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Abstract: Local and non-local perturbation bounds for real continuous-time coupled
algebraic matrix Riccati equations are deriv ed using the technique of Ly apune
majorants and fixed point principles. Equations of this type arise in the robust analysis

and design of linear control systems.
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1. INTRODUCTION AND NOTA TION

In this paper we present a complete perturbation
analysis of real contin uous-time coupled algebraic
matrix Riccati equations (CAMRE) of the form
F;(Xy,X2,P;) =0, i = 1,2, where F; are matrix
quadratic functions in the unknown matrices Xj,
and P; are collections of matrix coefficients.

Throughout the paper we use the following nota-
tion: R™*™ — the space of m X n real matrices;
R™ = R™ ' R, =[0,00); AT - the transpose of
the matrix A; < — the component-wise order re-
lation on R™*™; vec(A) — the column-wise vector
representation of the matrix A; Mat(L) € RP7*™”
— the matrix representation of the linear matrix
operator L : R™*"™ — RP*%; [, — the unit n x n
matrix; II,,2 — the n? x n? vec-permutation matrix
such that vec(AT) = II,,ovec(A) for all A € R**™;
A ® B — the Kronecker product of the matrices
A and B; || - ||]2 — the Euclidean norm in R™

or the spectral (or 2-) norm in R™*"; || - || —
the Frobenius (or F-) norm in R™*"; || - || -
a replacement of either || - |2 or || - ||r; rad (4)

— the spectral radius of the square matrix A;
det(A) — the determinant of the square matrix A;
1Pl = UE1ll,-- ., IE|]" € R, is the generalized
norm of P, when P = (Ey,..., E,) is a collection
of r matrices.

We also denote R = R"*" and S ={Ae€R: A=
AT} CR; Sy ={A € S: A>0}; Lin(Ly, L) -
the space of linear operators £; — Lo, where Ly,
Lo are linear spaces. We also use the abbreviation
Lin = Lin(R, R).

We identify the Cartesian product R™*"™ x R™*"™,
endow ed with the structure of a linear space, with
an yof the spaces R™*27 R2mX" and R?>™". In
particular, the ordered pair (4,B) € R™*™ x
R™ ™ and the matrix [4,B] € R™*?" are
considered as iden tical objects. Finally, w e use



the same notation P for an ordered matrix r-
tuple (Eq,...,E.) as well as for the collection
{E\,...,E.}.

2. PROBLEM STATEMENT
Consider the system of real continuous-time CAMRE

arising in the robust control of linear time-
invariant systems (see e.g. [1])

Fi(X,Xo,P) = (A1 + B1X2)TX1
+ Xl(Al + B1X2) + Cl — X1D1X1 = 0,

(1)

Fr(X1,X0,P) := (A + X1B2) X,

+ Xo(Ay + X1By) " + Cy — XoDy X5 =0,
where X; € R are the unknown matrices, A;, B; €

R, C;,D; € S, are given matrix coefficients and
P; := (A, B;,C;, D;) € R

We set,

P:: (Pl,PQ) = (Al,Bl,Cl,Dl,Ag,Bz,CQ,DZ)
=: (El,EQ,Eg,E4,E5,E6,E7,E8) S Rg.

The generalized norm of the matrix 8-tuple P is
the vector ||P|| := [||E:|lr, - - -, || Esllr]" € RY.

In this work we are interested only in symmetric
solutions of system (1).

The solution pair (X7, X») € S? is called stabiliz-
ing if the matrices G; := A; + B1 Xs — D1 X7 and
Gy := Ay + X1 By — X5D> are stable.

Note that F; as defined by (1) are functions from
R xR x R* = RS to R. It will be convenient

to write the system of CAMRE as one matrix
equation. For this purpose we denote

X = (Xl,XQ), F = (Fl,FQ).
Then the system (1) may be written as

F(X,P) =0. 2)
Here F is considered as a mapping R'* — R?, or
equivalently, as a mapping R™"*?"? x R® — R"*2n,

We assume that system (1) has a solution X =
(X1,X2) € &% such that the partial Fréchet
derivative Fx (X, P)(-) of F in X at the point
(X, P) is invertible.

A direct calculation gives

P x,(X,P)(2)=G| Z + ZG,,
Fix,(X,P)(Z2)=X,B:Z+ Z"B] X1, (3)
Py x, (X, P)(Z) = X2By Z" + ZBy X,
By x,(X,P)(Z2) =G Z + ZG .

