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Abstract: Presented is a method of continuous sliding mode control design to provide for
the second-order sliding mode on the selected sliding surfaces in a three-loop control
system, where two outer-loop virtual control signals must be smooth enough to be tracked
in the inner loops. The control law in the vicinity of the sliding surface is a nonlinear
dynamic feedback that in absence of unknown disturbances provides for finite-time
convergence of the second-order reaching phase dynamics. The controller with a second-
order disturbance observer in a combination with the proposed continuous dynamic
feedback attracts the system trajectories to boundary layers around two sliding surfaces of
the outer control loops with the second-order sliding accuracy in presence of unknown
disturbances and the discrete-time control update.  Copyright © 2002 IFAC
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1. INTRODUCTION

In multiple-loop backstepping-type control systems,
an important issue is to provide a so-called virtual
control signal to be smooth in an outer loop, for it
has to be tracked by inner cascades of a multi-loop
system. Smoothness of a control signal is not easy
achievable in control systems with sliding modes
without degrading high precision and robustness.

The idea of this work is to use combination of both
the sliding mode estimator for a plant disturbance
and smooth sliding mode controller to design a
smooth sliding mode controller that is robust to
disturbances and provides finite time convergence to
the custom made sliding surface. Two types of
smooth sliding mode controllers are to be designed:
A first order smooth finite reaching time sliding
mode controller with a traditional sliding mode
observer for disturbance observation, (under the
discrete-time control with a zero-order hold, the

accuracy of holding the trajectories on the sliding
surface is of the first order real sliding ( )TO );
A second order smooth finite reaching time sliding
mode controller with a second order sliding mode
observer for disturbance observation, (under the
discrete-time control with a zero-order hold, the
accuracy of holding the trajectories on the sliding
surface is of the second order real sliding ( )2TO ).

For many control applications, Sliding Mode Control
(SMC) has been proved the efficient technique to
provide high-fidelity performance in different control
problems for nonlinear systems with uncertainties in
system parameters and external disturbances. Ideal
sliding modes feature theoretically-infinite-frequency
switching, while the real conventional sliding modes
feature high finite frequency switching of an input
signal (control). Such a mode might be unacceptable
if the control signal has to be tracked by inner
cascades of a multi-loop system. Trading the absolute
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robustness on the sliding surface for the system
convergence to a small domain, the “boundary
layer”, around it under a continuous control law, the
methods of this group employ a high-gain saturation
function or a sigmoid function (Utkin, 1992; Slotine
and Li, 1991; Edwards and Spurgeon, 1998). In the
continuous-time control systems with sampled-data
measurements and/or discrete-time control action
(zero-order hold with digital control), different types
of closed-loop boundary-layer dynamics are
employed to provide for a smooth control, varying
from adaptive solutions (Zinober et al, 1999) to
fixed-gain deadbeat controls with disturbance
estimation using delayed-time data (Su et al, 2000).
Another alternative (Kachroo, 1999) to the latter
approach is to incorporate into the “boundary-layer”
dynamics an exosystem model for disturbances
(Francis and Wonham, 1976) avoiding the direct
observer-based disturbance estimation.

The idea to hide discontinuity of control in its higher
derivatives has been realized using higher order
sliding modes (Levant, 1998; Bartolini et al., 1998).
The resulting higher-order sliding mode is of
enhanced accuracy and robustness to disturbances.
However, a drawback of the direct application of this
approach to chattering attenuation is that it cannot
tolerate unmodeled fast dynamics. Therefore, the
designed continuous control cannot be, for instance,
an outer-loop feedback in a multi-loop control
system.

The idea of this paper is to use both the disturbance
estimation and the higher-order sliding mode
techniques to design a continuous sliding mode
control, providing finite-time convergence to the
sliding surface and establish the second-order sliding
mode in absence of unknown disturbances. In case
when disturbances are present, the disturbance
observer determines the accuracy. Employing the
second-order observer (Levant, 1998), the second-order
sliding accuracy can be achieved. The main
contribution of this paper is in further development of
the approach presented in the work (Brown et al.,2000).

