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Abstract: Multi-agent control is an efficient method to optimize local systems in
decentralized environments. Market-based algorithms are multi agent scenarios in which
producer and consumer agents compete and cooperate on a market at the same time. The
method is applied to a set of local Markov/queuing processes, or birth and death
processes, respectively, where the local death rates can be influenced by some external
control strategy but the local birth rates cannot. The goal is to change the individual death
rates so that, after some finite time, the distributions of all queuing processes are adjusted.
The death rates of the local queuing processes are changed on the basis of the
probabilities of the appearance of a selected event in each of the local queuing processes.
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1. INTRODUCTION

Centralized control of complex systems is known to
be difficult in the presence of a large number of local
systems. A decentralized option is multi agent
control which is able to cope better with the
problems arising with centralized control and
optimization methods. Multi agent control methods
are especially applied in congestion control of traffic
networks (Altman,1999) and manufacturing systems
(Bussmann, 1998, Wallace 1998, Zaremba, 1999).
Another important and growing field of application is
logistics. In (Moore, 1997) a multi-agent framework
is presented that deals with logistic operations in a
distributed network environment. This approach is
used both for analysis and for the design of a
distributed

intelligent agent architecture. In (Falk, 1993) a
multi-level warehouse hierarchy with its market
mechanisms is applied to real-time transportation,
dynamic freight allotment, depot agents, scheduling
problems, and production planning.

One of the most promising approaches to
decentralized systems is market-based control
where the behavior of economic systems is imitated.
In this framework producer and consumer agents
both compete and cooperate on a market of certain
commodities. Several market-based control and

optimization strategies are presented in (Clearwater,
1996, Guenther, 1997, Berlin, 1998). In (Voos (1),
1999) and (Voos (2), 1999) market-based control
algorithms are presented in more detail. On the basis
of cost functions used by producer and consumer
agents the optimization of distributed coupled linear
systems is shown. The present paper adopts mainly
ideas from (Guenther, 1997) and (Voos (1), 1999).
The method is applied to a set of local Markov
processes , €.g. queuing processes, respectively. In
the case of several queues of customers it might be of
interest to keep all queue lengths approximately the
same in order to occupy the whole system equally. It
is assumed that the local death rates can be
influenced by some external control strategy but the
local birth rates cannot. The main goal is to change
the individual death rates so that, after some finite
time, the distributions of all queuing processes are
adjusted. The death rates of the local queuing
processes are changed on the basis of  the
probabilities of the appearance of a selected event in
each of the local queuing processes. The paper is
organized as follows. Section 2 gives a short
introduction into the problem of decentral queuing
(birth and death) processes acting in parallel. In
Section 3 the market-based algorithm is applied to a
set of birth and death processes. In Section 4
simulation results are presented. Section 5 concludes
with a short summary.
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2. DECENTRAL QUEUING PROCESSES

The problem of decentral queuing processes acting in
parallel will be explained by a simple application
example. Given a company producing n types of
commodities (e.g. computers). Let further be given
an unknown number of customers who order
different numbers of each type of commodity. Let,
for example, some customers order a number of
computers of type 1, and let other customers order
another number of computers of type 2 etc. Each
computer needs for its production different materials
(elements) some of them may be used for both types
of computers. Let both the stream of demands by the
customers and the times for handling the
commissions by the company be exponentially
distributed (see Fig 1). Furthermore, for simplicity
we assume that a customer orders only one piece of a
special type of commodity. We also assume that at a
time instant t the change in the number of demands is
Oorl.

type 1

type 2
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Fig. 1. Occurence of demands and handling times of

the commissions

Let the time difference between two demands be

At = — i - et further the difference
between the stops of orders be
At op = livtgop —liyop- ~ The  corresponding
probability functions for #,7 > 0 are
_ — At
P(At,,, <t)=1-e t>0 (1)
P(AL,,, <T)=1-¢*" >0 (2)

respectively. A,, A, >0 are the parameters of the

exponential processes (1) and (2). According to
(Wolff, 1989) this type of stochastic process can be
modeled by a homogeneous Markov process. Since
demands are stochastically “born*“ and the corres-
ponding handlings of commissions “die out® the
process can be modeled by a so-called birth and
death process. Let j be the state denoting “j active
commissions* of an arbitrary commodity. The
differential equations for the probability of the
occurence of the states j=1,2,...n are