Further on we set

L(-):= Fx (X, P)(:) € Lin(R* R?),
L;(") :== F; x(X, P))(-) € Lin(R?*,R),
L;;(-) == Fi x, (X, P)(-) € Lin(R,R).
Thus
Fx (X, P)(Y) = (Ly(Y), Ls(Y))
= (L11(Y1) + Ly2(Y2), L2i (Y1) + Loz (Y2)).

Applying the vec operation to Fx (X, P)(Y) and
using the equality (A ® B)IL,,2 = II,2(B ® A) we
find the matrix representation of the operator L(+)

Ly Ly»

L :=Mat(L(")) = {Lm La»

2n? x2n?
:|6Rn><n,

where

Lii:=1,® GlT + GlT ® I,

= (T2 + O2) (L, ® (X1By)),
Loy = (L2 + II2) (B2 X2) " ®1,,)
Lyy:=1, Gy + Gy ®I,,.

Here L;; € R™*7* is the matrix representation of
the operator L;;(+), i,j = 1,2.

Let the matrices from P; be perturbed as A; —
A; + 0A;, etc. We assume that the perturbations
0C; and 6D; are symmetric in order to ensure
that the perturbed equation also has a solution in
S2. Symmetric perturbations in C; and D; arise
naturally in many applications.

Denote by P; 4+ 0 P; the perturbed collection P;, in
which each matrix Z € P; is replaced by Z + §Z
and let 0P = (0P1,0P2). Then the perturbed
version of equation (2) is

F(X+dX,P+6P)=0. 4)
Equation (4) has a unique isolated solution ¥ =
X + 86X € S? in the neighbourhood of X if the
perturbation P is sufficiently small.

Denote by

|0 8
0= { 62] € R,
where &; := [64,,08,,0c,,0p,]" € R%, the vector
of absolute Frobenius norm perturbations §z :=
[[6Z]|F in the data matrices Z € P.

The perturbation problem for CAMRE (1) is to
find bounds

ox, < fi(6), s€e QC Ry, i=12, (5
for the perturbations dx, := |[|0X;||r. Here Q is a
certain set and f; are continuous functions, non-
decreasing in each of their arguments and satisfy-
ing f;(0) = 0. The inclusion § € Q guarantees
that the perturbed CAMRE (4) has a unique
solution Y = X + §X in a neighbourhood of the



unperturbed solution X such that the elements of
0X1, 60Xy are analytic functions of the elements
of the matrices 07, Z € P, provided § is in the
interior of €.

First order local bounds

dx; < est;(8) +O([0]]%),6 = 0, i = 1,2, (6)

are first derived with est;(6) = O(||d]]), 0 —
0, which are then incorporated in the non-local
bounds (5).

3. LOCAL PERTURBATION ANALYSIS

Consider first the conditioning of the CAMRE (1).

The perturbed equations may be written as

2
Fi(X +6X;, P+ 0P;) = Y Li;(6X;)
j=1

+ > Fiz(0Z) + Hi(0X,6P;) = 0,
ZeP;

where Fi,Z(') = i,Z(X, Pz)() € Lin, Z €
P;, are the Fréchet derivatives of F;(X,FP;) in
the matrix argument Z, evaluated at the point
(X, P;). The matrix expressions H;(0X,0P;) =
O (|6X,6P]|1*), 6X — 0, 6P; — 0, contain
second and higher order terms in § X', 0 P;. In fact,
for Y = (Y1,Y2) € 8%, we have

H,(Y,0P)) = (6B,Ys — 6D Y1) ' X, (7)

+ X1 (6B1Yy — 6D Y7)

+ Y10B1 X> + X26B] V)
— Yi(Dy +0D1)Y1 + Y104, + 04 Y
+ Y1(By +6B,)Ys + Ys(By +0B;)'Y;

and

Hy(Y,0P,) = X5 (Y10B, — Y26D,) " (8)

+ (Y16By — Y26D5) Xo
+ X16B2Ys + Y20B, X
— Y2(D3 4+ 6D3)Ys + 6 AsYs + Y26 A5
+ Y2(Ba + 6Bs) 'Yy + Y1 (By + 0B3)Yo.

We also have, for (X, X5) € S2,

Fia(Z)=X Z+ZTXy,

Fi g (Z2)=X1 ZX> + XoZ " Xy,
Fice,(2)=2Z, FAp,(Z)=-X1ZX;,
FZ,AZ(Z):ZX2+X2Z ,
Fyp,(2)=X1ZXo + X5 7 X1,
Fo0,(Z2) =27, Fop,(Z) = —X2ZX>.

