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Abstract: This contribution investigates the application of a nonlinear model
based adaptive predictive control algorithm to a pH neutralization plant. A local
linear model network is responsible for the online identification of the plant.
The advantage of such a model is that the information needed by the predictive
control algorithm to build gradients is directly available. This aspect reduces the
computational cost significantly. Results of real-time control of a laboratory-scale
plant are presented. Copyright c© 2002 IFAC
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1. INTRODUCTION

During the past two decades various predictive
control algorithms have been introduced and ap-
plied with great success. Most of these methods
are based on linear system descriptions, allow-
ing fast calculations and making the analytical
analysis of the system easier to handle. The the-
ory of linear model based predictive control has
been intensively explored and is considered to
be well understood (Clarke, 1994). Nevertheless,
it is well known that in the absence of nonlin-
earities and constraints, the finite-horizon linear
predictive control hardly performs any better than
the infinite-horizon linear quadratic (LQ) control
(Allgöwer and Zheng, 2000). This does not happen
in the nonlinear case, since the infinite horizon op-
timization becomes computationally intractable.
However having the goal of improving the control
quality, it is desirable to work directly with an
underlying nonlinear model, without simplifying

it to one linear model alone. Such approaches
include the use of adaptive linear models for
prediction (Gambier, 1995) or a global nonlinear
model of the plant (Foss et al., 1995). The second
approach should from the theoretical point of view
deliver a better control performance than the first,
but it complicates the predictive control theory
in many aspects considerably. Usually a nonlinear
optimization problem must be solved using nu-
merical methods, leading to tedious calculations
of gradients and requiring long sampling times
(Pottmann and Seborg, 1997). It is therefore of
major importance that gradients are easily ex-
tractable from the nonlinear model used for pre-
diction. To generalize this property for a class of
dynamical systems, a fixed structure must be used
for the nonlinear model applied. Since the late
nineteen eighties there has been a considerable
interest in applying neural networks to nonlinear
system identification. Many network paradigms,
e.g. multiple layer perceptron (MLP), radial basis
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function (RBF) networks etc. have proved them-
selves to be excellent nonlinear models. The main
drawback of such models is that the network pa-
rameters have no direct correspondence to the
physical system parameters. For example, if the
parameters of the linearized system at the current
operation point or the gradient of some objective
function are to be calculated, then the gradient of
this neural model has to be calculated, which may
be computationally extensive and error-prone due
to the inherent ripples of the RBF or MLP net-
works. The local linear model (LLM) networks are
free from RBF-like ripples. Another major advan-
tage of such networks, which is introduced in this
contribution, is that the calculation of gradients is
straightforward. In this work we use a special class
of LLM networks called Rectangular Local Linear
Model (RLLM) networks as a nonlinear model
of the system to devise an adaptive predictive
control scheme.

The next section starts with a short introduction
to the control scheme. After that a brief review
of RLLM networks and their use as nonlinear
models will be presented. Then we will summarize
the fundamentals of nonlinear predictive control
based on solving an optimization problem, fol-
lowed by a discussion on the prediction of sys-
tem output and calculation of required gradi-
ents. The proposed control scheme was applied
to a laboratory-scale pH-neutralization plant pre-
sented in section 3. We will conclude with some
remarks.

2. THE CONTROL SCHEME

The aim of this contribution is to use an on-
line system identification method based on RLLM
networks to generate the model needed for a
nonlinear model based predictive control scheme.
Nonlinear predictive control algorithms are known
to be advantageous when the process shows the
presence of: strong nonlinearities, constraints in
control and state signals, or nonminimum phase
properties. It is important that the generated
nonlinear model captures all these characteristics
with a high precision. Furthermore, since the non-
linear predictive control scheme to be considered
is based on a numerical optimization, the nonlin-
ear model must be applied to calculate gradients
needed for optimization. Ripples, not existing in
the system to be identified but occurring in the
generated nonlinear model must be avoided, since
they can strongly affect the gradient calculations,
possibly damaging or leading to instability of the
optimization process. Taking these aspects into
account, the RLLM network was selected for the
identification purpose.

2.1 Nonlinear Modelling using RLLM Networks

A wide range of nonlinear multiple-input-multiple-
output dynamical systems can be described by
an equation of the following form (Narendra and
Parthasarathy, 1990)

y(k) = f [y(k − 1), ...,y(k − ny),
u(k − 1), ...,u(k − nu)] + ε(k), (1)

