PERTURBATION ANALYSIS OF COUPLED MATRIX RICCATI EQUATIONS

Mihail Konstantinov* V era Angele a ${ }^{* *}$ P etk Petko $\mathbf{v}^{* * *}$
Dawei Gu ${ }^{* * * *}$ V assilios Tsahouridis ${ }^{\dagger}$

\author{

* University of Architectur e and Civil Enginering, 1 Hr. Smirnenski Blvd., 1421 Sofia, Bulgaria, e-mail: $m m k _f t e @ u a c g . a c a d . b g$
 ** Institute of Information Technologies, Akad. G. Bonchev Str., Bl. 2, 1113 Sofia, Bulgaria, e-mail: vera@bgcict.acad.bg
 *** Department of Automatics, Technic al University of Sofia, 1756 Sofia, Bulgaria, e-mail: php@mbox.digsys.bg
 **** Department of Engineering, University of Leicester, L eicester LE1 7RH, England, e-mail:dag@le.ac.uk
 ${ }^{\dagger}$ Department of Engineering, University of Leicester, L eicester
 LE1 7RH, England, e-mail:vt10@le.ac.uk
}

Abstract

Local and non-local perturbation bounds for real continuous-time coupled algebraic matrix Riccati equations are deriv ed using the technique of Ly apunc majorants and fixed point principles. Equations of this type arise in the robust analysis and design of linear control systems.

Keywords: Perturbation analysis, Riccati equations, Robust control

1. INTRODUCTION AND NOTA TION

In this paper we present a complete perturbation analysis of real contin uous-time coupled algebraic matrix Riccati equations (CAMRE) of the form $F_{i}\left(X_{1}, X_{2}, P_{i}\right)=0, i=1,2$, where F_{i} are matrix quadratic functions in the unknown matrices X_{i}, and P_{i} are collections of matrix coefficients.

Throughout the paper we use the following notation: $R^{m \times n}$ - the space of $m \times n$ real matrices; $R^{m}=R^{m \times 1} ; R_{+}=[0, \infty) ; A^{\top}-$ the transpose of the matrix $A ; \preceq-$ the component-wise order relation on $R^{m \times n} ; \operatorname{vec}(A)$ - the column-wise vector representation of the matrix $A ; \operatorname{Mat}(\mathbf{L}) \in R^{p q \times m n}$ - the matrix representation of the linear matrix operator $\mathbf{L}: R^{m \times n} \rightarrow R^{p \times q} ; I_{n}$ - the unit $n \times n$ matrix; $\Pi_{n^{2}}$ - the $n^{2} \times n^{2}$ vec-permutation matrix such that $\operatorname{vec}\left(A^{\top}\right)=\Pi_{n^{2}} \operatorname{vec}(A)$ for all $A \in R^{n \times n}$; $A \otimes B$ - the Kronecker product of the matrices A and $B ;\|\cdot\|_{2}$ - the Euclidean norm in R^{m}
or the spectral (or $2-$) norm in $R^{m \times n} ;\|\cdot\|_{\mathrm{F}}-$ the Frobenius (or F-) norm in $R^{m \times n} ;\|\cdot\|-$ a replacement of either $\|\cdot\|_{2}$ or $\|\cdot\|_{F} ; \operatorname{rad}(A)$ - the spectral radius of the square matrix A; $\operatorname{det}(A)$ - the determinant of the square matrix A; $\|P\|=\left[\left\|E_{1}\right\|, \ldots,\left\|E_{r}\right\|\right]^{\top} \in R_{+}^{r}$ is the generalized norm of P, when $P=\left(E_{1}, \ldots, E_{r}\right)$ is a collection of r matrices.

We also denote $\mathcal{R}=R^{n \times n}$ and $\mathcal{S}=\{A \in \mathcal{R}: A=$ $\left.A^{\top}\right\} \subset \mathcal{R} ; \mathcal{S}_{+}=\{A \in \mathcal{S}: A \geq 0\} ; \operatorname{Lin}\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)-$ the space of linear operators $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$, where \mathcal{L}_{1}, \mathcal{L}_{2} are linear spaces. We also use the abbreviation $\operatorname{Lin}=\operatorname{Lin}(\mathcal{R}, \mathcal{R})$.
We identify the Cartesian product $R^{m \times n} \times R^{m \times n}$, endow ed with the structure of a linear space, with an y of the spaces $R^{m \times 2 n}, R^{2 m \times n}$ and $R^{2 m n}$. In particular, the ordered pair $(A, B) \in R^{m \times n} \times$ $R^{m \times n}$ and the matrix $[A, B] \in R^{m \times 2 n}$ are considered as iden tical objects. Finally, w e use
the same notation P for an ordered matrix r tuple $\left(E_{1}, \ldots, E_{r}\right)$ as well as for the collection $\left\{E_{1}, \ldots, E_{r}\right\}$.