2. TRACKING PROBLEM FORMULATION

Consider a MIMO plant with n states and m controls,
where the “diagonalization method“ (Utkin, 1992)
has been applied producing m independent dynamics
for each input-output channel. Then, consider the
following SISO nonlinear uncertain system that can
represent any input-output channel (we assume
relative degree is equal to 3, although the given
approach can be generalized to rth order system as
well)
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where the )(⋅iϕ -functions are known, ),( tfi ⋅  are
uncertain time-varying functions that are bounded in
any bounded compact set of their arguments. The

problem is to provide for the output tracking:
)()( tyty c→ . The design problem is to achieve this

tracking in multiple-loop sliding modes using full
state feedback and the backstepping design.

3. MULTIPLE SLIDING SURFACE DESIGN
WITH 1ST-ORDER SLIDING MODES

A multiple sliding surface implementation of the
back-stepping approach looks as follows (Swaroop et
al., 2000).
Step 1. Define the first sliding surface

0111 =−=−= xxyyS cc , (2)
and the following desired closed-loop dynamics for
the sliding quantity 1S

12111
~)( eSSS ++−= γ� (3)

where 222 xxS c −= , )(2 txc  is to be defined,

( ) ( )11111
ˆˆ),(~ fxtfxe cc −−⋅−= �� , cc yx =1 , and )(1 ⋅γ  is

such a function that the homogeneous part of the
system (3) is a finite time convergent equation.
From (1)-(3) one can formally obtain
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From (4) we derive the following reference
command for the next step

)()(ˆˆ
1111112 Sxfxx cc γϕ +−−= � (5)

where 11
ˆ,ˆ fx c

�  are the best estimates of the reference
signal and uncertainty in the first loop that are based
on dynamic observers.
Step 2. The second sliding surface is defined as

0222 =−= xxS c , (6)
Assuming existence of (6) and finite time
convergence of (3) even with 0~

1 ≠e , the sliding
mode on the surface (2) will be achieved.
Sliding quantity 2S  is calculated using feedback on

2x  and equation (5) for cx2 . An alternative way to
produce 2S  using 1S  feedback only can be obtained
as follows. Derive the following identity from (1),(2)

)( 112111 xxSfxc ϕ++=− �� ,
then one can estimate

)(ˆˆˆ
112111 xxSfxc ϕ++=− �� . (7)

From (5),(7) we obtain

)(ˆ
1112 SSS γ+= � . (8)

There are many ways to obtain (8). One can estimate
the derivative and calculate the nonlinear term, one
can try to estimate them both at once; at last, one can
apply the nonlinear DSM approach and enforce (8) in
the system motion in an auxiliary DSM.
The closed-loop dynamics for the sliding quantity

2S  is selected in the form

23222
~)( eSSS ++−= γ� (9)

where 333 xxS c −= , )(3 txc  is to be defined,

( ) ( )22222
ˆˆ),(~ fxtfxe cc −−⋅−= �� , and )(2 ⋅γ  is of the



same class as )(1 ⋅γ . Similar to Eq.(3.5) the reference

command )(3 txc  is obtained

)(),(ˆˆ
22212223 Sxxfxx cc γϕ +−−= � . (10)

Step 3. Finally, the third sliding surface,
0333 =−= xxS c , (11)

is achieved under the control

)sgn()( 33,033,13 SkSku ++⋅−= ϕ . (12)

The closed-loop system in the ),,( 321 SSS  state
space is derived as
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Dynamics (13) plus the error dynamics in the
dynamic observers that govern )~,~( 21 ee  complete the
total closed-loop dynamics of the plant.
In (Swaroop et al., 2000), it’s proved the closed-loop
stability and convergence of (13) with first-order
linear dynamic observers. These observers have
served as integral filters to smooth out possibly non-
Lipshitz behavior of ccc xxx 321 ,, ��� . That’s why it was
possible to define feedback terms in each
compensated dynamics as

