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Abstract An adaptive sliding mode tracking controller using neural network is proposed for robot

manipulators with uncertainties. In this new control scheme, a RBF neural network is used to adaptively

learn system uncertainties bounds, and then the outputs of neural network is used to adjust the switching

gain. This new controller can guarantee both strong robustness with respect to system nonlinearities and

uncertainties and the asymptotic convergence of the tracking error to zero.
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Notation A, ;,(A) denotes the minimum eigenvalue

of matrix 4. For a [IR", |a | denotes the absolute

. T
value vector, i.e. |a [=(a||ay|....la, D" . |la]

denotes the Euclidean norm, ie. ||a |F Va Ta
. . ., . T
sign(a )=(sign(ay), sign(a, ),...,sign(a, )) " .

[ .INTRODUCTION

The popularly known computed-torque method
(Craig, J. J., 1989) as been shown to be effective for
robot manipulator control. However, the control
scheme relies on an exact robot model which is
practically unavailable in many cased due to
inevitable uncertainties. Hence, the approach of
solving model uncertain problems has attracted

considerable attentions in the past decade.

So far, in order to compensate for such uncertainties
in the robot manipulator dynamic equation, many
control strategies have been proposed. There are

basically three approaches to the control of such

uncertain systems: 1) adaptive control, 2) sliding
mode control, 3) neural network control. Adaptive
control methods are applied to systems mainly with
parametrized uncertainties. In adaptive control design,
the linear-in-parameter assumption is usually used to
formulate error equations which relate measurable
signals to parameter errors whereby a parameter
adaptive updating law can be formed (Sun D. et. al.,
1992, Battilotti, S., et.al.,1997, and Slotine, J-J.E.,
et.al. 1989). Sliding-mode control exploits the
variable structure concept. It first defines the sliding
surface in the error state space, and then employs a
discontinuous control law to drive the error state to
slide along the surface until it converges. The major
advantages of sliding mode control are robustness to
parameter uncertainty and invariance to unknown
disturbances. However, in sliding-mode control, to
calculating the switching gains, it is usually assumed
that the bounds on the uncertainties are known
(Yeung, K. S. et. al., 1988, Fu, L. C. et. al., 1992).
This may lead to a conservative design. In general,
precise bounds on the uncertainty are difficult to

compute.



In recent years, neural networks have been
extensively studied for use in the field of control
engineering, especially robot manipulator control,
primarily because of their excellent features such as
learning ability, nonlinear mapping, and parallel
processing. Many neural network-based controller, as
in Nam, B. H., et. al., 1997, Kwan, C. M., et. al.,
1995, Carelli, R., et. al, 1995 and Man Z., et. al.,
1995) have been proposed for the compensation for
the effects of nonlinearities and uncertainties so that

system performances can be improved.

In this paper, a new neural network-based adaptive
robust tracking control scheme is proposed for robot
manipulators with uncertainties. In this scheme, a
neural network is used to adaptively learn the
unknown bound of system uncertainties, and then the
output of the neural network is used to adaptively
adjust the switching gain. Through integrating the
sliding mode control technique and the excellent
learning ability of neural network, the proposed
controller has strong robustness with respect to
system uncertainties and nonlinearities, and can
guarantee the asymptotic convergence of joint

position and velocity tracking errors to zero.

II. STATEMENT OF PROBLEM

Consider an n-degree-freedom robot manipulator

system
M(q)G+C(q.q)q +G(g)=T+14 (D)

Where ¢,q,¢ [R" are the link position, velocity,
and acceleration vectors, respectively, M(q)R"™"
c( g , g ) OR™ the
centripetal-Coriolis matrix, G(¢q ) [IR" the gravity

the inertia matrix,

forces acting on the links, T, [IR"is a disturbance

such as static friction, and T [IR" the control input
torque vector. The rigid dynamics (1) has the
following properties (. Lewis , F. L, et. al., 1993):

P1. The inertia and centripetal-Coriolis matrices have

the following property

1 - ) "
VG M@= Ca.gy=0 DIR @
Where M (q) is the time derivative of matrix M.

