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Abstract: Two control systems with disturbances are considered. The first one
is two-dimensional, and its target set is an arc. The second of the two conflict
control systems is scalar. Its target set consists of two points. In the first system,
no program control or Carathéodory strategy guarantees the evasion, but there
exists a discontinuous feedback control that does. In the second system, evasion
can be guaranteed by continuous strategies but not by program controls; the best
possible distance for the evader is given by a discontinuous strategy and also by
a multivalued upper semicontinuous strategy. In particular, this shows the differ-
ence between the case of nonconvex target set considered in this paper and the
linear-convex case. Copyright (©2002 IFAC
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1. INTRODUCTION

Positional differential games can be used to model
controlled systems in which the desired result
should be guaranteed for all possible disturbances.
The dynamics of these systems is assumed to be
given by ordinary differential equations. Publica-
tions of many authors are devoted to the theory
of positional differential games, cf., in particular,
(Krasovskii and Krasovskii, 1995; Krasovskii and
Subbotin, 1974; Subbotin and Chentsov, 1981)
and references therein.

The following fact is known (Barabanova and Sub-
botin, 1970; Krasovskii and Subbotin, 1974, §55;
Subbotin and Chentsov, 1981, §3). In a differen-
tial game with a convex target set, linear dynam-
ics, and a fixed terminal moment, if the evasion
cannot be ensured with the help of program con-
trols, then neither can it be ensured by continuous
strategies. This statement can also be formulated
for a payoff functional, in which case the target
set is replaced by the corresponding level set of
the functional. It was shown in (Brykalov, 2001)
that here the assumption of convexity of the target

set (respectively, the level set) can be relaxed.

Two differential games with nonconvex (in one of
the games, even disconnected) target sets are con-
sidered below. The differential equations that de-
scribe the dynamics of the games are linear in the
open-loop case. The equations become nonlinear
when the feedback is introduced into the systems.
The evasion cannot be ensured by program con-
trols in either of the games. Continuous strategies
can guarantee the evasion in one of the games but
fail to do that in the other one.

In particular, these differential games demonstrate
some properties of continuous feedback in the case
of nonconvex target set. Continuous strategies
may turn out to be not more efficient than pro-
gram controls in some games (which is typical for
linear-convex case) but in others can be essentially
more efficient.

At the end of the paper, the second of the consid-
ered two conflict control systems is used to show
that a certain condition is essential in two state-
ments, which deal with continuous feedback.

The following notation is used: R is the set of all



real numbefs%denotes the space of conti nuous
functions;Lqis the spackebfsgue measurabl e
integrable functions;AC' is the space of absolutely
continuous functions. Program controls are as-
sumed toldwesgue measurabl e functions.

2. AN ARC AS A TARE SET

This section deals with a planar problem of con-
flict control with an arc as the target set. It will
be shown that program controls do not ensure the
evasion in this problem. A feedback control will be
constructed that guarantees the evasion and uses
but one measurement of the phase vector. On the
basis of Schauder fixed point theorem, it will be
proved that in the considered problem, continuous
in the phase vector strategies do not provide the
evasion.

Problem 1. A two-dimensional vectar = (1, 22)
is changing according to the system of differential
equations

B = 2(1 (1)

on the time interval ¢ € [0,1]. Bre u, vare con-
trols of two players and are chosen in [0,1]. The
function 2z  [0,1] — R? is absolutely continuous
and satisfies the differential equations almost ev-
erywhere. The initial condition has the form

z(0) = 0. (2)

331 =,

The target df  is given by

(x1 —1)? + (z2 — 1) =1,

l'lgl, $2§1

ThusM is a quarter of a circumference of unit
radius. The function u(¢) is Iebesgue measurabl e.
The problem consists in choosing the contrdlb
ensure the evasion z (1) € M whatever the distur-
bance u(t) might be.

To show nondegeneracy of the problem, one
should, on the one hand, check that program con-
trols v = v (t) cannot guarantee the evasion, and
on the other hand, should construct a feedback
control that ensures the evasion. In the case of
Problem 1, this feedback control will turn out to
be described by a discontinuous mapping.

