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Abstract: A simple stabilizing algorithm is presented for the planar vertical takeoff
and landing (PVTOL) aircraft. The controller presents no discontinuities and does
not have singularities. The stability is proved by using very simple arguments and
satisfactory behavior is shown in simulations.
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1. INTRODUCTION

Flight control is an essential control problem
which appears in many applications, such as
spacecraft, aircraft, helicopters, etc... The com-
plete dynamics of an aircraft, taking into account
aeroelastic effects, flexibility of the wings and in-
ternal dynamics of the engine is quite complex and
somewhat unmanageable for the purposes of con-
trol. It is thus particularly interesting to consider
a simplified aircraft which has a minimum number
of states and inputs but retains the main features
that must be considered when designing control
laws for a real aircraft. Therefore, as considered
by Hauser et al. (Hauser et al., 1992), we focus our
study on the Planar Vertical Take Off and Landing
(PVTOL) aircraft, which is a highly maneuverable
jet aircraft.

Several methodologies for controlling such a sys-
tem exist in the literature. Hauser et al. (Hauser et
al., 1992) in 1992 developed an approximate I-O
linearization procedure which results in bounded
tracking and asymptotic stability for the V/STOL
aircraft.

In 1996, Andrew R. Teel (Teel, 1996) illustrated
his central result of nonlinear small gain theorem
using the example of the PVTOL aircraft with
input corruption. His theorem provided a formal-

ism for analyzing the behavior of control systems
with saturation. He established a stabilization al-
gorithm for nonlinear systems in so-called feedfor-
ward form which includes the PVTOL aircraft.

In 1996 also, Martin et al. (Martin et al., 1996)
presented an extension of the result proposed by
Hauser (Hauser et al., 1992). Their idea was to
find a flat output for the system and to split
the output tracking problem in two steps. Firstly,
they designed a state tracker based on exact lin-
earization by using the flat output and secondly,
they designed a trajectory generator to feed the
state tracker. They thus controlled the tracking
output through the flat output. In contrast to the
approximate-linearization based control method
proposed by Hauser, their control scheme provided
output tracking of nonminimum phase flat sys-
tems. They have also taken into account in the
design the coupling between the rolling moment
and the lateral acceleration of the aircraft (i.e.

e #0).

An optimal controller was applied to the PVTOL
aircraft in 1999 (Lin et al, 1999). Lin et al.
studied robust hovering control of the PVTOL
using nonlinear state feedback based on optimal
control.



Reza Olfati-Saber (Olfati-Saber, 2000) proposed
a global configuration stabilization for the VT OL
aircraft with a strong input coupling using a
smooth static state feedback.

Contrary to other approaches presented in the
literature, the controller proposed in this paper is
relatively simple, is continuous, has no singulari-
ties and the input is not required to be positive
or different from zero. The stability analysis is
carried out in a simple manner and satisfactory
performance is shown in simulations.

The paper is organized as follows. In section
2, the equations of motion for the PVTOL are
recalled. In section 3, we develop a stabilizing
control law for the PVTOL aircraft and we present
the stability analysis in section 4. Simulations
are presented in section 5. Conclusions are finally
given in section 6.

2. THE PVTOL AIRCRAFT MODEL

The basic equations of motion for the PVTOL
aircraft are given by (see (Hauser et al., 1992))

7 = —sin(f)uy + € cos(0)ua
i =cos(@)uy + esin(Q)ug — 1 (1)
é: Uy

where z, y denote the horizontal and the vertical
position of the aircraft center of mass and @ is
the roll angle that the aircraft makes with the
horizon. The control inputs u; and us are the
thrust (directed out the bottom of the aircraft)
and the angular acceleration (rolling moment).
The parameter ¢ is a small coefficient which char-
acterizes the coupling between the rolling moment
and the lateral acceleration of the aircraft. The
coefficient “—1” is the normalized gravitational
acceleration. Figure (1) provides a representation
of the system.

In the present paper we will consider a simplified
model of the PVTOL aircraft system, i.e. with
€ = 0. Indeed, we propose to control the system as
if there were no coupling between rolling moments
and lateral acceleration. Therefore, the equations
of motion of the system (1) become

&= —sin(f)uy
j=cos(@)u; — 1 (2)
é: U2

This choice is due to the fact that the coefficient €
is very small ¢ << 1 and not always well-known.
The controller performance should be robust to

Fig. 1. The PVTOL aircraft (front view)

unmodeled dynamics, i.e. when ¢ # 0. Further-
more, several authors have shown that by an ap-
propriate change of coordinates, we can obtain a
representation of the system without the term due
to . Indeed, R. Olfati-Saber (Olfati-Saber, 2000)
applied the following change of coordinates

z=x —esin(f) (3)
w=y+e(cos(h) — 1) (4)
After taking the second time derivatives of (2) and

(3), the system’s equations (1) in new coordinates
become

Z=— sin(@)ﬂl
w=cos(f)u; — 1 (5)
é: U2

where ; = u; — 6%, The representation (??) has
the same structure as (?7) with the new control
input u;.

3. STABILIGOONTROL LA

The controller is obtained by defining the fol-
lowing desired linear behavior for the position x
and the altitude y. Let us, therefore, define the
variableg amlas follows

F=r(r,3) 2 27— (6)

G=ra(y,9) & 29—y (7)

Other choices are possible but the above has been
chosen for simplicity. From (??) and (5) it follows

- 00150(1 +1) )

uy

which will not have any singularity provided tan 6
is bounded. In the stability analysis (section 4), we



will prove that this is indeed the case. Introducing
(??) into the system (?7) gives

Z=—tan0(1 +9) (9)

§=r2 (10)
From equation (??), it follows that 3® — 0
for ¢ = 0,1,.... It means that the altitude is
stabilized around the origin. y(i) € Lo angl IS
Ls. Independently of the value of cos @, equation
(?77?) holds. Note that if cos @ — 0, then from (?7?),

u; — oco. We will prove later that this is not the
case.