3,1 ),sgn()( 0,1, =+= iSkSkS iiiiiiγ . These functions
provide for finite time convergence in (13), but they
are not differentiable. Linear smoothing filters in
(Swaroop et al., 2000) overcome the problem of
“explosion of terms” trading robustness for stability.
However, in numerical implementations this
discontinuous form is rarely used, for even with
filtering the term )sgn(S  behavior in outer loops is
not good for inner tracking loops. There is no finite
time convergence and the true sliding mode
(Edwards and Spurgeon, 1998) in this case. Another
approach is developed in this work to establish finite
time convergence in each loop to a dynamic integral-
type sliding surface. Additionally, the integral part
specifies time scale separation (Shtessel et al., 1999)
between the loops to ensure overall stability of a
backstepping-type tracking system.

4. MULTIPLE DYNAMIC SLIDING SURFACE
DESIGN WITH 2ND-ORDER SLIDING MODES

4.1 Continuous Control for Finite Reaching Time
Sliding Mode

The following finite-reaching-time continuous
standard-sliding-mode controllers have been
developed in (Brown et al., 2000) for the first order
σ -dynamics

utf += ),(σσ� . (14)
They provide for finite-time-convergence of the first-
order closed-loop σ -dynamics. One of the forms in
the work [16] is given by

0
5.0

=+
σ

σρσ� . (15)

In absence of uncertainty in the function ),( tf σ , the
control law

,),()(
5.0σ

σρσσ −−= tfu (16)

renders the closed-loop dynamics (15), as a finite
time convergent nonlinear manifold. When the
function ),( tf σ  is totally uncertain, the continuous
control law

,)(
5.0σ

σρσ −=u (17)

provides for convergence to the arbitrarily small
domain of attraction, the boundary layer, around the
sliding surface 0=σ  in a standard sliding mode,
where the gain ρ  and the uncertainty limit L
determine the boundary layer thickness. The
drawbacks of this controller are that the uncertainty
limit defines the boundary layer, and even in absence
of uncertainty the domain of attraction to 0=σ  is
proportional to the discrete interval T under the
discrete-time control (first-order sliding accuracy).
An additional problem for a mupltiple loop system is
that (17) is not smooth enough to be r times
differentiable.

4.2 Conditions on Smoothness of a Virtual Control

In order for the control of form (17) to be a virtual
control to be followed by inner cascades of total
order r of a multi-loop system, it has to be r times
continuously differentiable. In (Brown et al., 2000),
finite time convergence has been proved for the
closed-loop dynamics

0)sgn( =+ σσρσ α
� , (18)

where ( )1,0∈α . Similar to (17), it gives us the
virtual control in the form

)sgn()1( σσρ α−=u . (19)

For )1(u  to be followed by a first order tracking
system is has to be one time continuously
differentiable. From (18),(19) we have

)sgn(122
)1( σσαρ α −−=u� . (20)

Eq. (3.20) gives the following condition on
smoothness of the virtual control at the origin

2
1>α .

In case of an rth order tracking system, we have

)sgn(~ )1(
)(

)( σσ α rr
r

ru −+− . (21)
Finally, combining conditions of finite time
convergence of the compensated dynamics and
smoothness of the virtual control, we obtain the
following condition for the rth order tracking system.
Condition on Smoothness. Terminal sliding mode can
be enforced on the surface (18) by an rth order
tracking system in all loops if

1
1

<<
+

α
r

r . (22)

Applying this condition to system (1) we must have

13
2 << α  if we select )sgn()( 1111 SSS αγ =  for



(3). One should not worry about overall stability of
system (3.13) and convergence rate of the estimation
error )~,~( 21 ee -dynamics if time scale is applied in
each loop. Multiple time scale is achieved in
dynamic sliding surfaces designed in the next
section. Second order sliding modes are established
on dynamic sliding surfaces that govern compensated
time scaled dynamics in each loop.