2.1 Program controls in Problem 1.

One can show that program controlsv = v (¢) do
not guarantee the evasion even if u is chosen as a
constant.

Proposition 1. For any measurable function v :
[0,1] — [0,1], there exists a constant u € [0,1]
such that the corresponding solution aof the i ni-
tial value problem (1),(2) satisfies the condition
z(l)e M.

Really, it suffices to take

e [ o),

o)

Then u € [0,1], and for the solution of prob-
1

(1) = [o(r)dr, 22(1) = u.
0

Thus, (z1(1)=1) 2+ (z2(1)-1)2 =1, 2,(1) < 1,
22(1) < 1, and consequently z(1) € M. Proposi-
tion 1 is proved.

lem (1),(2) one has;

2.2 A method of evasion.

In Problem 1, the controtan be formed wi  th
the help of a simple feedback rule that ensures
the evasion and uses only one measurement of the
phase vectamt the moment ¢ =1/2.

Proposition 2. Letvbe chosen i n the form

0, 0<t<1/2,
v=1q 0, 1/2<t<1, 2,(1/2)<1/4, (3)
1, 1/2<t<1, 25(1/2) SM.

Then, for any measurable u : [0,1] — [0, 1], the
corresponding solution of the initial value problem
(1),(2) satisfies the inequality

1= VOm O+ - w07 > 55 @

Actually, it will be shown that the control method
described in Proposition 2 ensures the distance to
the target set somewhat larger than 9/100.

Proof of Proposition 2. If xz2(1/2) < 1/4, then,
according to (3), v = 0 for all ¢ € [0,1], and so
z1(1) = 0. Further,

25(1) = 22(1/2) + 2 /(1 — P)u(r)dr <
1/2

1
<1/4+2 /(1 —T7)dr =1/2.
1/2
Thus,

V(I —21(1)2 + (1 - 22(1))2 > V5/2 > 109,

and inequality (4) is valid. In cage (1/2) >M
formula (3) implies v = 0 for ¢t € [0,1/2) and
v =1fort € [1/2,1]. So,z1 (1) = 1/2. Asu
is nonnegative, one has (1) > z2(1/2) >4
Consequently,

VA =21 (1) + (1 —22(1)) < V13/4<D 9L

Inequality (4) holds again.
proved.

Proposition 2 is



The simple feedback control method described by
(3) is not optimal. For instance, by optimizing the
constant 1/4 in (3), the guaranteed result can be
somewhat improved.

A control law that provides the evasion can be
realised in the form of positional strategy in ac-
cordance with (Krasovskii and Subbotin, 1974)
by employing stepwise schemes with mesh refine-
ment. Indeed, the feedback control method given
by (3) is compatible with any positional strategy
of the player u, which excludes the guaranteed
reaching of the target set. Due to the theorem on
alternative (Krasovskii and Subbotin, 1974, §17),
there exists a positional strategy of the player
that ensures the evasion. These considerations are
similar to those in (Subbotin and Chentsov, 1981,
p-23; Krasovskii and Subbotin, 1974, p.243).

2.3 @rath eodoy s trategies.

One can show that in Problem 1 it is impossi-
ble to ensure the evasion by means of strategies
v = v(t, 21, z2) that satisfy the Carathéodory con-
ditions, i.e., such strategies thaw (¢, z1,z2) is con-
tinuous in xj, xzofor al most any fixed ¢ and is
Lebesgue measurable in ¢ for any fixads

In particular, this class contains strategies de-
scribed by continuous functions. In the case of
Carathéodory strategies, one can employ abso-
lutely continuous solutions, which satisfy the dif-
ferential equations almost everywhere. A solution
for a fixed pair of functionsv (¢, x1,22), u(t) is
not necessarily unique. It is natural to say that a
strategyv (¢, 1, x2) ensures the evasion if for any
measurable disturbance u(t) € [0,1] and any abso-
lutely continuous solution z (¢) of the initial value
problem (1),(2) wherew = v(t,z1,22), u = u(t),
one has (1) ¢ M.

Similarly to Proposition 1, the required property
here can be established even in case of constant u.