Py(t) = =2, Py (1) + 1, P, (1)
P(t)=24, P (1)~ (A, +u,)P,(t) ()
+ :uj+1Pj+1 (t)

where /1_/. are the birth rates and 4, the death

rates. P, (#) is the probability to reach the state j at

time ¢ when having started with some state i at time
t,. In (3) the birth and death rates are different for

every state j. When assuming constant rates for all
states one obtains instead

Py (t) = =AP, (1) + pP, (1)
P.(t) = AP_ (1) = (A + p)P, (1) + uP,

J+l

“4)
(1)

We call a process ergodic or stable, respectively, if
O<A/u<l.

In this case the process converges. That is, for a

specific state ]~ the probability to reach a higher
state becomes increasingly unlikely

P, <P, for ]>]~

For our example the states j are the number of
handled commissions of a commodity type

k=1,2,...,M at time t. Then, ij () is the probabi-lity
to have j commissions of a commodity type k in the

queue at time t. ij(l‘) is the change in the pro-

bability ij (¢) at time t. Hence, equation (4) can be

rewritten

B (t)=-AP (t)+ u"P" (1)

Pr)=2'P () - (A + )P (1) (5)
+ 4" P (@)

where for each type k the A and ,uk , respectively,

are in general different.

Equations (4) can be considered as a system of
equations concerning all types of commodities. This
corresponds to the total Markov process of all events
with n different states (see graph in Fig. 2). That is,
in (4) and Fig. 2 we do not distinguish between
different types k of commodities.
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Fig. 2 Graph of the centralized Markov process



When splitting the process into subprocesses each of
which belonging to a special type of commodity one
obtains M different Markov processes (5) with the
corresponding graphs (see Fig 3) each of which

having n® states.

//i/k /lk /lk

Fig. 3 Graph of the decentralized Markov processes

State jk =12,..,n" denotes “jk active
commissions® of commodity type k. The relation

between the Aand g, respectively, of the

centralized process and the A and ,uk ,
respectively, of the decentralized processes is
M M
k. k
A= u=)pu (©)
k=1 k=1

because of the OR-combinations of independent
probabilities. That is, a connection between the
decentralized processes (5) and their individual
graphs are connected via (6). In addition, the total
number j of active commissions in the centralized

model and the numbers j * of individual type related
active commissions are connected by

M
=" ©)
k=1

However, since j can be obtained in many ways the
number of possible combinations of j * 1o get the
same total number ; can be very high .

3. PROCESS CONTROL BY MARKET-BASED
ALGORITHMS

In the following the way of how to influence the
whole process and the subprocesses, respectively, is
investigated. The birth and death processes (5) are
completely determined by their initial conditions and

their parameters A° and 4" . The birth rates A*

cannot be influenced since they depend completely
on the customer. The only parameters that can be

influenced are ,uk. Increasing ,uk means that a
commodity can be delivered faster (earlier) than
before. One way of increasing ,uk is the exchange

or loaning of materials or elements , respectively,
from other types of commodities. This, however,

leads to a decrease of the ,uk for these other types.

To reach a compromise for all subsystems a market-
based algorithm is applied to find a so-called Pareto-
optimum for the whole set of subprocesses . One can
argue that it may be sufficient to make the queues as
fast as possible. But under the condition of restricted
recources of the suppliers this control policy may
lead to longer queues, larger buffer capacities, and
lower quality of service. Instead, the control policy
applied here is to change the death rates of the
individual queues in a way that their dynamical
behaviors become equal. This is identical with the
requirement for using the capacity all subprocesses in
a well-balanced way which in turn leads to a
synchronization of the queues. This can be reached
by minimizing a cost /energy function of the total
process via the local cost/energy functions.

An appropriate calculation of the death rates is done
by a market-based approach that is presented in the
following. In order to avoid misinterpretations one
has to note that the below-mentioned terms
“producer and “consumer* should not be confused
with real customers/consumers and
suppliers/producers acting in the commisioning
process described in the previous section.
Subsequently, producer and consumer agents are
virtual actors trading with virtual commodities like
death rates.