2. PROBLEM STATEMENT

Consider the system of real continuous-time CAMRE arising in the robust control of linear timeinvariant systems (see e.g. [1])

$$
\begin{gather*}
F_{1}\left(X_{1}, X_{2}, P_{1}\right):=\left(A_{1}+B_{1} X_{2}\right)^{\top} X_{1} \tag{1}\\
+X_{1}\left(A_{1}+B_{1} X_{2}\right)+C_{1}-X_{1} D_{1} X_{1}=0 \\
\\
\quad F_{2}\left(X_{1}, X_{2}, P_{2}\right):=\left(A_{2}+X_{1} B_{2}\right) X_{2} \\
+ \\
X_{2}\left(A_{2}+X_{1} B_{2}\right)^{\top}+C_{2}-X_{2} D_{2} X_{2}=0
\end{gather*}
$$

where $X_{i} \in \mathcal{R}$ are the unknown matrices, $A_{i}, B_{i} \in$ $\mathcal{R}, C_{i}, D_{i} \in \mathcal{S}$, are given matrix coefficients and $P_{i}:=\left(A_{i}, B_{i}, C_{i}, D_{i}\right) \in \mathcal{R}^{4}$.
We set

$$
\begin{aligned}
P & :=\left(P_{1}, P_{2}\right)=\left(A_{1}, B_{1}, C_{1}, D_{1}, A_{2}, B_{2}, C_{2}, D_{2}\right) \\
& =:\left(E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7}, E_{8}\right) \in \mathcal{R}^{8}
\end{aligned}
$$

The generalized norm of the matrix 8-tuple P is the vector $\|P\|:=\left[\left\|E_{1}\right\|_{\mathrm{F}}, \ldots,\left\|E_{8}\right\|_{\mathrm{F}}\right]^{\top} \in R_{+}^{8}$.

In this work we are interested only in symmetric solutions of system (1).

The solution pair $\left(X_{1}, X_{2}\right) \in \mathcal{S}^{2}$ is called stabilizing if the matrices $G_{1}:=A_{1}+B_{1} X_{2}-D_{1} X_{1}$ and $G_{2}:=A_{2}+X_{1} B_{2}-X_{2} D_{2}$ are stable.

Note that F_{i} as defined by (1) are functions from $\mathcal{R} \times \mathcal{R} \times \mathcal{R}^{4}=\mathcal{R}^{6}$ to \mathcal{R}. It will be convenient to write the system of CAMRE as one matrix equation. For this purpose we denote

$$
X:=\left(X_{1}, X_{2}\right), F:=\left(F_{1}, F_{2}\right)
$$

Then the system (1) may be written as

$$
\begin{equation*}
F(X, P)=0 \tag{2}
\end{equation*}
$$

Here F is considered as a mapping $\mathcal{R}^{10} \rightarrow \mathcal{R}^{2}$, or equivalently, as a mapping $R^{n \times 2 n} \times \mathcal{R}^{8} \rightarrow R^{n \times 2 n}$.
We assume that system (1) has a solution $X=$ $\left(X_{1}, X_{2}\right) \in \mathcal{S}^{2}$ such that the partial Fréchet derivative $F_{X}(X, P)(\cdot)$ of F in X at the point (X, P) is invertible.

A direct calculation gives

$$
\begin{align*}
& F_{1, X_{1}}\left(X, P_{1}\right)(Z)=G_{1}^{\top} Z+Z G_{1}, \\
& F_{1, X_{2}}\left(X, P_{1}\right)(Z)=X_{1} B_{1} Z+Z^{\top} B_{1}^{\top} X_{1}, \tag{3}\\
& F_{2, X_{1}}\left(X, P_{2}\right)(Z)=X_{2} B_{2}^{\top} Z^{\top}+Z B_{2} X_{2}, \\
& F_{2, X_{2}}\left(X, P_{2}\right)(Z)=G_{2} Z+Z G_{2}^{\top} .
\end{align*}
$$

Further on we set

$$
\begin{aligned}
\mathbf{L}(\cdot) & :=F_{X}(X, P)(\cdot) \in \operatorname{Lin}\left(\mathcal{R}^{2}, \mathcal{R}^{2}\right) \\
\mathbf{L}_{i}(\cdot) & :=F_{i, X}\left(X, P_{i}\right)(\cdot) \in \operatorname{Lin}\left(\mathcal{R}^{2}, \mathcal{R}\right) \\
\mathbf{L}_{i j}(\cdot) & :=F_{i, X_{j}}\left(X, P_{i}\right)(\cdot) \in \operatorname{Lin}(\mathcal{R}, \mathcal{R})
\end{aligned}
$$

Thus

$$
\begin{gathered}
F_{X}(X, P)(Y)=\left(\mathbf{L}_{1}(Y), \mathbf{L}_{2}(Y)\right) \\
=\left(\mathbf{L}_{11}\left(Y_{1}\right)+\mathbf{L}_{12}\left(Y_{2}\right), \mathbf{L}_{21}\left(Y_{1}\right)+\mathbf{L}_{22}\left(Y_{2}\right)\right)
\end{gathered}
$$

Applying the vec operation to $F_{X}(X, P)(Y)$ and using the equality $(A \otimes B) \Pi_{n^{2}}=\Pi_{n^{2}}(B \otimes A)$ we find the matrix representation of the operator $\mathbf{L}(\cdot)$

$$
L:=\operatorname{Mat}(\mathbf{L}(\cdot))=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right] \in R^{2 n^{2} \times 2 n^{2}}
$$

where

$$
\begin{aligned}
L_{11} & :=I_{n} \otimes G_{1}^{\top}+G_{1}^{\top} \otimes I_{n} \\
L_{12} & :=\left(I_{n^{2}}+\Pi_{n^{2}}\right)\left(I_{n} \otimes\left(X_{1} B_{1}\right)\right) \\
L_{21} & :=\left(I_{n^{2}}+\Pi_{n^{2}}\right)\left(\left(B_{2} X_{2}\right)^{\top} \otimes I_{n}\right), \\
L_{22} & :=I_{n} \otimes G_{2}+G_{2} \otimes I_{n}
\end{aligned}
$$

Here $L_{i j} \in R^{n^{2} \times n^{2}}$ is the matrix representation of the operator $\mathbf{L}_{i j}(\cdot), i, j=1,2$.
Let the matrices from P_{i} be perturbed as $A_{i} \mapsto$ $A_{i}+\delta A_{i}$, etc. We assume that the perturbations δC_{i} and δD_{i} are symmetric in order to ensure that the perturbed equation also has a solution in \mathcal{S}^{2}. Symmetric perturbations in C_{i} and D_{i} arise naturally in many applications.