Propositio8  Let a function = [0,1] x R? —
[0, 1] satisfy the Carathéodory conditions. Then
there exists a constant u € [0,1] such that the
initial value problem (1),(2) with v = v(t, z1, z2)
has at least one solution 2for whith (1) € M.

Proof of Proposifiion One needs to show the

existence of an absolutely continuous function x
[0,1] = R? and a number u € [0,1] such that

1 = v(t, z1,22),
iy =214
z(0) =0,
(1—21(1)* + (1 — z22(1))* = 1.

The first three equalities imply z1(1) < 1, z5(1) <
1, andzs (t) = (2 —Yu . Substituting this expres-
sion in the last of the equalities, one can see that

u=1—+/1-—(1-21(1))% Kcludingzy u from
the system, one obtains the following initial value
problem for a scalar functional differential equa-
tion:

i1(t) =
:1( t,z1(t),t(2 -} (1 - m)) ’
21(0) = 0.

It suffices to show the solvability of this problem,
which will imply the existence of  u with the
required properties.

Denote 1  the set of all functionsz: [0,1] —
[0, 1] that satisffi pschitz condition with the coef-
ficient 1. According tozt” a-Ascoli theorem, the
set S is a compactum in the space of continuous
functions. Besides that§is convex. Denote

F(z())(®) =

_ /v (rem.r@ =) (1= VT=(T=2(D))) dr.

0

The function F'(z(-))(t) of the argument ¢ satisfies
Lipschitz condition with the coefficient 1 because
0 < v < 1. Note that F maps the Set nto
itself and is continuous in the norm of the space
of continuous functions. Due to the theorem of
Schauder, the mapping F' has at least one fixed
point in the s& Thus, the above-gi  ven initial
value problem for functional differential equation
has a solution, and Proposition 3 is proved.

Remhrl.  Let the strategy= v  (t,z1,22) be
such that for any fixed number u € [0,1], a so-
lution to initial value problem (1),(2) is unique.
In particular, this is so if the function v (¢, z1,z2)
satisfies a condition of L pschitz. Then, in the
proof of Proposition 3, one can do without the
fixed point theorem of Schauder. It suffices to use
the simple fact that a scalar continuous function
defined on an interval vanishes provided it takes
values of both signs. One can proceed further by
approximating a Carathéodory strategylby ps-
chitz strategies.

Remkr 2. If usual restrictions are imposed on
a differential game, and the initial point is fixed,
then all the possible trgectori es do not leave a
bounded region of the phase space. One can sup-
plement the target set by an additional point that
does not belong to the above-named bounded re-
gion. If the initial target set is convex, one obtains
a new target set, which is neither convex nor con-
nected. Obviously, the differential game with the
new target set inherits all the essential properties
of the initial game and is in fact equivalent to it.
This simple consideration can be used to construct
formal examples of differential games with various
properties whose target sets are not convex. How-
ever, the new target set is norjrgirfoexnal ly,



as the part of the target set which is actually used
in the game remains convex.

3. A TWO-POINT TARE SET

In the conflict control problem considered in this
section, the target set consists of two points. The
evasion in this problem can be ensured by some
continuous strategies but not by program controls.
The maximal possible distance is provided by an
upper semicontinuous multivalued strategy and by
a discontinuous strategy, but any smaller distance
can be delivered by a continuous one-valued strat-
egy. In particular, the considered problem gives
a counterexample that shows that in the condi-
tions of some results by the author on continuous
strategies, one of the main assumptions cannot be
omitted.

Problem 2. Consider a control system whose mo-
tion can be described by a scalar absolutely con-
tinuous function x(¢) of the argument t € [0, 1].
Letz (t) satisfy the differential equation

T=u+v (5)
for almost all ¢ € [0, 1]. The initial state is zero:
z(0) = 0. (6)

The disturbance v and controbre choseni n the
closed intervals:

ueP =[-22], veQ=[-1,1].

The target set
My ={ —-2,+2}

consists of two points. The contmls formed
with the purpose to ensure the evasion z (1) ¢ M,
for any measurable disturbances « : [0,1] =P .

3.1 Program controls in Problem 2.

One can prove the following

Propositiodd P rogram controls : [0,1] =@
cannot guarantee the evasion in Problem 2.