where y is the vector of m outputs and u is the
vector of r inputs of the system, ε is a noise vector,
f is a nonlinear function, k is the discrete time
instant and nu and ny are the maximum lags of
the input and output signals respectively. This
model is known as NARX-model (Sjöberg, 1995).
The deterministic nonlinear mapping f of Eq.(1)
can be approximated by using a proper nonlinear
function approximator. Artificial neural networks
are practically convenient approximators for non-
linear functions. The idea behind the local linear
model (LLM) networks is to decompose the input
space of the nonlinear mapping into a number
of operating regions. These regions are selected
in such a way that the given mapping can be
approximated by a linear function in each of the
regions. These operating regions are sometimes
also known as operating regimes (Hunt and Jo-
hansen, 1997). There are several possibilities for
determining the shape and form of these regions.
Our approach, RLLM network, decomposes the
input space of the function into (hyper-) rectan-
gular regions (Junge and Unbehauen, 1998a). As
the emphasis is on nonlinear predictive control,
this contribution gives only a short introduction
of the RLLM networks. For a detailed description
of these networks, previous publications of the
authors like (Ali et al., 2000), (Junge and Un-
behauen, 1998a), (Junge and Unbehauen, 1998b)
may be consulted. The construction of RLLM
networks involves three entirely different layers.
The first (input) layer is composed of source nodes
whose number L0 is equal to the dimension of the
input space. The second layer, also called hidden
layer of high enough dimension L1, consists of
local linear units that are connected directly to
all of the nodes in the input layer. The output
layer is composed of linear units whose number
L2 is equal to the dimension of output space.
The hidden layer of the network implements a
nonlinear mapping from <L0 to <L1 . The output
of a certain local linear neuron j in the hidden
layer having its center cj dimensions sj and linear
weights wj along with a bias bj for an input vector
ϕ(k) can be calculated as

gj(k) = (bj + wj [ϕ(k)− cj ]) vj(k), (2)

where vj is the validity function of the local model.
This function attains values between 0 and 1
enabling a smooth transition between different



local models. In our approach the validity function
is defined as

vj(k) =


1 aj(k) ≤ 1− β
fa 1− β < aj(k) < 1 + β
0 aj(k) ≥ 1 + β,

(3)

where 2β is the width of the region in which
two neighboring neurons overlap and aj can be
considered as a measure of the internal activity of
the jth neuron and is defined as

aj(k) = max
1≤l≤L0

|ϕl(k)− clj |
0.5slj

. (4)

The function fa in Eq.(3) can be considered as
an activation function. It may be any continuous
function, which causes a smooth transition be-
tween 0 and 1. The mapping from <L1 to <L2

is linear. The ith output ŷi of the network can be
given by

ŷi(k) =
∑

j∈L
(i)
1

gj(k), (5)

where L
(i)
1 is the set of indices of hidden layer

neurons making their contribution to the ith out-
put. The online learning algorithm developed for
the training of the above network, in addition to
determining the optimum number of local linear
models in the hidden layer, estimates the parame-
ters of each linear model using a recursive least
squares algorithm. This learning algorithm can
be started with any initial form of the lattice.
It automatically splits a neuron into two neurons
if the behavior of the neuron is not satisfactory
according to a given criterion. On the other hand,
if two neighboring neurons have nearly identi-
cal parameters, then in order to achieve a par-
simonious structure these neurons are merged to-
gether to give a single neuron (Junge and Unbe-
hauen, 1998a).

2.2 Nonlinear Predictive Control Description

The model predictive control, also known as
the receding-horizon control, is based on a sim-
ple problem formulation, which is well suited to
deal with nonlinearities and constraints. Assum-
ing that a discrete-time mathematical model is
used, the basic idea is to determine the con-
trol action u(k) at time t = kT , by using the
sampling time T and solving a finite-horizon
optimization problem over a time interval of
t ∈ [kT, (k + N)T ]. Applying the receding-horizon
principle for the next time instant t = (k + 1)T ,
a new control u(k + 1) is found by solving a
new optimization problem for the next time inter-
val t ∈ [(k + 1)T, (k + N + 1)T ]. In mathematical

terms this method can be described using the
time-invariant nonlinear model of the plant

ŷ(k + 1) = f̂ [y(k), ...,y(k − ny + 1),
u(k), ...,u(k − nu + 1)]

(6)

with the same notation as in Eq.(1), using
[y(k), ...,y(k − ny + 1),u(k), ...,u(k − nu + 1)] as
initial values and assuming that f̂ is a twice dif-
ferentiable nonlinear approximation of f , deliver-
ing the one-step prediction ŷ(k + 1). The noise
vector ε in Eq.(1) must be omitted in Eq.(6)
for prediction purposes. Furthermore, the input
and output vectors u(k), y(k) must satisfy the
boundary constraints

ŷ(k∗ + 1) ∈ Y, u(k∗) ∈ U, ∀k∗ ≥ k, (7)

where Y and U are compact sets of <m and <r

respectively. To be able to describe the desired
control behavior, a quadratic objective function
to be minimized is defined as

J(k) =
1
2

N∑
i=1

e(k + i)TQe(k + i)+

1
2

N−1∑
i=0

u∗(k + i)TRu∗(k + i),

(8)

where the matrices Q and R are both sym-
metric and positive definite, and the vector
e(k + i) = w(k + i)− ŷ(k + i) represents the de-
viation between the desired w(k+i) and predicted
ŷ(k+ i) output vector at time t = (k + i)T . There
are several possibilities to define u∗ such as succes-
sive incremental changes u∗(k) = u(k)−u(k− 1)
or deviation of control u∗(k) = u(k) − u0 from
the steady state value u0. In this work the second
version is chosen. The weighting matrices Q and
R can be used to influence the speed of control
and to set the significance of the r input and m
output signals for the optimization.