Denote by $P_{i}+\delta P_{i}$ the perturbed collection P_{i}, in which each matrix $Z \in P_{i}$ is replaced by $Z+\delta Z$ and let $\delta P=\left(\delta P_{1}, \delta P_{2}\right)$. Then the perturbed version of equation (2) is

$$
\begin{equation*}
F(X+\delta X, P+\delta P)=0 \tag{4}
\end{equation*}
$$

Equation (4) has a unique isolated solution $Y=$ $X+\delta X \in \mathcal{S}^{2}$ in the neighbourhood of X if the perturbation δP is sufficiently small.

Denote by

$$
\delta:=\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right] \in R_{+}^{8}
$$

where $\delta_{i}:=\left[\delta_{A_{i}}, \delta_{B_{i}}, \delta_{C_{i}}, \delta_{D_{i}}\right]^{\top} \in R_{+}^{4}$, the vector of absolute Frobenius norm perturbations $\delta_{Z}:=$ $\|\delta Z\|_{F}$ in the data matrices $Z \in P$.

The perturbation problem for CAMRE (1) is to find bounds

$$
\begin{equation*}
\delta_{X_{i}} \leq f_{i}(\delta), \delta \in \Omega \subset R_{+}^{8}, i=1,2 \tag{5}
\end{equation*}
$$

for the perturbations $\delta_{X_{i}}:=\left\|\delta X_{i}\right\|_{\mathrm{F}}$. Here Ω is a certain set and f_{i} are continuous functions, nondecreasing in each of their arguments and satisfying $f_{i}(0)=0$. The inclusion $\delta \in \Omega$ guarantees that the perturbed CAMRE (4) has a unique solution $Y=X+\delta X$ in a neighbourhood of the
unperturbed solution X such that the elements of $\delta X_{1}, \delta X_{2}$ are analytic functions of the elements of the matrices $\delta Z, Z \in P$, provided δ is in the interior of Ω.

First order local bounds

$$
\begin{equation*}
\delta_{X_{i}} \leq \operatorname{est}_{i}(\delta)+O\left(\|\delta\|^{2}\right), \delta \rightarrow 0, i=1,2,(6 \tag{6}
\end{equation*}
$$

are first derived with $\operatorname{est}_{i}(\delta)=O(\|\delta\|), \delta \rightarrow$ 0 , which are then incorporated in the non-local bounds (5).

3. LOCAL PERTURBATION ANALYSIS

Consider first the conditioning of the CAMRE (1).
The perturbed equations may be written as

$$
\begin{aligned}
& F_{i}\left(X+\delta X_{i}, P_{i}+\delta P_{i}\right)=\sum_{j=1}^{2} \mathbf{L}_{i j}\left(\delta X_{j}\right) \\
& \quad+\sum_{Z \in P_{i}} F_{i, Z}(\delta Z)+H_{i}\left(\delta X, \delta P_{i}\right)=0
\end{aligned}
$$

where $F_{i, Z}(\cdot):=F_{i, Z}\left(X, P_{i}\right)(.) \in \operatorname{Lin}, Z \in$ P_{i}, are the Fréchet derivatives of $F_{i}\left(X, P_{i}\right)$ in the matrix argument Z, evaluated at the point $\left(X, P_{i}\right)$. The matrix expressions $H_{i}\left(\delta X, \delta P_{i}\right)=$ $O\left(\left\|\left[\delta X, \delta P_{i}\right]\right\|^{2}\right), \delta X \rightarrow 0, \delta P_{i} \rightarrow 0$, contain second and higher order terms in $\delta X, \delta P_{i}$. In fact, for $Y=\left(Y_{1}, Y_{2}\right) \in \mathcal{S}^{2}$, we have

$$
\begin{gather*}
H_{1}\left(Y, \delta P_{1}\right)=\left(\delta B_{1} Y_{2}-\delta D_{1} Y_{1}\right)^{\top} X_{1} \tag{7}\\
+X_{1}\left(\delta B_{1} Y_{2}-\delta D_{1} Y_{1}\right) \\
+Y_{1} \delta B_{1} X_{2}+X_{2} \delta B_{1}^{\top} Y_{1} \\
-Y_{1}\left(D_{1}+\delta D_{1}\right) Y_{1}+Y_{1} \delta A_{1}+\delta A_{1}^{\top} Y_{1} \\
+Y_{1}\left(B_{1}+\delta B_{1}\right) Y_{2}+Y_{2}\left(B_{1}+\delta B_{1}\right)^{\top} Y_{1}
\end{gather*}
$$

and

$$
\begin{gather*}
H_{2}\left(Y, \delta P_{2}\right)=X_{2}\left(Y_{1} \delta B_{2}-Y_{2} \delta D_{2}\right)^{\top} \tag{8}\\
+\left(Y_{1} \delta B_{2}-Y_{2} \delta D_{2}\right) X_{2} \\
+X_{1} \delta B_{2} Y_{2}+Y_{2} \delta B_{2}^{\top} X_{1} \\
-Y_{2}\left(D_{2}+\delta D_{2}\right) Y_{2}+\delta A_{2} Y_{2}+Y_{2} \delta A_{2}^{\top} \\
+Y_{2}\left(B_{2}+\delta B_{2}\right)^{\top} Y_{1}+Y_{1}\left(B_{2}+\delta B_{2}\right) Y_{2}
\end{gather*}
$$