Indeed, for a fixed measurable function v (t), one

can find some u = const € P such that the corre-

sponding trjectory ends i n the target zet (1) €
1

M;. Denote = [v(r)dr. Them (1) =w+ u.

0
In casev # 0 take u = (2 — |w|)sgmw. One has
|lu] = 2 —|w| < 2, and so u €P . Besides that,
(1) =2sgm € M;. In case = 0 choose an ar-
bitrary fixed u € My C P. Then z(1) = u € M;.
Thus, no program control (t) ensures the evasion,
and Proposition 4 is proved.

It is interesting to note that in the proof of Propo-
sition 4, only constant disturbances u are needed.

The situation is the same as with Propositions 1
and 3.

3.2 Strategies of evasion.

In the present subsection, feedback strategies are
given that guarantee evasion in Problem 2. These
include a family of continuous strategies, a dis-
continuous strategy, and an upper semicontinu-
ous multivalued strategy. As in the corresponding
considerations in Section 2, here one can directly
substitute a strategy (including a discontinuous
strategy) into the right-hand side of the differ-
ential equation and consider absolutely continu-
ous solutions that satisfy the obtained differential
equation or inclusion almost everywhere (or even
everywhere). This can be done here because the
functionswv () employed are of sufficiently simple
form.

First, consider some estimates.
Lemma. Let a number > 0 and a function v (z),
z € R, be fixed such that

v(z) = —sgnx  for |z| >e. (7)

A measurable function « : [0,1] = P is given.Iet
z :[0,1] = R, z(-) € AQ satisfy the i nitial value
problem

& =u(t) +v(z), =z(0)=0. (8)

Then, for any t € [0, 1], the inequality
lz(t)] <1+4¢ 9)

holds.

In Bmma, no condi tions are imposed on (z) for
|z| < eFere the functi on might be discontinuous
and multivalued provided it makes sense to con-
sider absolutely continuous solutions to the initial
value problem (8).

Proof démma. F ix an arbitrary point t = #;
in the interval [0,1]. In the proof of the required
inequality (9) at this point, one obviously can re-
strict oneself to the case |z(¢1)| > €. The values of
the continuous function |z(t)| for ¢ € [0,#] range
from zero to a number larger than  So, there ex-
ists some € [0,¢;] for which |z(s)| = £ The set
of all s € [0,¢1] with this property is nonempty,
closed, and bounded. Denote the largest num-
ber in this setgby Thus, 0 <15 < t; < 1,
|z(s1)| = gand far < t < t; one has |z(t)| > «.
If the inequality 2|2(t)] < 1 holds for almost all
t e [S1,t1], then

t1

ot)] = fafs1)| + [ -lar)ldr <

S1

e+t —s1 <1+¢;



that is, (9) is true at ¢;. It remains to esti-
mate 4|z(t)]. Condition (7) implies that for
s1 < t < t1 one has (z(t)) = —sgnz(t); thus,
v(z(t))sgnz (t) = —1. Due to (8), for almost all
t € [s1,t1], one has

Lo (0)] = i (1) (1) =

= (ult) + v(a(t))sgnr (t) = u(t)sgor (1) —1

The last value is not larger than 1 because |u| < 2.
Lemma is proved.

If € > 0, then the function v (z) given by (7) can
be defined for |z| < mo that one obtai ns a one-
valued continuous strategy, for example, the fol-
lowing strategy:

o(z) = { —x/e,

—sgnr,

x| < e
— ) 1
|z| > e. (10)
According tdkmma, this strategy ensures that
inequality (9) holds. In case € < 1, inequality (9)
enables one to estimate from below the distance
to the target set. Thus, one obtains

Propositioh F or e € (0,1), the continuous strat-
egy (10) ensures in Problem 2 that the distance
from z (1) to the target ddt 1 is not smaller than
1—e.