It should be mentioned that the objective function
in Eqs. (8) solely presents one out of many possible
objective functions used for predictive control. For
example, considering the case of a fixed set-point
{w(k∗) = w(k∗ + 1)|∀k∗ ≥ k}, and attempting to
provide an analytical stability proof for a non-
linear predictive control, it might be necessary
to append the objective function in Eq.(8) with
a terminal cost term eT(k + N)Le(k + N) and
to append the constraints in Eq.(7) with a ter-
minal state condition e(k + N) ∈ Ω (Chen and
Allgöwer, 1998). These additional terms have been
omitted in this paper to simplify the following
calculations.
Since the predictive control strategy is based on
the receding-horizon principle, the optimization
problem must be repeatedly solved after each sam-



pling instant. This property allows to consider the
control law as a nonlinear function γ(·)

u(k) = γ[y(k − 1), ...,y(k − ny),
u(k − 1), ...,u(k − nu + 1),
w(k), ...,w(k + N − 1)],

(9)

which performs the optimization task

min
u(k),...,u(k+N−1)

J(k) (10)

and returns only the first element of the solution
[u(k), . . . ,u(k + N − 1)] ∈ <r×N for control. Al-
though the elements [u(k + 1), . . . ,u(k + N − 1)]
resulting from the solution are usually discarded
for control purposes, they can be effectively used
to initiate the optimization procedure taking place
at time t = (k + 1)T . This is of significant im-
portance if the optimization is performed using
a gradient method as discussed in the following
section.

2.3 Prediction and Optimization

For prediction and optimization a model of the
plant must be used. In our approach an RLLM
network is applied for this purpose, which delivers
an estimate f̂ of the unknown plant according to
the NARX-model description of Eq.(1).

Let us define a sequence of suggested controller
outputs

ū(k) = [ u(k)T . . . u(k + N − 1)T ]T (11)

In order to estimate the future response of the
plant to this sequence, the neural network model
output can be calculated recursively to get

ȳ(k) = [ ŷ(k + 1)T . . . ŷ(k + N)T ]T . (12)

Each element ŷ(l) of the above vector is given by
the following relation

ŷ(l) = f̂ [ϕ(l)], (13)

where

ϕ(l) = [ỹ(l − 1)T . . . ỹ(l − ny)T

u(l − 1)T . . . u(l − nu)T]T
(14)

and

ỹ(i) =
{

y(i) i ≤ k
ŷ(i) otherwise (15)

It is clear from the nature of local linear model
networks that different local linear models may
be activated successively during this prediction
process. Figure 1 demonstrates this phenomenon
for a first-order SISO system. The points A and
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Fig. 1. Local Linear Model Regions

B correspond to the lower and upper boundaries
of the prediction horizon, passing through the
local linear models L7, L8, L10, L4, L5 and L6.
In addition to predicting the system output at
instant l, the network also returns a parameter
matrix

P (l) = [A1(l) A2(l) . . . Any
(l)

B1(l) B2(l) . . . Bnu
(l)], (16)

which contains the parameters of the active local
linear model

ŷ(l) =
ny∑
i=1

Ai(l)ỹ(l − i)+

nu∑
i=1

Bi(l)u(l − i),
(17)

where Ai ∈ <m×m and Bi ∈ <m×r.

This expression can be simplified using the active
input pattern vector ϕ(l) and the parameter ma-
trix P (l), such that

ŷ(l) = P (l)ϕ(l). (18)

For calculating the control deviation, the desired
reference signal sequence is assumed to be known
over the prediction horizon

w̄(k) = [ w(k + 1)T . . . w(k + N)T ]T(19)

This allows to define an error sequence

ē(k) = [ e(k + 1)T . . . e(k + N)T ]T (20)

where e(k + i) = w(k + i)− ŷ(k + i). Using this
notation the objective function in Eq.(8) can be
rewritten using ū∗(k) = ū(k)− ū0 as

J(k) =
1
2
[ē(k)TQ̄ē(k)+

ū∗(k)TR̄ū∗(k)],
(21)

where

Q̄ = IN ⊗Q R̄ = IN ⊗R. (22)