Now, we define a producer agent Pagf and a
consumer agent Cag/;, respectively, for each state

J k belonging to a commodity of type k. Pagf

k

“produces® a certain death rate £/, , and tries to

maximize a local profit function pf >0. Cagf
“demands* for a certain death rate ,uck , and tries to
maximize a local utility function U jk > (0. Both

pf and Uj]f will be specified later. The trade

between producer and consumers agents takes place
on the basis the local profit and utility functions, and

common prices p ;. The latter can be calculated

from the equlibrium of the whole “economy® in
every time step. An equilibrium is reached as the

sum over all supplied death rates ,ullj is equal to the

sum over all utilized death rates ,uf .

M M
Dy =DM ®)
I=1 I=1

from which the common prices p; can be
calculated. The utility function for the consumer
agent Cagf is now defined by

Utility = benefit - expenditure
k _ 7k k ~k kN2
Uj_bj/uc _cjpj(/uc) )



where gjk , Ejk > 0 will be determined later in
connection with the queue dynamics (5).
The profit function for the producer Pagf is defined
by

profit =income - costs

P =g;pu, —e; (i)’ (10)

where g/;,el; >0 are free parameters that

determine the average price level. p; is the actual

price that has to be payed for ,uﬁ by each consumer
Cagf . With regard to the choice of the individual

terms in U;‘ and pf see Guenther, 1997. The

parameters b jk,gk in (9) can be determined by

using local energy functions based on the dynamics
(5) where, for simplicity, the argument ¢ is eliminated

Pr=2pr "~ +uHP" +ulp, (D)

From (11) a local energy function for each
subprocess is defined as

7= (B =t gt e a2
where

af Z(ﬁ,k)2 '(Pj_k
pt==22(r._"

-P'y 20
j+1 )(P —Lin )
<0  forsmall | P |

yi =P =P, 20

(13)

. 5 k
It can be shown that for the stationary case Pj =0,

and for p, = 1, the energy function (12) reaches its
minimum at the maximum of the utility function (9),
independently of the parameter af . Therefore, a

comparison of (9) and (12) leads to the intuitive
choice

Tk _| pk ~k _ _k
b =B/, ¢ =y, (14)
in order to guarantee ,uf > (0. The optimization of

the whole process takes place by individual
maximization of the local utility and profit functions,

respectively. Maximization of the utility function
(9) yields
out .

. b 2c P, =0 (15)
ou,
from which optimum “demanded ,uf ‘s are
obtained

bk 1
pe= (16)

Maximization of the profit function (10) yields
op* ;
o,

gjpj Zefy’;:O (17)

p

from which optimum “produced* ,uﬁ ‘s are obtained

K Py kG
M, = son; =—F (18)
P 277;€ J gj{

The requirement for an equilibrium between the sums
of the “produced* ,u ‘s and the “demanded* ,uc
led to the balance equation (8).

Substituting (16) and (18) into (8) gives the price p ;

for ,uﬁ and ,uck , respectively.

< o~ < /
:\/ij /c; /21/77./' (19)
=1 =1

Substituting (19) into (16) yields the final equation
for the death rate to be implemented in each

subsystem. 77;‘ can be chosen as a constant which

gives reasonable results.

7
A better choice, however, is 77f =—— tolet 7715

ﬂ J
be dependent on £° and A*.

For the stationary case we obtain

P! :’1—kP"

J k=l
u

(20)

For ﬂjk , and ]/f we obtain with (13) and (20)

By =-2u" (Hﬁ)(l——) (P") <0
7T

ko_ P
Y —(1—7) (P7) 20 1)

The determination of ,ij and 7/f for the

nonstationary  case, however,
computation/measurement  of  the

requires  the
probabilities

P/.k (¢) that can be done by constructing histograms
for every point in time. The probability of a state
ij () is approximated by the number of events j k

divided by the total number of events

PH(t) =n(j*)) 2 onG") (22)



4. SIMULATION EXAMPLES

Example 1

The first example deals with 3 different Markov
processes with 11 states for each process.