Assume now € = 0. Then (7) takes the form:
v(z) = —sgnx  for =z #0. (11)

Any number from [—1,1] can be assigned to be
v(0). In virtue of (9), this strategy ensures that
the inequality |z(t)| < 1, t € [0,1], is true for an
arbitrary solution of the initial value problem (8)
that corresponds to an admissible u(t). Thus, the
strategy (11) guarantees that the distance from
the point z (1) to ero is no larger than 1, and so,
the distance from this point to the targetddet
is not smaller than 1. This number is the best
possible for the evader. To check that, one can
take a constant control u = ug with |ug| = 2.

The function (11) is discontinuous whatever num-
ber is chosen as its value atero. Fbwever, taki ng
the set @ = [—1,1] for the value of (11) at zero,
one obtains an upper semicontinuous multivalued
strategy:

[-1,1], =0,

—sgnr, x #0. (12)

V(a:)z{

So, the conclusion follows:

Proposition6 The discontinuous one-valued
strategy (11) and the upper semicontinuous mul-
tivalued strategy (12) ensure in Problem 2 that
the distance between (1) and the targetMet
is not smaller than 1. This distance is the best
possible for the evader.

3.3 Tovredts on conti  mnis s trategies.

This subsection renders in brief two results from
(Brykalov 2001) which are used in the next sub-
section. Mre detai 1s can be found in the article
cited.

Fix real numbers ty < ¢ and integersmpg > 1.
The functional spaces used in this subsection con-
sist of functions that are defined on the interval
[to, ] and take values in theadi mensional space
R" unless something different follows from the
context. Nonempty closed P € RP, Q ¢ R are
given. The set P is assumed to be bdainded.

a function £ [to,¥] x R" x P x @— R" satisfy
the Carathéodory conditions. For a fixed func-
tion x : [to,¥] — [0,00), x(-) € Ly al most all
t, and all u €P , v € @, 1 the esti mate holds:
|f(t, z,u,v)|n < x()(1 + |z|,). Here |- |,, denotes
a fixed norm in R™. A closed sef/ C C%and a
vectorz o € R™ are given. All these requirements
are assumed in both propositions of this subsec-
tion.

For a multivalued mapping [tg,9] 3 ¢t — W(t) C
Q, denote Wy (W (-)) the set of all z(-) € AC
that satisfy the initial value problem Z(t) €
F@,z(t), P,W(t)), z(tg) = xo. Here the differen-
tial inclusion is valid almost everywhere on [tq, 9],
and f (1,2(t), P,W (1) =f (t,o(),u,0) : 1 €
P, v € W(t)}. Sets ®(w(-)) for one-valued func-
tionsw (-) will be used also.

Denote by the set of all multivalued maps
[to,¥] x C° > (t,2()) — V(t,2z(-)) C Q that
satisfy the following properties: For almost all ¢
and all z(-), the set V (¢, z(+)) is nonempty, closed,
and bounded; t — V' (¢, z(-)) is measurable for any
fixed z(-); besides that, z(-) — V (¢, 2(-)) is upper
semicontinuous for almost any fixed ¢.

When employing acyclic sets below, one can use
Vietoris homology or Alexandroff-Cech homology.

Propositiod LetQ be a family of multivalued
maps of the form [tg, 9] 3¢ — W(t) C Q. For any
W() € Q, almost all ¢, and amy € R", the set
f@t,z, P,W(t)) is convex. For any W(:) € Q, the
intersection ® (W (-)) N M C (Y nonempty and
acyclic. A multivalued map (¢,2(:)) — V(t,2(:))
belongs tdh  Besides that, ¢ — V (¢, 2(+)) belongs
to Qfor any fixed (-). Then there exists an abso-
lutely continuousr (-) € M such that (ty) = o
and the inclusion () € f(t,2(t), P,V (¢, z()))
holds for almost all ¢ € [tg, V]

Consider a corollary for a one-valued strategy:

Propositio  Let the st (¢,z, P,r) be convex
for almost all ¢t € [tg,d] and all z € R", r €
Q. For any measurable function w : [tg, 9] = @,
the intersection ® (w(-)) N M C C° is nonempty
and acyclic. The map v : [tg,J] x C° — Q is
such that (¢, z(-)) is measurable in ¢ for any fixed



z(-) and continuous in z(-) for almost any fixed
t. Then one can find an absolutely continuous
x(-) € M such that (o) = 2o and the inclusion
z(t) € f(t,z(t), P,v(t,z(-))) is true for almost all
t € [to, ).