P2. The inertia matrix M(q ) is symmetric, positive

definite, and bounded.

Generally, in practical robot systems, the
perturbations in system parameters are inevitable.
Hence, this paper considers the case that the
parameter matrices in model (1) can be divided as

following
M(q)=M(q)+0M(q),
C(q.9)=Cy(q,9) +0C(q,q),
G(q)=G(q) +9G(q) 3)

where M (q) ., Cy(q,q) , and Gy(q) are the

nominal parts and are assumed to be known exactly,

whereas OM(q) , 0C(q,q) , and OG(q) are the

estimating  errors, and denote  parametric

uncertainties.

Substituting expressions (3) into (1), the dynamic

model of robot system can be rewritten as
M (9)§ +Co(q,9)g + Go(q) +

F(q,4,4) =TT, 4)
with F(q,4,4) =0M(q)g + &(q,4)q + &(q)

denoting system uncertainty.

It is assumed that system uncertainty F(q,q,q) is
upper bounded by a positive function F(¢) , i.e.

Further, we assume the following known bound for
disturbance T,

IT41<Ty (%)

where T’ is known positive constant.

Let q,,q4, [IR" denote the desired joint position
and velocity, respectively, and define the tracking
erroras e=q —q,, €=q4 —qg.
For robot system (4), we choose the following
switch planes
s=é+/N\e (6)
with A= dlag(/\ I,A 2,...,A n) , /\i>0'



Using (6), the model (4) can be rewritten as
Ms = _Moqr _Coqr _GO —(Cs +1 -F +Td (7)
where ¢,=q,-Ne,§,=G,;—Ne.

Our objective is to design a control law such that the
joint position and velocity errors go to zero. In other
words, the control law should be able to force the

system to move along the sliding surface s=0.

If the uncertain bound F', is known, based on the

sliding mode control technique, we can design the
following law that can guarantee the desired dynamic

performance.

Theorem 1. Consider the system (4) with the sliding
surface s=0 defined by (6). If the control law is

designed as
T=MG,+C,q,+G,—Ks—(F () +T )sign(s) (8)
where K [IR™" is positive definite matrix.

Then, the tracking errors of joint position and

velocity asymptotically converge to zero.

Proof : Choose the Lyapunov function candidate as

V= %STMS 9)

Differentiating » with respect to time, and using

expression (7), we get

V= %STMS +sT Ms
1 . .. .
=5 (M =C)s+s" (-M o, =Cod, =

Substituting (8) into (10), and using property 1, we

have
V=-s"Ks +sT(—(F0 +T)sign(s) —F +T,;)
Noting that

sT(=(F o+T)sign(s) = F +T )

<s|" (Fo+TgF|4r4) <0 for |s|#0

Therefore, we get
y T 2
V<=s'Ks <=A i, (K)|s]]” <0

Thus, by means of Lyapunov theory, s reaches the
sliding mode s=0 in a finite time. This, in turn,

implies that e - 0, ¢ - 0,as ¢ - o,

Remark 1. In sliding mode control law (8), the only
knowledge required is the upper bound of system
uncertainty. However, in general, the precise bound
on the uncertainty is rarely available in practice.

Therefore, in the following, we consider the case that
the positive nonlinear function £ is unknown.

[II. NEURAL NETWORK

In this paper, we use a RBF neural network to
adaptively learn the bound F( of system

uncertainty, i.e.

F (x,0)=6"0(x) (11)

A

Where 8 is the estimation of network weight
vector @, and the vector@(x) is Gaussian type of

function whose ith element is defined as
o) =expl- x—c,I?/0*) (2

Where c¢; represents the center of the ith basis

function, O represents the spread of the basis

function.
Further, the following assumption are made

A1) The network approximation error £(x) LIR" is

bounded by known positive constant, i.e.
1€(x) |56 "@(x) ~F o(t) I<w (13)
where 6 is the optimal weight.