We also have, for $\left(X_{1}, X_{2}\right) \in \mathcal{S}^{2}$,

$$
\begin{aligned}
& F_{1, A_{1}}(Z)=X_{1} Z+Z^{\top} X_{1} \\
& F_{1, B_{1}}(Z)=X_{1} Z X_{2}+X_{2} Z^{\top} X_{1} \\
& F_{1, C_{1}}(Z)=Z, \quad F_{1, D_{1}}(Z)=-X_{1} Z X_{1} \\
& F_{2, A_{2}}(Z)=Z X_{2}+X_{2} Z^{\top} \\
& F_{2, B_{2}}(Z)=X_{1} Z X_{2}+X_{2} Z^{\top} X_{1} \\
& F_{2, C_{2}}(Z)=Z, \quad F_{2, D_{2}}(Z)=-X_{2} Z X_{2}
\end{aligned}
$$

The inverse operator

$$
\mathbf{M}(\cdot):=\mathbf{L}(\cdot)^{-1} \in \operatorname{Lin}\left(\mathcal{R}^{2}, \mathcal{R}^{2}\right)
$$

of the operator $\mathbf{L}=F_{X}(X, P)(\cdot)$ may be represented as $\mathbf{L}^{-1}(\cdot)=\left(\mathbf{M}_{1}(\cdot), \mathbf{M}_{2}(\cdot)\right)$, where, for $Z:=\left(Z_{1}, Z_{2}\right) \in \mathcal{R}^{2}$,

$$
\mathbf{M}_{i}(Z)=\mathbf{M}_{i 1}\left(Z_{1}\right)+\mathbf{M}_{i 2}\left(Z_{2}\right), \quad M_{i j}(\cdot) \in \mathbf{L i n}
$$

Hence

$$
\begin{equation*}
\delta X=-\mathbf{M}\left(W_{1}\left(\delta X, \delta P_{1}\right), W_{2}\left(\delta X, \delta P_{2}\right)\right) \tag{9}
\end{equation*}
$$

where $W_{i}\left(Y, \delta P_{i}\right):=\sum_{Z \in P_{i}} F_{i, Z}(\delta Z)+H_{i}\left(Y, \delta P_{i}\right)$. In this way

$$
\delta X_{i}=-\sum_{j=1}^{2} \mathbf{M}_{i j}\left(W_{j}\left(\delta X, \delta P_{j}\right)\right)
$$

which gives

$$
\begin{align*}
\delta X_{i}= & -\sum_{j=1}^{2} \sum_{Z \in P_{j}} \mathbf{M}_{i j} \circ F_{j, Z}(\delta Z) \tag{10}\\
& -\sum_{j=1}^{2} \mathbf{M}_{i j}\left(H_{j}\left(\delta X, \delta P_{j}\right)\right)
\end{align*}
$$

Therefore

$$
\delta_{X_{i}} \leq \sum_{j=1}^{2} \sum_{Z \in P_{j}} K_{i j, Z} \delta_{Z}+O\left(\|\delta\|^{2}\right), \delta \rightarrow 0
$$

where the quantity $K_{i j, Z}:=\left\|\mathbf{M}_{i j} \circ F_{j, Z}\right\|_{\mathbf{L i n}}$, is the absolute condition number of the solution component X_{i} with respect to the matrix coefficient $Z \in P_{j}$. Here $\|.\|_{\text {Lin }}$ is the induced norm in the space Lin of linear operators $\mathcal{R} \rightarrow \mathcal{R}$.
If $X_{i} \neq 0$, estimates in terms of relative perturbations are

$$
\varepsilon_{X_{i}} \leq \sum_{j=1}^{2} \sum_{Z \in P_{i}} k_{i j, Z} \varepsilon_{Z}+O\left(\|\delta\|^{2}\right), \delta \rightarrow 0
$$

where the quantity $k_{i j, Z}:=K_{i j, Z} \frac{\|Z\|_{\mathrm{F}}}{\left\|X_{i}\right\|_{\mathrm{F}}}$, is the relative condition number of the solution component X_{i} with respect to the matrix coefficient $0 \neq Z \in P_{j}$.
The calculation of the condition numbers $K_{i j, Z}$ is staightforward for the Frobenius. Denote by $L_{i, Z} \in R^{n^{2} \times n^{2}}$ the matrix of the operator $F_{i, Z} \in$ Lin. We have

$$
\begin{aligned}
L_{1, A_{1}} & =\left(\Pi_{n^{2}}+I_{n^{2}}\right)\left(I_{n} \otimes X_{1}\right) \\
L_{2, A_{2}} & =\left(\Pi_{n^{2}}+I_{n^{2}}\right)\left(X_{2} \otimes I_{n}\right) \\
L_{i, B_{i}} & =\left(\Pi_{n^{2}}+I_{n^{2}}\right)\left(X_{2} \otimes X_{1}\right) \\
L_{1, C_{1}} & =I_{n^{2}}, \quad L_{2, C_{2}}=I_{n^{2}} \\
L_{1, D_{1}} & =-X_{1} \otimes X_{1}, \quad L_{2, D_{2}}=-X_{2} \otimes X_{2}
\end{aligned}
$$