3.4 Problem 2 as a anterecample.

In Propositions 7 and 8, the assumption that the
intersection is acyclic cannot be omitted. The cor-
responding counterexample is provided by Prob-
lem 2.

It can be seen from Subsections 3.1 and 3.2 that in
Problem 2, continuous strategies and upper semi-
continuous multivalued strategies are more effi-
cient then program controls. Consequently, here
one cannot apply Proposition 8 and Proposition
7, which give sufficient conditions for the oppo-
site situation. The reasons for that are discussed
below.

Using the notation of Subsection 3.3, take tq = 0,
v=1Lx20=0,p=q=m 1, f=u+w,
X = 3. Assume thht  is the set of all continuous
functions z (-) such that (1) € M;. AsM q is
closed in R, one can see Miat is closed in the
spaceC® Proposition 4 implies that ®(w(-)) N M
is nonempty for admissible w : [0,1] =@ .

For the case of continuous strategies (10), all the
conditions of Proposition 8 are valid except for the
assumption that ®(w(-)) N M &8 acycl ic for
any measurable w : [0,1] =@ . One can show that
this assumption is false for = 0. Really, the set
®(0) consists of all solutions to the initial value
problem #(t) € P, z(0) = 0. Thu®, (0) is the
set of all z: [0,1] — R that satisfy the condition
of L pschitz with the coefficient 2 and emanate
from the origin #(0) = 0. A& ; consists of two
points 42, the i ntersection ®(0)N M is the sell
that consists of two linear functionsz (t) = & t.
Indeed, far () € ®(0) N M one has2  |z(1)| =
(a(t) — 2(0)) + (2(1) — 2(®)] < |a(t) — 2(0)] +
|z(1) — z(t)] < 2t+2(1 9t = 2, and all these
inequalities turn out to be equalities. So, |z(t)| =
2t. Besides thatf C C° is homeomorphic (and
even isometric) to the two-point setM {. Thusf

is not acyclic.

For the same reason, one cannot apply Proposi-
tion 7 in the case of multivalued strategy (12).
Really, by substituting z (¢) =0 into (12), one ob-
tains a multivalued map W (t) =@Q , which should
belong to the family Q of Proposition 7. The set
X = ®(Q)N M consists of all solutions to the
initial value problem #(t) € P + @, z(0) = 0
with an additional condition z (1) € M;j. Thus,
X is the family of all z: [0,1] — R that sat-
isfy the condition ofi pschitz with the coefficient
3 and the relationsz (0) = 0, z(1) € M;. One
can consider X C Cas a metric space. The

set H which was i ntroduced above, is a subset
of X. It was showddthat  C (8 not acycl ic.
It suffices to checK that is a deformation re-
tract of X. From here it follows that X is also not
acyclic. Denote (A, z(-))(t) = (1=N)z(t)+ Xtz (1).
The map [0,1] x X — Cis conti nuous. Be-
sides thaty (0,z(-))(¢) = x(¢) is an identity map-
ping in z(-), andy (1,z(-))(¢t) = tz(1) takes val-
ues in H and is identicalHoiit onl y remains
to show that (Az(-)) € X forz(-) € X. In-
deedy (A, 2(-))(0) = 0, v(\, 2()) (1) = #(1) € M.
The condition ofi pschitz with the coefficient 3
is also true as |y(A,z()))(t2) — v\, z(1))(t1)] <
(1= Nla(t2) — a(t)] + Na(D)(t2 — )] < (31
A) + 20)|t2 — t1| < 3|ta — t1]. Finally, one can see
that Proposition 7 cannot be applied to the case of
multivalued strategy (12) because the assumption
of the intersection being acyclic does not hold.

4. CONC SION

Properties of continuous strategies in differential
games with nonconvex target sets differ essentially
from those in the case of convex target sets and
linear dynamics. Concrete examples can be given
to demonstrate tlwever, these properti es
can be similar to those in the linear-convex case
provided some assumptions are imposed on the
corresponding sets of tjgtori  es of the considered
controlled system with disturbance.
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