Let us rewrite equation (?7?) as follows

F=—tanf(1+9)ht 14+32) (11)
=r(1+4) — (tanfp 149 (12)

Since we will prove, in the stability analysis, that
r1 will tend to zero, we also would like that
(tan 0# would converge to zero. Therefore, we
introduce the error variable

vy 2tang + (13)

then

vy = (1 + tan? 0)0 + 7, (14)
1 = (14 tan? ) (us + 2tan 00%) + 7, (15)

We choose a control input us, so that the closed-
loop system above is given by

V) = =20 — 1y (16)

where 242s+1 is a stable polynomial. Therefore,
v1 — 0. The controller us is then given by

_ 1
" 1+ tan26

—tanf — r — 2(]_ + tan2 0)0 - 2Tl) (17)

U (—292 tan A(1 + tan? 0) — 7,

Note that uy is a function of 6,7y, 71,71} and
that all these variables can be expressed as a
function{of xy, 6} and their derivatives.

From (6) through (10) it follows that the closed-
loop system can be rewritten as

U= Av (18)

where A is an exponentially stable matrix and
vT = [v1, u]. v1 converges exponentially to zero
and 11 € LoyN Ls. The main result is summarized

in the following theorem.

TleorenR Consider the PVTOL aircraft model
(??) and the control law in (?7) and (10).

Then the solution of the closed-loop system con-
verges asymptotically to the origin, provided that
16(0)] < 3.

We present the stability analysis of the above
result in the following section.

4. STABIMANAL SIS

Let us rewrite the (x,4) subsystem (77)-(6) as a

linear system. Define 27 = [z, 4], then
i=Az+ B (19)
r=Cz (20)
0 1 .
where A = 12| C &£ 1,0], B=[0,1]" and

u=rye —v1(1 +4). Let us define =1+
r2). In view of (9), v; converges exponentially to
zero. Futhermore, in view of (??)x(5) and (?7?),
converges exponentially to zero.

Since 1, angt converge both exponentially to
zero,rs € Lo, ie. fooo r2dt is bounded. There-

fore, [Jr3dt + [ r3dt = [7° r2dt =constant and
4 [ r3dt = -4 fot radt = —r3. We propose the
following Lyapunov function candidate
o
V=:'Pzy2 / radt (21)

t

where P is a positive definite matrix, satisfying
ATP + PA = —2I. Note that P = ﬁ’ ”
Differentiating V', we obtain

V=:TPz+ TPz — 22
=[TAT +u"BT| Pz +2"P[Az+ B — 213
=27 [ATP + PA] z+ 22T PBu — 212
=272 4+ 2:"PBu — 2r?
= —2(i% + 2?) + 2(¢ + x) [(—2& — x)ry — 73]
—2r2 (22)

Since

[2(2 4+ z)r3| = |21+ 22r3| < 2|drs]
+2|zrs]
<i?4ri4a? 4ol (23)

V becomes

V<2014 2r)i? —2(1 44) 2 — 6adry
+a? + @2+ 2r5 — 213

< —i% — 2% —dni? — 2roa? — 6xiry  (24)



Sinceg is decreasing exponentially to zero, it
follows that for any k > 0 there existBlarge
enough sucly that < k, Vt > T. In the sequel
the results will hold for ¢ > T'. Since

6roxd| < 6|kxd| < k(2 4 4?) (25)
We therefore obtain

V<—(1-7k)i* — (1 5k)z* Vvt > T (26)

Choosing k = %, it follows that V < 0.

Using (4) and (6), equation (?7) becomes

F=—tan6(1 + r2) (27)
= (1 —r1)(1+9) (28)
=—(n +2i+2)(1+7) (29)

Since both v; ang are exponentially decreasing
then % is linear with respect to z and &. There-
fore x grows at most exponentially and does not
exhibit finite escape time. From (11) and (16), we
then have x and © € Ly N Ly. Thus z and © — 0.
Since

tanf =v, — 1y (30)
=1 +20+7w (31)

it follows that tan€ € Ly N Lo,. W have thus
proved that tanf is bounded and tanf — 0.
Therefore, cos # 0 and then the control law (?7)
is free from singularities. Finally, the solution of
the closed-loop system converges asymptotically

to zero for any initial condition such that |6(0)| <
s

R

5. SIMULATION RESULTS

In order to validate the results of the pro-
posed control law, we have performed simulations.
We started the PVTOL aircraft at the position
(zy, 0) = (2,4,%) and (&,7,0) = (3,1,1). We also
ran simulations with the same control including in
the system the term £ (see (1)). For £ < 0.3, the
results were very similar as for ¢ = 0. Simulations
showed that the performance of the proposed con-
troller is satisfactory.

The simulation results for ¢ = 0.3 are shown in
figures 2 and 3.

6. CONCLUSIONS

A new control strategy for the stabilization of the
PVTOL aircraft is presented in this paper. The
control law is simple, has no singularities and the
input is not required to be positive or different
from zero.@od performance of the proposed
control law has been shown in simulations.
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Fig. 2. States of the system
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Fig. 3. States of the system and control inputs
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