Here the operator ⊗ shows the Kronecker tensor
product. To solve the optimization task described
in Eq.(10) many numerical methods have been
suggested in the literature (Himmelblau, 1972).
These methods usually make use of a calculated
gradient vector to approach the minimum itera-
tively. In this work the ’steepest descent’ method
is applied to update the solution according to

ū(k)(n+1) = ū(k)(n)−

diag(λ(k)(n))
δJ(k)
δū(k)

∣∣∣∣
ū(k)(n)

,
(23)

where λ(k)(n) ∈ <Nr is a weighting vector used
in order to improve the optimization speed. In
this contribution an adaptive strategy was used to
determine the weighting vector. A general treat-
ment of such adaptive methods can be found
in (Haykin, 1994). The gradient of the objective
function above can be given as

δJ(k)
δū(k)

=
δē(k)
δū(k)

Q̄ē(k)+

δū∗(k)
δū(k)

R̄ū∗(k).
(24)

The signal vectors ē(k) and ū∗(k) are determined
using Eqs. (20) and (11). The gradients of these
vectors can be given as

δū∗(k)
δū(k)

= INn (25)

δē(k)
δū(k)

= − δȳ(k)
δū(k)

= −GT(k). (26)

The lower block triangular matrix {Gij} is the Ja-
cobian of ȳ(k) with respect to ū(k). The non-zero
block elements of this matrix can be calculated
recursively using parameter matrices Ai and Bi

according to the following scheme:

for i = 1 : N,
for j = 1 : i,

if j > (i− nu) then
Gij(k) = Bi−j+1(k + i)

if j < i then Gij(k) = Gij(k)+
min(ny,i−1)∑

l=1

Al(k + i)Gi−l,j(k)

end
end

The Hessian of the objective function can also be
calculated in a similar way, which can be useful
for other types of optimization methods.

3. EXPERIMENTAL RESULTS

The pH neutralization process is characterized
by strong static and dynamic nonlinearities. The

laboratory-scale neutralization plant to be con-
trolled in this work is shown in Figure 2. The plant
consists of a 5.5 liter stirred tank with two inlets
and one outlet (Draeger et al., 1995). Each of
these inlets is connected to a reciprocating pump
with adjustable sweep volume. The frequency of
the pump is proportional to the input signal and
can assume 180 uniformly distributed values. For
the following experiment one pump was fed with
0.1 normal acetic acid (CH3COOH) running at a
fixed frequency and pumping 7.56 l/h. The second
pump was driven by the control signal to inject 0.3
normal solution of the sodium hydroxide (NaOH)
to bring pH = − log[H+] of the tank contents at
a desired level. The chemical reaction can be de-
scribed as

Na+OH− + CH3COO−H+

⇔ Na+CH3COO− + H2O
(27)

The control of such a plant has proven itself to be
a great challenge. Many linear and nonlinear tech-
niques have been developed and applied (Fikar
and Draeger, 1995), (Gerksic and Juricic, 1999).
The real-time adaptive predictive control results
achieved during this work are shown in Figure 3.
During this experiment the following settings were
used for predictive control: N = 8, R = 0.125
and Q = 1. The system was sampled every 8
seconds. The experiment was started with one
linear model of the second order. In the begin-
ning the neural model was inaccurate and the
control performance was not good. With the pas-
sage of time the learning algorithm produced 3
local linear models to cover the current range of
operation. Figure 3 shows improvement in control
performance as the network learned the nonlinear
behavior of the process. To select the active linear
model the delayed pH value pH(k-1) was chosen
as scheduling variable. Operating range covered
by each of these local models is shown in Figure 3
by thick dotted lines representing the boundaries.
These three local models differ from each other in
steady state as well as dynamic characteristics. As
it is also clear from the figure that if the reference
signal remains constant the system is operating
in the vicinity of an operating point covered by

P2
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pH

Inlets
Outlet

Fig. 2. The Neutralization Plant
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a single linear model. When the reference signal
is suddenly changed from one point to the next,
a single linear model is not able to predict the
nonlinear behavior of the plant, a successive ac-
tivation of different models during the prediction
is the result. The last diagram of Figure 3 shows
how many models are used at each time instant
for prediction and calculation of gradients.

4. CONCLUSIONS

Adaptive nonlinear model-based predictive con-
trol using local linear model networks has been
successfully implemented on a laboratory-scale
pH-neutralization plant. The control scheme ex-
ploits the local linear property of individual mod-
els in the network in order to calculate gradients
of the objective function efficiently. The model
network is trained online to learn the unknown
nonlinear dynamical behavior of the plant. The
experimental control results confirmed the ex-
pected improvement in control as the neural net-
work learned the nonlinear dynamics of the plant.
Due to local linearity the calculation of gradients
of the objective function is a simple task. Future
research activities are focused on a continuous-
time version of this scheme and stability analysis.
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