4.3 Multiple Time Scale Dynamic Sliding Surfaces

The first (outer) loop design Consider the tracking
problem for system (1). We introduce the following
dynamic sliding surface for the compensated
dynamics in the outer loop of the expected 3-loop
system
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where 1e  is the input and the dynamic sliding
surface quantity 1σ  is the output. If the sliding mode
exists on the surface 01 =σ , then from (23) we
obtain in sliding mode

constdteece =+ � )sgn( 1
1

111
α , 01 =σ ,

or

)sgn( 1
1

111 eece α−=� , (24)
which is a finite time convergent system, where the
terminal time is a function of 111 ,),0( ce α .
To enforce convergence to 01 =σ , we consider 1σ -
dynamics using Eq.(1) and introducing the virtual
control cx2 , and the tracking error 222 xxe c −=  of
the inner loop
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1

11221

111
1,1

111

eecextf

xy
c

c
α

β ϕσσρσ

+−−

−−=+ ��

. (25)

The virtual control cx2  is designed as
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, (26)

Given (26) and estimation error
))(.,ˆˆ())(.,(ˆ 111 tfytfye cc −−−= �� , the outer loop

1σ -dynamics closed under control (26) is obtained
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Assuming exact estimation, i.e., 01̂ =e , and fast
convergence of 2e  to zero (time scale of the inner
loop dynamics), we have the second order 1σ -
dynamics
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which is a finite time convergent differential
equation given conditions formulated in the
following lemma.

Lemma 1 Consider the following σ -dynamics

�−−= τσσασσασ d)sgn()sgn( 3/1
0

2/1
1� , (29)

0,0 01 >> αα , which can be equivalently presented
by the system of two first-order equations
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where σ=1x . The system (29) is asymptotically
stable.
Proof: It’s not difficult to prove asymptotic stability
of system (29), let a Liapunov function candidate be
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,0)( >xV  if }0{\2ℜ∈x , then the Liapunov
function derivative will be
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if }0{\2ℜ∈x .

Moreover, system (29) approaches the origin in a
finite time. However, in order to prove the finite time
convergence to the origin of system (29), one has to
apply special topics of Liapunov analysis of the finite
time convergent differential equations.

To avoid explosion of terms, the virtual control
(26), must be continuously differentiable twice. This
gives us design condition on 1α

113
2 << α , (31)

and the following condition must be checked for

0,1β . For the second derivative of cx2  be bounded,

i.e. since 
0,11

1

1
2 ~ βσ

σ
−
�

��
cx , we must have

∞<
− 0,11

1

1
βσ

σ�
. From (28) we obtain that

0,111,11
11 ~ ββ σσσ −

� ,
then

1,10,12
10,11

1

0,111,11
1

0,11
1

1
2 ~~~ ββ

β

ββ

β σ
σ

σσ

σ

σ −
−

−

−
�

��
cx .

So, to avoid explosion of terms one should have
02 1,10,1 ≥− ββ . If 3/1,2/1 0,11,1 == ββ , this

condition is satisfied.

The second loop design   Dynamics of the tracking
error 222 xxe c −=  is to be enforced in the second
loop on the dynamic sliding surface
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which is similar to the first one (23) with one
difference, it must be faster enough to enforce
sufficient time scale to consider 02 =e  in the outer
loop.

To enforce convergence to 02 =σ , we consider

2σ -dynamics using Eq.(1) and introducing the
virtual control cx3 , and the tracking error

333 xxe c −=  of the inner loop
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The virtual control cx3  is designed as
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Given (33) and estimation error
))(.,ˆˆ())(.,(ˆ 22222 tfxtfxe cc −−−= �� , the second loop

2σ -dynamics closed under control (34) is obtained
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Assuming exact estimation, i.e., 0ˆ2 =e , and fast
convergence of 3e  to zero (time scale of the inner
loop dynamics), we have the second order finite time
convergent 2σ -dynamics.