Let the matrix representation of the operator

$$
\mathbf{M}(\cdot)=F_{X}^{-1}(X, P)(\cdot) \in \operatorname{Lin}\left(\mathcal{R}^{2}, \mathcal{R}^{2}\right)
$$

be denoted as

$$
\begin{gathered}
M:=\operatorname{Mat}(\mathbf{M})=L^{-1}:=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right], \\
M_{i j} \in R^{n^{2} \times n^{2}}
\end{gathered}
$$

Having in mind the expressions for $L_{i, Z}$ the absolute condition numbers are calculated from

$$
K_{i j, Z}=\left\|M_{i j} L_{j, Z}\right\|_{2}, \quad Z \in P_{j}, \quad i, j=1,2
$$

Rewrite equations (10) in vectorized form as

$$
\begin{align*}
\operatorname{vec}\left(\delta X_{i}\right)= & \sum_{j=1}^{2} \sum_{Z \in P_{j}} N_{i, Z} \operatorname{vec}(\delta Z) \tag{11}\\
& -\sum_{j=1}^{2} M_{i j} \operatorname{vec}\left(H_{j}\left(\delta X, \delta P_{j}\right)\right)
\end{align*}
$$

where

$$
N_{i, Z}:=-M_{i j} L_{j, Z} \in R^{n^{2} \times n^{2}}, Z \in P_{j}
$$

The condition number based perturbation bounds may be derived as an immediate consequence of (11),

$$
\begin{aligned}
\delta_{X_{i}}=\left\|\delta X_{i}\right\|_{\mathrm{F}} & =\left\|\operatorname{vec}\left(\delta X_{i}\right)\right\|_{2} \leq \operatorname{est}_{i}^{(1)}(\delta)+O\left(\|\delta\|^{2}\right) \\
\operatorname{est}_{i}^{(1)}(\delta) & :=\sum_{j=1}^{2} \sum_{Z \in P_{j}}\left\|N_{i, Z}\right\|_{2} \delta_{Z}
\end{aligned}
$$

Relations (11) also give a second perturbation bound
$\delta_{X_{i}} \leq \operatorname{est}_{i}^{(2)}(\delta)+O\left(\|\delta\|^{2}\right), \operatorname{est}_{i}^{(2)}(\delta):=\left\|N_{i}\right\|_{2}\|\delta\|_{2}$ where

$$
\begin{aligned}
N_{i} & :=\left[N_{i, 1}, N_{i, 2}\right] \in R^{n^{2} \times 8 n^{2}}, \\
N_{i, j} & :=\left[N_{i, A_{j}}, N_{i, B_{j}}, N_{i, C_{j}}, N_{i, D_{j}}\right] \in R^{n^{2} \times 4 n^{2}} .
\end{aligned}
$$

The bounds est ${ }_{i}^{(1)}(\delta)$ and $\operatorname{est}_{i}^{(2)}(\delta)$ are alternative, i.e., which one is smaller depends on the particular value of δ.

There is a third bound, which is always less or equal to est ${ }_{1}^{(1)}(\delta)$. Indeed, we have
$\delta_{X_{i}} \leq \operatorname{est}_{i}^{(3)}(\delta)+O\left(\|\delta\|^{2}\right), \operatorname{est}_{i}^{(3)}(\delta):=\sqrt{\delta^{\top} \widehat{N}_{i} \delta}$, where $\widehat{N}_{i}=\left[n_{i, p q}\right] \in R_{+}^{8 \times 8}$ is a matrtix with elements $n_{i, p q}:=\left\|\hat{N}_{i, p}^{\top} \hat{N}_{i, q}\right\|_{2}, p, q=1, \ldots, 8$ where $\widehat{N}_{i, k}, k=1, \ldots, 8$ denote the $n^{2} \times n^{2}$ blocks of N_{i}, i.e., $N_{i}=\left[\widehat{N}_{i, 1}, \widehat{N}_{i, 2}, \ldots, \widehat{N}_{i, 8}\right]$, $\widehat{N}_{i, k} \in R^{n^{2} \times n^{2}}$, and $\widehat{N}_{i, 1}:=N_{i, A_{1}}, \widehat{N}_{i, 2}:=$ $N_{i, B_{1}}, \ldots, \widehat{N}_{i, 8}:=N_{i, D_{2}}$.
Since $\left.\left\|\widehat{N}_{i, p}^{\top} \widehat{N}_{i, q}\right\|_{2} \leq\left\|\widehat{N}_{i, p}\right\|_{2}\left\|\widehat{N}_{i, q}\right\|_{2}{\operatorname{then~} \operatorname{est}_{i}^{(3)}}^{(3)} \delta\right) \leq$ est $_{i}^{(1)}(\delta)$ and we have the overall estimates

$$
\begin{equation*}
\delta_{X_{i}}=\operatorname{est}_{i}(\delta)+O\left(\|\delta\|^{2}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{est}_{i}(\delta):=\min \left\{\operatorname{est}_{i}^{(2)}(\delta), \operatorname{est}_{i}^{(3)}(\delta)\right\} \tag{13}
\end{equation*}
$$