The inverse operator
M(:) := L(:) ! € Lin(R? R?)

of the operator L = Fx(X,P)(-) may be rep-
resented as L™1(-) = (Mi(-),Mz(-)), where, for
Z = (21, 2Z:) € R?,

MZ(Z) = Mil(Zl) + MiQ(ZQ), M”() € Lin.

Hence

5X = —M(W,(3X,5P,), Wa(5X,6P,)), (9)

where Wt (Y, 6Pz) =
In this way

6X; = ZMU

which gives

Yzep, Fi,z(0Z)+H;(Y,6F;).

L(6X,6P))),

==Y > M;0F;4(62) (10)

j=1 ZeP;

_ZM”

(0X,5P))).

Therefore

2
Ox: <> Kijz6z + O(|6]]%), 6 =0,
j=1Z€eP;

where the quantity K;jz = ||Mij o F} z||Lin, 18
the absolute condition number of the solution com-
ponent X; with respect to the matrix coefficient
Z € Pj. Here ||.||Lin is the induced norm in the
space Lin of linear operators R — R.

If X; # 0, estimates in terms of relative perturba-
tions are

2
ex; <Y kijzes+O(|0]]*), § 0,
j=1ZePp;
where the quantity ki;z := Kij}Z%; is the
relative condition number of the solution com-

ponent X; with respect to the matrix coefficient
0 7é Z € Pj.

The calculation of the condition numbers K;; z
is stalghtforward for the Frobenius. Denote by
L;z € R™*"* the matrix of the operator F; z €
Lin. We have

( n2+In2)(In®X1);
Lo, = (2 + 12) (X2 ® 1),
L; g, = (2 + I2) (X2 @ X1),

=1n2, Loc, = Ine,
=-X1®X1, Lyp, = —Xo® X,

Lia, =

Lic, =

Ly p,

Let the matrix representation of the operator
M()) = F5x' (X, P)(-) € Lin(R?, R?)



be denoted as

M :=Mat(M) = L' := [Mll M12:|

M21 M22

M;; € RW >
ij -
Having in mind the expressions for L; z the abso-
lute condition numbers are calculated from

Kz’j,Z = ||Miij,Z||27 = Pj, Z,] = 1,2

Rewrite equations (10) in vectorized form as

vec(dX;) Z Z N;. zvec(6Z) (11)
j=1 Zep;
- Zvaec (0X,0P))),
where
Ni,Z = _Miij,Z € anxn2’ 7 € Pj.

The condition number based perturbation bounds
may be derived as an immediate consequence of

(11),

5x, = 10Xl = [Ivec(dX7)ll> < est(8) + O(I]12),

2
est”(8) == 3" S [INi zll207.

j=1 ZeP;

Relations (11) also give a second perturbation

bound
Sx, < esti? (8) + O([|6]]?), esti™ (8) = [|Nil|2[16]]2
where

N;:=[N;1,Nip] € Rn2X8n2,

L 2><4 2
Njj:=[Nia,,NiB;, Nic;, Nip;] € R" **"" .

The bounds estz(»l) (0) and estl@) (0) are alternative,
i.e., which one is smaller depends on the particular
value of 4.

There is a third bound, which is always less or
equal to estgl)((S). Indeed, we have

5x, < est!™ () + O(||8]]), est'™ (8) := \/6TN;6,

where N; = [nip] € R%*® is a matrtix with

elements n;p, = HJ/\\TZTPJ/\\TM ) Pa= 1,...,8
where N@k, k = 1,...,8 denote the n? x n?
blocks of N;jie., N; = []\Afi71,]\Afi72,...,]\Afi7g},
Nip € R™™ and N;y = N;a, Nip =
Nig,,...,Nig = Nip,.

Since HN qu § HJ/\\TM , ‘ Nz}q 2then estgg)((S)

estgl)(é) and we have the overall estimates

dx, = esti(9) + O(14]1*), (12)

IN

where

est; (8) := min {est§2> (6), est? (5)} . (13)

The local bounds are continuous, first order ho-
mogeneous, non-linear functions in 4.