The third loop design The very inner loop is to be
designed for actual control u to stabilize the tracking
error 3e -dynamics

utfxxxxe c −−−= )(.,),,( 3321333 ϕ�� . (36)
The sliding mode control is designed in a standard
way (Utkin, 1992)

 )sgn(),,( 33213 exxxu ρϕ += , 33 fxc +> �ρ .  (37)

Additional requirements must exist for 2α  in order

for cx3�  to be bounded. From the obtained condition

on smoothness we have 122
1 << α . The closed loop

dynamics in the third loop,
)sgn()(., 3333 etfxe c ρ−−= �� . (38)

is a finite time convergent system.

5. SIMULATION EXAMPLE

To illustrate the disturbance cancellation chara-
cteristics of the developed method, we consider the
simplified model of a ballistic interceptor missile. A
simplified numerical model in the pitch plane is
given by (Shtessel et. al, 1998)
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The nomenclature is as in (Shtessel et. al, 1998).
The plant output to be stabilized is angle of attack,
α . The attitude control trust is actuated via a first
order actuator

)(20 uuu aa −−=� ,
so the actual control signal is u, and we have a third
order input-output dynamics

),(20
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where we consider γγ cossin zxn vvA �� +−=  and aψ
as disturbances in the first and second loops of a 3-
loop control system to be designed.
The stabilizing controller is designed as follows. The
first dynamic sliding surface is selected as

�� +=+ dtdt )sgn(05.0)sgn(5.0 3/2
1

2/1
11 ααασσσ

Then, 1σ -dynamics are identified, introducing
qqe cq −= ,

.)sgn(05.0)sgn(5.0 3/2
1

2/1
11 V

A
eq n

qc −−++−= αασσσ�

Virtual control in the first loop is designed

�−−= dtqc )sgn(5.1)sgn(05.0 1
3/1

1
3/2 σσαα .

The second dynamic sliding surface with appropriate
time scale is selected as
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2
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22 σσσ

Then, 2σ -dynamics are identified, introducing
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Virtual control in the second loop is designed
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Tracking error dynamics in the third loop are
identified

uuue aacu 2020 −+= �� .
Actual discontinuous control  is designed

)sgn(20 ueu = .



Finite time convergent multiple sliding surfaces
dynamics are obtained

).sgn(40020

,1.0)sgn(10)sgn(3

,)sgn(5.1)sgn(5.0

2
3/1

22
2/1

22

1
3/1

11
2/1

11

uaacu

au

n
q

euue

edt

V
A

edt

−+=

−−=++

−−=++

�

�

��

�

�

ψσσσσσ

σσσσσ

Analyzing the last system, one can conclude that ue
reaches zero in a finite time robustly to bounded
behavior of acu� , au . When 0=ue , 2σ  approaches
in a finite time a small domain around zero
attenuating the disturbance aψ . When 02 ≈σ , qe
goes to zero in a finite time according to

)sgn(5.0
5.0

qqq eee −=� . When 0≈qe , 1σ

approaches in a finite time a small domain around

zero attenuating the disturbance 
V
An . When 01 ≈σ ,

α  goes to zero in a finite time according to

)sgn(05.0 3/2 ααα −=� . Results of a simulation are
given in Figs.1-4.

Fig.1 θγ ,  versus time

Fig.2 angle of attack vs.time

Fig.3 1σ  versus time

Fig.4 2σ  versus time

CONCLUSIONS

A three-loop tracking control system has been
designed for a third order uncertain SISO system.
Tracking error dynamics is enforced in each loop in

terminal dynamic sliding surfaces. The second order
sliding performance is provided for sliding modes on
dynamic sliding surfaces in the outer and the inner
loops under virtual controls. Time scale separation
ensures overall stability of the system. When

0ˆˆ 21 == ee , exact tracking cyy =  is achieved in a
finite time. A signal differentiator and a disturbance
observer must accompany the presented design to
ensure 0ˆ,0ˆ 21 →→ ee  as close as possible.
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