The local bounds are continuous, first order homogeneous, non-linear functions in δ.
The bounds est ${ }_{i}^{(k)}$ are majorants for the solution of a complicated optimization problem, defining the conditioning of the problem as follows. Set $\xi_{i}:=\operatorname{vec}\left(\delta X_{i}\right), i=1,2$ and $\delta:=\left[\delta_{1}, \ldots, \delta_{8}\right]^{\top}:=$ $\left[\delta_{A_{1}}, \ldots, \delta_{D_{2}}\right]^{\top} \in R_{+}^{8}$. Then we have

$$
\xi_{i}=\sum_{k=1}^{8} \widehat{N}_{i, k} \eta_{k}+O\left(\|\delta\|^{2}\right), \delta \rightarrow 0
$$

and $\delta_{X_{i}}=\left\|\xi_{i}\right\|_{2} \leq K_{i}(\delta)+O\left(\|\delta\|^{2}\right), \delta \rightarrow 0$. Here

$$
\begin{aligned}
K_{i}(\delta):=\max \{ & \left\|\sum_{k=1}^{8} \widehat{N}_{i, k} \eta_{k}\right\|_{2}:\left\|\eta_{k}\right\| \leq \delta_{k}
\end{aligned},
$$

is the exact upper bound for the first order term in the perturbation bound for the solution component X_{i} (note that $K_{i}(\delta)$ is well defined, since the minimization in η is carried out over a compact set). The calculation of $K_{i}(\delta)$ is a difficult task. Instead, one can use a bound above such as $\operatorname{est}_{i}(\delta) \geq K_{i}(\delta)$.

Let $\gamma \in R_{+}^{8}$ be a given vector and let $X_{i} \neq 0$. Then the relative condition number of X_{i} with respect to γ is $\kappa_{i}(\gamma):=K_{i}(\gamma) /\left\|X_{i}\right\|_{\mathrm{F}}$. If $\|P\|$ is the generalized norm of P, then $\kappa_{i}(\|P\|)$ is the relative norm-wise condition number of X_{i}.

4. NON-LOCAL PERTURBATION ANALYSIS

Local bounds of the type considered in Section 3 are valid only asymptoticaly, for $\delta \rightarrow 0$. But in practice they are usually used simply neglecting terms of order $O\left(\|\delta\|^{2}\right)$.

The disadvantages of the local estimates may be overcome using the techniques of non-linear perturbation analysis. As a result, we find bounds (5). The estimate (5) is rigorous. The perturbed equation $F(X+\delta X, P+\delta P)=0$ may be rewritten as an operator equation for the perturbation δX

$$
\begin{equation*}
\delta X=\Pi(\delta X, \delta P), \Pi=\left(\Pi_{1}, \Pi_{2}\right) \tag{14}
\end{equation*}
$$

where $\Pi(Y, \delta P):=-\mathbf{M}\left(F_{P}(X, P)(\delta P)+H(Y, \delta P)\right)$.
Here $H(Y, \delta P):=\left(H_{1}\left(Y, \delta P_{1}\right), H_{2}\left(Y, \delta P_{2}\right)\right)$ contains second and third order terms in Y and δP, see (7), (8).

Equation (14) comprizes two equations, namely

$$
\begin{equation*}
\delta X_{i}=\Pi_{i}\left(\delta X, \delta P_{i}\right), i=1,2 \tag{15}
\end{equation*}
$$

where the right-hand side of (15) is defined by relations (10). Setting

$$
\xi_{i}:=\operatorname{vec}\left(\delta X_{i}\right) \in R^{n^{2}}, \quad \xi:=\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right] \in R^{2 n^{2}}
$$

we obtain the vector operator equation

$$
\begin{equation*}
\xi=\pi(\xi, \eta) \tag{16}
\end{equation*}
$$

in $R^{2 n^{2}}$, which is reduced to two coupled vector equations

$$
\xi_{i}=\pi_{i}(\xi, \eta), i=1,2
$$

in $R^{n^{2}}$, respectively.
The vectorizations of the matrices $H_{i}\left(Y, \delta P_{i}\right)$ are

$$
\begin{gather*}
\operatorname{vec}\left(H_{1}\left(Y, \delta P_{1}\right)\right)=\left(I_{n} \otimes X_{1}\right)\left(I_{n^{2}}+\Pi_{n^{2}}\right)(17 \tag{17}\\
\times \operatorname{vec}\left(\delta B_{1} Y_{2}-\delta D_{1} Y_{1}\right) \\
+\left(X_{2} \otimes I_{n}\right)\left(I_{n^{2}}+\Pi_{n^{2}}\right) \operatorname{vec}\left(Y_{1} \delta B_{1}\right) \\
-\operatorname{vec}\left(Y_{1}\left(D_{1}+\delta D_{1}\right) Y_{1}\right)+\operatorname{vec}\left(Y_{1} \delta A_{1}+\delta A_{1}^{\top} Y_{1}\right) \\
+\operatorname{vec}\left(Y_{1}\left(B_{1}+\delta B_{1}\right) Y_{2}+Y_{2}\left(B_{1}+\delta B_{1}\right)^{\top} Y_{1}\right)
\end{gather*}
$$

and

$$
\begin{align*}
& \qquad \operatorname{vec}\left(H_{2}\left(Y, \delta P_{2}\right)\right)=\left(X_{2} \otimes I_{n}\right)\left(I_{n^{2}}+\Pi_{n^{2}}\right)(18) \tag{18}\\
& \quad \times \operatorname{vec}\left(Y_{1} \delta B_{2}-Y_{2} \delta D_{2}\right) \\
& \quad+\left(I_{n} \otimes X_{1}\right)\left(I_{n^{2}}+\Pi_{n^{2}}\right) \operatorname{vec}\left(\delta B_{2} Y_{2}\right) \\
& -\operatorname{vec}\left(Y_{2}\left(D_{2}+\delta D_{2}\right) Y_{2}\right)+\operatorname{vec}\left(\delta A_{2} Y_{2}+Y_{2} \delta A_{2}^{\top}\right) \\
& +\operatorname{vec}\left(Y_{2}\left(B_{2}+\delta B_{2}\right)^{\top} Y_{1}+Y_{1}\left(B_{2}+\delta B_{2}\right) Y_{2}\right) . \\
& \text { Let }\left\|Y_{i}\right\|_{F} \leq \rho_{i}, i=1,2, \text { where } \rho_{i} \text { are non- } \\
& \text { negative constants. Then it follows from }(17),(18) \\
& \text { that }
\end{align*}
$$