Remark 2. Assumption Al is quite common in the
neural networks literature, and has been proved by
many researchers(Sadegh, N., 1991 , Sanner, R . M.,
et. al. ,1992).

A2) For the bound F (f) of system uncertainty

and the vector w in (13), the following inequality is



satisfied

In the following, we will use the output of neural
estimator (11) to adjust the switching gain so that
switching planes s=0 are ensured asymptotically
stable, and then the tracking errors asymptotically

converge to zero.

IV. NEURAL SLIDING-MODE CONTROL

Considering the following control law

T =M, +C 4, +G,=Ks = (6(x) +T )sign(s) (15)
with the weight adaptive updating rule

8 =ne(x)|s" (16)

where 1 >0, is the adaptive rate.

Theorem 2. For the robot system (4) with the
sliding surface (6) and assumptions Al and A2, the
control law (15) with (16) can guarantee that the

tracking errors of joint position and velocity

asymptotically converge to zero.
Proof. Define the following Lyapunov function
V=lsTMs+ltr(§Tr]_19N) (17)
2 2
where 6 =0 -0 , §=é

Differentiating 7 with respect to time and considering

expression (7), we have
V= %STMS +sTMs'+tr(§TI7_1§)
=57 (M = Cs 5" (=M 4, ~Cod, -
Gy -F+r)+(@Tn7'8)  (13)
Using control law (15), (16), and property 1, we have
V=-s"Ks +sT(—(éT¢ +T )sign(s) —
Fr )+ (870719

=-s"Ks +sT(—(éT¢Eign(s)) +ST(—T0sign(s) -

Ft )+ +r(0 =697 n7'6)

= —STKS—|S|TéT¢+tr( équ)s|T) +

sT (=Tysign(s) - F +1,,) — tr(6 'dds")
Considering the following equalities

(@7 ) = tr( |5 6" p)=|s|" 070

(@ "gs")=ir(|sT0 Tp)=|s"0 "o

we have
V=-sTKs +ST(—T0sign(s) -F +1,) -}S|T9* o

Further, Noting that

T T T
$T(EE AT Sl [ F Tyl <lsl (1FHT )
we can get

V< =sTKs=Is" (@ T F)AsT (ToAT,) (19)

Finally, considering Assumption Al, A2, and
expression (5), the second term and the third term in

(19) satisfy the following inequalities, respectively,

157 (@ T F)) =I5\ (8" -F y+F o F])
= —s|” (&(X) +F o F])

< 5" (e(X) +w) <0 for |s|£0

and  ~|s|" (T ) <O0.

Hence, we get
y T 2
V<=5 Ks <=A Lin(K)||s||” <0

Then, it following from the Lyapunov theory that s
approaches zero in finite time, i.e. the sliding mode
occurs in finite time. That implies e - 0, ¢ - 0,

as t — 0o,

Remark 3. In this theorem, the uncertain bound
needed for calculating the switching gain is estimated
by RBF neural network. Hence, this proposed control
removes the limitation that

scheme a priori



knowledge about the bound of unknown parameters

is required in conventional sliding mode control.

Remark4 .Since the control law (15) is discontinuous
along the sliding surface, it can lead to control
chattering. Chattering is undesirable in practice
because it involves high control activity and may
excite high frequency unmodelled dynamics. The
problem of chattering can be solved by smoothing out
the discontinuous control inside a boundary layer
neighboring the sliding surface (Slotine, J.J. E., 1987,
T. P. Leung, et. al., 1991).

V. CONCLUSION
A neural network-based adaptive sliding-mode
control design methodology is proposed by using the
theory of VSS and the nonlinear mapping of neural
network. The major contribution of this scheme lies
in removing the requirement of a priori knowledge of
the uncertain bound by adaptive of the switching gain
using neural network. This control technique can
guarantee the asymptotic convergence of joint
position and velocity tracking error to zero, and has
strong robustness with respect to system uncertainties

and external disturbance.
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