The bounds estl(-k) are majorants for the solution
of a complicated optimization problem, defining
the conditioning of the problem as follows. Set
& = vec(6X;), i = 1,2 and 0 := [01,...,08]" =
[64,,-.-,0D,]" € R3. Then we have

8
&= Nigne +O([8]*), 6 =0
k=1

and dx, = [|&ll2 < Ki(9) +

8
K;(9) := max{

Z i,k
k=1,...

k=1
8}
is the exact upper bound for the first order term
in the perturbation bound for the solution com-
ponent X; (note that K;(d) is well defined, since
the minimization in 7 is carried out over a com-
pact set). The calculation of K;(d) is a difficult
task. Instead, one can use a bound above such as

Let v € R% be a given vector and let X; # 0.
Then the relative condition number of X; with
respect to v is ki(y) = Ki(v)/[|Xi|le. If | P is
the generalized norm of P, then x;(||P||) is the
relative norm-wise condition number of X;.

O(|16]]2), & — 0. Here

el < 0w,
2

4. NON-LOCAL PERTURBATION ANALYSIS

Local bounds of the type considered in Section 3
are valid only asymptoticaly, for § — 0. But in
practice they are usually used simply neglecting
terms of order O(]|§]]?).

The disadvantages of the local estimates may
be overcome using the techniques of non-linear
perturbation analysis. As a result, we find bounds
(5). The estimate (5) is rigorous. The perturbed
equation F(X+0X, P+0P) = 0 may be rewritten
as an operator equation for the perturbation 6.X

§X =I(6X,6P), I = (I, IL,),  (14)

where I(Y, §P) := —M(Fp(X, P)(6P)+H(Y,5P)).

Here H(Y,6P) := (H.(Y,0P,),H>(Y,0P>)) con-
tains second and third order terms in Y and 0P,
see (7), (8).

Equation (14) comprizes two equations, namely

§X; = IL;(6X,6P;), i = 1,2, (15)

where the right-hand side of (15) is defined by
relations (10). Setting



& = vec(6X;) € R™, ¢:= {ﬂ € B>,

&
we obtain the vector operator equation
§=m(&mn), (16)
in R2”2, which is reduced to two coupled vector
equations
gi = Wi(fﬂ?); i = 1)27
in R”z, respectively.

The vectorizations of the matrices H;(Y,dP;) are

vec(Hy (Y, 0P,)) = (In ® X1) (I + IL.2) (17)

x vec(0B1Yy — 6D1Y7)
+ (Xo®1L,) (In2 + I,2) vec(Y10By)
— vec(Y1 (D1 + 6D1)Y1) + vec (Y164, + 0A] Y1)
+ vec (Y1(B1 + 0B1)Ys + Y2(By +6B;) ' 1)

and

vec(H (Y, 0P)) = (Xo ® I,) (Ipz + L) (18)

x vec (Y10By — Y20 D5)
+ (I, ® X1) (I2 + I,,2) vec(6 B2 Y2)

— vec(Ya(Ds + 6D2)Y3) + vec (§A2Ys + Y2047
+ vec (Ya(Bz + 0B5) Y1 + Y1 (B> + 6B>)Y2) .
Let [|[Yillr < pi, @ = 1,2, where p; are non-
negative constants. Then it follows from (17), (18)

that

[[7:(&,m)ll2 < esti(d Zvaec (Y,0P;))
2
<esti(8) + Z | Mijvec(H; (Y, 8P;))|l,
j=1
S hl(pa 6)7
where
P1 2
= €ER
g {Pz} +
and

hi(p1, p2,0) :=esti(8) + ai(6)p1 + ai2(0)p2
+ 20;(8)p1p2 + cin (8)p7 + ci2(8) 5.

Here

a;1(9) :=2||Mj1||204, + vi1 (6B, +0p,) + Vi2dB,,
ai2(0) :=2||Mj2l[26 4, + vi2(dB, + 6p,) + virdp,,
bi(0) := || Mir||2([| B1ll2 + 08, )
+ [[Mizll2(||Bz2[l2 + 6B.),
ci () = [[Mall2(lD1l2 + b, ),
ciz(6) := || Miz2(||D2l|2 + 0p2),

and
Vi1 \= ||le( ®X1) (In2 +Hn2)|l2’
Vig i= ||Mi2(Xo ® I,) (In2 + ILy2) ||, -
The function h : RE x RS — R, constructed

above, is a vector Lyapunov majorant for the
operator equation (16), see [2].