$$
\begin{aligned}
\left\|\pi_{i}(\xi, \eta)\right\|_{2} & \leq \operatorname{est}_{i}(\delta)+\left\|\sum_{j=1}^{2} M_{i j} \operatorname{vec}\left(H_{j}\left(Y, \delta P_{j}\right)\right)\right\|_{2} \\
& \leq \operatorname{est}_{i}(\delta)+\sum_{j=1}^{2}\left\|M_{i j} \operatorname{vec}\left(H_{j}\left(Y, \delta P_{j}\right)\right)\right\|_{2} \\
& \leq h_{i}(\rho, \delta)
\end{aligned}
$$

where

$$
\rho=\left[\begin{array}{l}
\rho_{1} \\
\rho_{2}
\end{array}\right] \in R_{+}^{2}
$$

and

$$
\begin{aligned}
h_{i}\left(\rho_{1}, \rho_{2}, \delta\right):= & \operatorname{est}_{i}(\delta)+a_{i 1}(\delta) \rho_{1}+a_{i 2}(\delta) \rho_{2} \\
& +2 b_{i}(\delta) \rho_{1} \rho_{2}+c_{i 1}(\delta) \rho_{1}^{2}+c_{i 2}(\delta) \rho_{2}^{2}
\end{aligned}
$$

Here

$$
\begin{aligned}
& a_{i 1}(\delta):= 2\left\|M_{i 1}\right\|_{2} \delta_{A_{1}}+\nu_{i 1}\left(\delta_{B_{1}}+\delta_{D_{1}}\right)+\nu_{i 2} \delta_{B_{2}}, \\
& a_{i 2}(\delta):= 2\left\|M_{i 2}\right\|_{2} \delta_{A_{2}}+\nu_{i 2}\left(\delta_{B_{2}}+\delta_{D_{2}}\right)+\nu_{i 1} \delta_{B_{2}} \\
& b_{i}(\delta):=\left\|M_{i 1}\right\|_{2}\left(\left\|B_{1}\right\|_{2}+\delta_{B_{1}}\right) \\
&+\left\|M_{i 2}\right\|_{2}\left(\left\|B_{2}\right\|_{2}+\delta_{B_{2}}\right), \\
& c_{i 1}(\delta):=\left\|M_{i 1}\right\|_{2}\left(\left\|D_{1}\right\|_{2}+\delta_{D_{1}}\right) \\
& c_{i 2}(\delta):=\left\|M_{i 2}\right\|_{2}\left(\left\|D_{2}\right\|_{2}+\delta_{D_{2}}\right),
\end{aligned}
$$

$$
\begin{aligned}
\omega(\rho, \delta):= & 1-\varepsilon(\delta)+\alpha_{1}(\delta) \rho_{1}+\alpha_{2}(\delta) \rho_{2} \\
& +2 \beta(\delta) \rho_{1} \rho_{2}+\gamma_{1}(\delta) \rho_{1}^{2}+\gamma_{2}(\delta) \rho_{2}^{2}=0
\end{aligned}
$$

where

$$
\begin{aligned}
\varepsilon(\delta):= & a_{11}(\delta)+a_{22}(\delta)-a_{11}(\delta) a_{22}(\delta) \\
& +a_{12}(\delta) a_{21}(\delta), \\
\alpha_{1}(\delta):= & -2\left(c_{11}(\delta)\left(1-a_{22}(\delta)\right)+b_{2}(\delta)\left(1-a_{11}(\delta)\right)\right. \\
& \left.+a_{12}(\delta) c_{21}(\delta)+b_{1}(\delta) a_{21}(\delta)\right), \\
\alpha_{2}(\delta):= & -2\left(c_{22}(\delta)\left(1-a_{11}(\delta)\right)+b_{1}(\delta)\left(1-a_{22}(\delta)\right)\right. \\
& \left.+a_{21}(\delta) c_{12}(\delta)+b_{2}(\delta) a_{12}(\delta)\right), \\
\beta(\delta):= & 4\left(c_{11}(\delta) c_{22}(\delta)-c_{12}(\delta) c_{21}(\delta)\right), \\
\gamma_{1}(\delta):= & 4\left(b_{2}(\delta) c_{11}(\delta)-b_{1}(\delta) c_{21}(\delta)\right), \\
\gamma_{2}(\delta):= & 4\left(b_{1}(\delta) c_{22}(\delta)-b_{2}(\delta) c_{12}(\delta)\right) .
\end{aligned}
$$

As a result, we have the non-local non-linear perturbation bounds

$$
\begin{equation*}
\delta_{X_{i}} \leq f_{i}(\delta), \delta \in \Omega \tag{21}
\end{equation*}
$$

