation above for M job parts
scheduling, the solution of the zero idle time using
minimum number of AGVs scheduling problem by
enumerating all of the possible cases is equivalent to
solve the following two procedures iteratively.
Procedure 1: Find the firing sequences
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Procedure 2: Sequencing the job parts to satisfy any of
the firing sequences in bMddd TTT ])........()()[( 110 − , such
that each job part K with it’s 

kcycleT for an AGV satisfies
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b=1, 2, … are the possible sequences obtained by
solving Equation (14). The sequences that have its final
scheduling state }1,....,1,1,0..,0{=MS with the places

0p to 1−Np  marked and the M job parts satisfied
equation (15) is the dispatching schedule that the AGVs
can follow to achieve the zero idle time using the N
AGVs. If the M job parts in the shop can’t make any of
the firing sequences in the set b to have equation (15)
satisfied, increasing the number of AGVs by one, i.e. N

= N+1 and repeat the procedures 1 and 2, until equation
(15) is satisfied or N = M.

5. PROPOSED DISPATCHING ALGORITHM

As the computation for optimal scheduling has a
combinatory flavor, a scheduling for a smaller number
of job parts is required to avoid lengthy computation.
Therefore, a window that confines the number of job
parts to be scheduled at a time is applied and a criterion
for determining the minimum number of AGVs in a
scheduling window is also necessary. The size of the
window governs the number of job parts to be
scheduled and picked by AGVs. If the window size is
w, then only w job parts are scheduled to be picked by
the AGVs at a time.

5.1 The Criterion for Determining Minimum Number of
AGV in a Schedule Window

Since only w job parts are scheduled in a window, by
using arbitrary number of AGVs, the firing sequences
can be easily obtained using equation (14) and it may
also easy to find plenty set of w job parts that satisfy
equation (15). Therefore, since the use of window, a
criterion is required for determining the minimum
number of AGVs in the window. The minimum mean
cycle time of AGVs is used as the criterion to determine
the number of AGVs to be deployed, i.e. the number of
AGVs can achieve the zero idle time and also have the

job parts satisfied mean

x

i
work

T
x

T
i

min_
1 ≥

∑
= ,where x= w, 2w,

3w,..is the number of job parts that have been scheduled
to be processed or already been processed by machine.

5.2 Time Lending and Time Borrowing

Since the schedule is on a window by window basis, the
first state of current window is the sequential state of
the last state in the previous window and the first state
of next window is the sequential state of the last state of
current window, and so forth. The scheduling of current
window is related to the schedule of the previous and
next windows. We know that, in order to reach the zero
idle time, the places 0p and 1p need to be always
marked. If some AGVs are assigned to pick up the far
job parts, then there are some AGVs needed to be
assigned to the near job parts in order to have the places

0p and 1p marked. Therefore, if in the previous
window, AGVs are assigned to pick up far job parts,
then in the current window, the AGVs may be forced to
pick up near job parts. The summation of the job parts,
∑ workT , scheduled in each window is dependent on the
adjacent window. Then the total real work time for the

job parts in a window is
w
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=
∑
=1 ,

where lendT  is the time borrowed by the previous
window and borrowT  is the time borrowed from the next
window.



5.3 Dispatching Algorithm

The dispatch of AGVs is scheduled in a window by
window basis. It is desirable to start from using the
ideal minimum number of AGVs minN to search the
schedule for meeting the zero idle time requirement. A
dispatch scheduling algorithm for generating a non-
delay schedule, a schedule in which the machine is kept
busy at any time when it could begin processing some
operation is now presented using the following steps.

Step 1 Calculate the minimum mean time of the AGV
movement cycle meanTmin_ , the ideal minimum number of
AGVs minN  and the length of the pipeline scheduler n.
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Step 2 Initialize the schedule state 0S to be {0,.., 0, 1,
1,..,1} with minN of 1’s in the places 0p to )1( min −Np . Let
N = minN  and determine the window size w.
Step 3 Use window size w, the length of the scheduler n,
N and the initial state of the window 0S  to find the
possible firing sequences F for the N AGVs such that F
= ])........()()[( 110 110 −− wddd w

TTT satisfies equation (14), with
M replaced by w in (14).
Step 4 Find the w job parts with cycleT satisfies that
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for the d of Td's in each set of firing sequence and with
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where g is the number of windows that have been
scheduled before current window.
Step 5 If a firing sequence b satisfies equation (17), then
the firing sequence b is the schedule to be followed and
the job parts satisfy equation (16) are the parts
scheduled to be processed and goes to step 6. Otherwise
increase N  by 1, i.e 1+= NN , and goes to step 3.
Step 6 Execute the tasks by following the selected firing
sequence and job parts. Use the final state of the current
window as S0 of the next window and goes to step 3 to
find the schedule for the next window, until no more job
parts in the shop or the process needs to be ended.

6. SIMULATION

In the simulation, we only compare 6, 7 and 8 job part
cases and the results are shown in Table 1. The job parts
are randomly selected from a shop. Initially, the AGVs
depart from the machine area every serviceT , i.e. initial

schedule state 0S = {0,.., 0, 1,...,1} with minN  (N) of 1’s
in the places 0p to )1( min −Np . The ideal minimum number
of AGVs is minN  and the window size is w=5 for all
cases. The cycleT of the selected parts is listed in the table
from the smallest to the biggest. The minimum number
of AGVs N, the machine idle time, and the scheduled
sequence of the exact solution and heuristic algorithm
are listed in the table separately. The results show that
the heuristic solutions are the same as the exact
solutions for all of the random selected cases.

Table 1: Comparison of exact solutions and heuristic
solutions for 6,7 and 8 job parts

Exact solution Heuristic solutionNo

. of

parts

cycleT of job

parts  (sec.)

Nmin

N Idle
Time
(sec.)

Scheduled job part
Sequence

Tmim_mean N Idle
time
(sec.)

Scheduled job part
Sequence

6 56.7, 77.1, 116.7,
141.9, 189.6, 250.

6 6 0 250.2, 116.7, 141.9,
189.6, 56.7, 77.1

167.7 6 0 250.2, 189.6, 77.1,
116.7, 56.7, 141.9

7 54.3, 56.1, 79.2,
129.3, 153.2, 217.
264.6

6 6 0 264.6, 129.3,  79.2,
217.5, 153.3,  54.3,
56.1

166.3 6 0 153.3, 217.5, 264.6,
56.1, 79.2, 129.3, 54.3

8 41.1, 74.7, 96.6,
107.4, 131.4, 164.
229.2, 232.5

6 6 0 232.5, 229.2, 74.7,
107.4, 41.4,  164.4,
96.6,  131.4

164.25 6 0 164.4, 96.6, 229.2,
232.5, 74.7, 107.4,
41.4, 131.4

7. CONCLUSION

In this paper, a heuristic AGV dispatching algorithm
based on the concept of ideal pipeline and Petri Net
theory is constructed and implemented for balancing the
dispatching of AGVs to achieve the zero idle time of
machine using minimum number of AGVs. Since the
algorithm applies small schedule window that only
schedules a few AGVs’ dispatches at a time, the
calculation time for finding the suitable solution is
greatly reduced so that makes the algorithm capable of
real time implementation. The simulation result shows
that the use of the proposal algorithm obtains very close
result as the optimal solution in some random selected
cases.
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