The continuous processes and the optimization
strategy are implemented as discrete models. The
simulations have been done on a small time scale
which can be changed for a real process accordingly.
The initial values are

Process P1:
PO _1=1; Pl 1=0; P2 1=0; P3 1=0;
P4 1=0; P5 1=0; P6 1=0; P7_1=0;

P8 1=0; P9 1=0; P10_1=0;
Process P2:
PO 2=1; Pl 2=0;

P2 2=0; P3_2=0;
P4 2=0; P5 2=0; P6 _2=0; P7 2=0;

P8 2=0; P9 2=0; P10_2=0;

Process P3:
PO _3=1; Pl 3=0; P2 3=0; P3 3=0;
P4 3=0; P5 3=0; P6 3=0; P7 3=0;

P8 3=0; P9 3=0; P10 3=0;

The corresponding parameters are

lambda 1=1; lambda 2=2.5; lambda 3=3.8;
mu_I1=1.4; mu 2=1.7; mu_3=1.9;

Process P1 is ergodic since lambda 1< mu 1.
The processes P2 and P3 are non-ergodic since
lambda 2 > mu 2 and lambda 3 > mu 3.
Figure 4 shows the evolution of P1-P3 without any
cooperation or interconnection between the
processes. After T=10s the processes are almost
stationary. For this case P1 shows the characteristic

ergodic feature with P, > P,_,, where, on the other
hand, for the processes P2 and P3 we have the non-
ergodic feature P, < P_,,. Despite of this, P1 and

P2 are not unstable but come to rest at a stationary
distribution depicted in Fig. 4. The reason is that the
number of states is restricted. Figure 5 presents the
case in which the processes cooperate (compete) with
each other. The corres-ponding parameters for the
market-based algorithm are

e 1=2; g 1=1; eta l=e 1/g 1;

e 2=2; g 2=1; eta 2=e 2/g 2;

e 3=2; g 3=1; eta 3=e 3/g 3;

The initial distribution is the same as in the previous
case. The ‘s are changed at each time step
according to (16) or (18), respectively.

Already after T=Is it can be observed that the
process distributions approach to each other. After
T=10s all processes exhibit ergodic features which
means that the corresponding g ‘s take finally larger

values than the corresponding A ‘s

lambda 1 = 1;lambda 2 = 2.5;
lambda 3 = 3.8; mu_1=1.3799;

mu 2 =3.5065; mu 3=5.3328.

Example 2

The distributions in the previous were generated
directly by the differential equations (5) and (13),
respectively. Instead, in the following example the

distributions are the result of stochastic processes
generated by noise generators that produce both the
birth processes of demands and the death processes
of handling the commissions It is assumed that only
one time series is available. All birth and death

processes are assumed to be stochastically
independent, stationary, and ergodic.
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Fig 4. Evolution of P1-P3 (no optimization)
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Fig 5. Evolution of P1-P3 (with optimization)



The corresponding  distributions for the non-

optimized and the optimized case after T=10s,
respectively, are depicted in Figs. 6a,b. The birth and

death rates A (Id) and # (mu) in Fig. 6 are the final

rates after the experiment. The market-based
optimization leads, as in the previous example, to a
stable behavior and a synchronization of the three
different queues.

01 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 8 10

0 1 2 3 4 5 6 7 8 9 10 11

Fig 6 Processing of the death rates
a) no optimization b) with optimization

5. CONCLUSIONS

In the paper a commisioning process is modeled by
set of local birth and death processes. Although the
local birth rates are fixed, the corresponding death
rates can be influenced by some specific control
algorithms. The control goal is to change the local
death rates so that the distributions of all queuing
processes are adjusted. This is done by a market-
based optimization method. In the paper an
introduction to distributed birth and death processes
is given, and the problem of a centralized or
decentral representation of the problem is discussed.
For the market-based algorithm applied here, local
utility and profit functions, respectively, are defined
on the basis of which the particular queuing
processes are optimized. The result of the
optimization is a so-called Pareto-optimum that
represents a compromise between the competing
processes. The simulation experiments show that the
algorithm leads to excellent results for the adjustment
of local Markov/queuing processes.
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