We can find a new Lyapunov majorant g, such that $h(\rho, \delta) \preceq g(\rho, \delta)$ and for which the equation

$$
\begin{equation*}
\rho=g(\rho, \delta) \tag{22}
\end{equation*}
$$

has an explicit form solution. This can be done in many ways. Three of them are described below.
Let

$$
\begin{aligned}
\operatorname{est}(\delta) & :=\max \left\{\operatorname{est}_{1}(\delta), \operatorname{est}_{2}(\delta)\right\}, \\
a_{i}(\delta) & :=\max \left\{a_{1 i}(\delta), a_{2 i}(\delta)\right\}, \\
b(\delta) & :=\max \left\{b_{1}(\delta), b_{2}(\delta)\right\} \\
c_{i}(\delta) & :=\max \left\{c_{1 i}(\delta), c_{2 i}(\delta)\right\}
\end{aligned}
$$

Hereinafter, in order to simplify the notation, we set $a_{i j}:=a_{i j}(\delta), a_{i}:=a_{i}(\delta), b=b(\delta), c_{i}:=c_{i}(\delta)$, $e_{i}:=\operatorname{est}_{i}(\delta), e:=\operatorname{est}(\delta)$.
Consider the function g with components

$$
\begin{gathered}
g_{1}(\rho, \delta)=g_{2}(\rho, \delta) \\
=e+a_{1} \rho_{1}+a_{2} \rho_{2}+2 b \rho_{1} \rho_{2}+c_{1} \rho_{1}^{2}+c_{2} \rho_{2}^{2}
\end{gathered}
$$

Now the majorant equation (22) has solutions with $\rho_{1}=\rho_{2}$, where

$$
e-\left(1-a_{1}-a_{2}\right) \rho_{1}+\left(2 b+c_{1}+c_{2}\right) \rho_{1}^{2}=0
$$

Hence, if

$$
\begin{aligned}
& \delta \in \Theta:=\left\{\delta \in R_{+}^{8}: a_{1}+a_{2}\right. \\
& \left.+2 \sqrt{e\left(2 b+c_{1}+c_{2}\right)} \leq 1\right\}
\end{aligned}
$$

then

$$
\begin{equation*}
\left.\frac{\delta_{X_{1}}, \delta_{X_{2}} \leq(2 e) /\left(1-a_{1}-a_{2}\right.}{\left.t_{1}-a_{2}\right)^{2}-4 e\left(2 b+c_{1}+c_{2}\right)}\right) \tag{23}
\end{equation*}
$$

However, in this approach one of the bounds (23) is not asymptotically sharp unless $e_{1}=e_{2}$. We next derive another explicit bound that is asymptotically sharp in the sense that its first order term is equal to $\operatorname{est}_{i}(\delta)$.

Consider the function k with components
$k_{i}(\delta, \rho):=e_{i}+a_{1} \rho_{1}+a_{2} \rho_{2}+2 b \rho_{1} \rho_{2}+c_{1} \rho_{1}^{2}+c_{2} \rho_{2}^{2}$.
It is easy to see that k is again a Lyapunov majorant. Since $h(\rho, \delta) \preceq k(\rho, \delta) \preceq g(\rho, \delta)$ the solution of the majorant system $\rho=k(\rho, \delta)$ will majorize the solution of the system $\rho=$ $h(\rho, \delta)$ thus producing less sharp bounds, but will give tighter bounds than these based on the majorant g. However, this solution is easily computable. Indeed, here we have $\rho_{1}=\rho_{2}+$ $e_{1}-e_{2}$. Substituting this expression in any of the equations $\rho_{i}=k_{i}(\rho, \delta)$ we obtain quadratic equations for ρ_{i}. Choosing the smaller solutions, we find the bounds
$\delta_{X_{i}} \leq \rho_{i}=\frac{2\left(a_{j} e_{j}+\left(1-a_{j}\right) e_{i}+c_{j}\left(e_{1}-e_{2}\right)^{2}\right)}{1-a_{1}-a_{2}+2\left(b+c_{j}\right)\left(e_{i}-e_{j}\right)+\sqrt{d}}$,

$$
\begin{aligned}
d= & d(\delta):=\left(1-a_{1}-a_{2}+2\left(b+c_{j}\right)\left(e_{i}-e_{j}\right)\right)^{2} \\
& -4\left(2 b+c_{1}+c_{2}\right)\left(a_{j} e_{j}+\left(1-a_{j}\right) e_{i}\right. \\
& \left.+c_{j}\left(e_{1}-e_{2}\right)^{2}\right) \\
= & \left(1-a_{1}-a_{2}\right)^{2}-4\left(a_{1}\left(b+c_{2}\right)\right. \\
& \left.+\left(1-a_{2}\right)\left(b+c_{1}\right)\right) e_{1} \\
& -4\left(a_{2}\left(b+c_{1}\right)+\left(1-a_{1}\right)\left(b+c_{2}\right)\right) e_{2} \\
& +4\left(b^{2}-c_{1} c_{2}\right)\left(e_{1}-e_{2}\right)^{2}
\end{aligned}
$$

and $j \neq i$. These bounds hold provided $d(\delta) \geq 0$.

5. CONCLUSIONS

In this paper we have presented a complete local and non-local perturbation analysis of coupled continuous-time matrix Riccati equations, arising in the theory of H_{∞} control. The results obtained may be extended to other more general systems of matrix quadratic equations.

6. REFERENCES

[1] P. Bernstein and W. Haddad, LQG control with an \mathcal{H}_{∞} performance bound: A Riccati equation approach, IEEE Trans. Automat. Control 34 (1989) 293-305.
[2] M. Konstantinov, P. Petkov, D. Gu, and I. Postlethwaite, Perturbation analysis in finite dimensional spaces, Technical Report 96-18 (Department of Engineering, Leicester University, Leicester, UK, June 1996).
where