Consider the majorant system of two scalar
quadratic equations

pi:hi(p17p2)6)7 i1=1,2, (19)

which may also be written in vector form as
p = h(p, ), where

=[50

no.0) =[S0,

Hence h(0,0) = 0, h,(0,0) = 0. Therefore, for §
sufficiently small, the system (19) has a solution

_ _ | f1(6)
p=f(6)= |:f2(5)):| )
which is continuous, real analytic in § # 0 and
satisfies p(0) = 0. The function f(-) is defined
in a domain Q@ C R% whose boundary 9 may

be obtained by excluding p from the system of
equations

p = h(p,d), det(lr — hP(p)(S)) =0. (20)

We have

The second equation in (20) is equivalent to

w(p,0) :=1—2(0) + a1(d)p1 + a2(d)p2
+ 26(8)p1p2 + 71(6)p} +72(8)p5 = 0,

where

£(0) :=a11(0) + a22(6) — a11(d)az2(9)
+ a12(9)az (6),
a1(0) := =2(c11(0)(1 — az2(8)) + b2(8)(1 — a11(5))
+ a12(8)c21(8) + b1(6)a (6)),
az(0) := =2(c22(0) (1 — a11(8)) + b1 (8)(1 — az2(6))
+ a21(8)c12(8) + b2(6)a12(4)),
B(0) :=4(c11(0)c22(0) — c12(0)c21(9)),
Y1(6) :=4(b2(8)c11(6) — b1 (6)e21(6)),
Y2(6) :=4(b1()c22(8) — b2(8)c12(6)).

As a result, we have the non-local non-linear
perturbation bounds

C21

C12

We can find a new Lyapunov majorant g, such
that h(p,d) < g(p,d) and for which the equation

p=9(p,0) (22)



has an explicit form solution. This can be done in
many ways. Three of them are described below.

Let
est(d) := max{est (0), est2(d)},
a;(0) := max{a1;(9), a2i(9)},
b(d) := max{b1(0),b2(d)},
;(0) :=m

ax{c1;(9),c2:(0)}-

Hereinafter, in order to simplify the notation, we
set a;; 1= a;;(9), a; == a;(9), b = b(9), ¢; := ¢;(9),
e; == est; (), e := est(d).

Consider the function g with components
91(1), 6) = 92(p7 6)
= e+ aipy + azps + 2bp1ps + c1p} + c2p3.

Now the majorant equation (22) has solutions
with p; = po, where

e—(1—a; —az)p1 + (2b+ ¢ + c2)p? = 0.
Hence, if
669::{56R§_:a1+a2
+ 2ye(2b+ ¢ + ) < 1}
then

0x,,0x, < (2€)/(1 —a; —az (23)
+ V(1 —ar —a)? —4e(2b+c1 +¢c2) ).

However, in this approach one of the bounds
(23) is not asymptotically sharp unless e; = es.
We next derive another explicit bound that is
asymptotically sharp in the sense that its first
order term is equal to est;(4).

Consider the function k& with components
kl(é, p) = e;taipr +asps + 2bp1/)2 +clp% + Cgpg.

It is easy to see that k is again a Lyapunov
majorant. Since h(p,d) < k(p,0) =< g(p,0) the
solution of the majorant system p = k(p,0)
will majorize the solution of the system p =
h(p,d) thus producing less sharp bounds, but
will give tighter bounds than these based on
the majorant g. However, this solution is easily
computable. Indeed, here we have p; = ps +
e; — ep. Substituting this expression in any of
the equations p; = k;(p,d) we obtain quadratic
equations for p;. Choosing the smaller solutions,
we find the bounds

2 (aje; + (1 —aj)e; + cjler —e2)?)
1—a; —as +2(0b+cj)(e; —ej) +Vd
(24)

Ox;, < pi =

where

d=d(0) := (1 — a1 — as + 2(b + ¢;)(e; — ¢)))°
—4(2b+ 1 + ¢2) (aje; + (1 — aj)e;
+ cj(er — 62)2)
=(1—a1 —a2)? = 4(a1 (b + ¢2)
+ (1 —a2)(b+c1))es
—4(az(b+c1)+ (1 —a1)(b+ c2))es
+ 4(0* — 1) (e — e)?

and j # i. These bounds hold provided d(4) > 0.

5. CONCLUSIONS

In this paper we have presented a complete local
and non-local perturbation analysis of coupled
continuous-time matrix Riccati equations, arising
in the theory of H,, control. The results obtained
may be extended to other more general systems
of matrix quadratic equations.
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