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Abstract: A new method for fault detection and isolation (FDI) in stochastic linear
time varying (LTV) systems is proposed in this paper. It allows to completely
isolate any number of faults regardless of the number of output sensors, thanks to
an appropriate assumption on the fault profiles and to some persistent excitation
condition. In contrast, most existing methods enabling complete fault isolation have
been developed for linear time invariant (LTI) systems and require a strong condition
on the number of sensors. The method proposed in this paper is based on a recent
development for the design of adaptive observers. Its performance is illustrated by a
numerical example.
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1. INTRODUCTION

For the purpose of fault detection and isolation
(FDI), in this paper we consider stochastic state
space systems subject to additive faults of the
form

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t)
+ψ1(t)θ1 + ψ2(t)θ2 + · · ·ψs(t)θs (1a)

y(t) = C(t)x(t) + v(t) (1b)

where x(t) ∈ R
n, u(t) ∈ R

l, y(t) ∈ R
m are

respectively the state, input, output of the sys-
tem; A(t), B(t), C(t) are known time varying ma-
trices of appropriate sizes; the noises w(t) ∈
R

n, v(t) ∈ R
m are bounded, centered and in-

dependent of the other signals; the additional
terms ψ1(t)θ1, . . . , ψs(t)θs represent the possible
faults. The time varying vectors ψk(t) ∈ R

n,
k = 1, . . . , s, are the assumed (time varying)
fault directions in the state space, and θ1, . . . , θs

are constant scalar coefficients. If the k-th fault
(i.e., the fault in the direction ψk(t)) is absent,
then θk = 0, otherwise θk 6= 0. The matrices
A(t), B(t), C(t) and the vectors ψ1(t) . . . ψs(t) are

all assumed piecewise continuous and uniformly
bounded in time.

The problem considered in this paper is to detect
and to isolate the presence of any non zero θk,
from measured input-output signals u(t), y(t), the
known matrices A(t), B(t), C(t) and the assumed
fault directions ψ1(t), . . . , ψs(t).

Remark 1. The assumption of constant parame-
ters θk is reasonable for two practical situations:
the parameters vary slowly, or the parameters
are piecewise constant with rare jumps. This as-
sumption is similar to those typically used in the
FDI methods based on on-line parameter estima-
tion (Isermann, 1993). An alternative assumption
frequently used in the FDI literature is that the
“fault profiles” are arbitrary functions of time.
It has in principle a wider applicability, but a
consequence is that the number of output sensors
must be larger than or equal to the number of
faults (m ≥ s) in order to fully isolate all the
faults. In contrast, as shown in this paper, with
the assumption of constant parameters θk, it is
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possible to isolate any finite number of faults,
regardless of the number of output sensors. �

Remark 2. Assuming constant parameters θk may
seem to lead to a simple solution of the FDI
problem by considering the extended system[

ẋ(t)
θ̇(t)

]
=
[
A(t) Ψ(t)

0 0

] [
x(t)
θ(t)

]
+
[
B(t)

0

]
u(t)

+
[
w(t)

0

]
(2a)

y(t) =
[
C(t) 0

] [x(t)
θ(t)

]
+ v(t) (2b)

where the vector θ collects all the parameters θk

and the matrix Ψ(t) is composed of the vectors
ψk(t). Indeed the extended system is linear, thus
the Kalman filter can apply. However, even in the
case with constant matrices A,B,C, the extended
system is time varying. In order to guarantee
the convergence of the Kalman filter for a time
varying system, its uniform complete observability
is usually required (Jazwinski, 1970). In prac-
tice, it is difficult to check the uniform complete
observability of the above extended system that
should take into account some persistent excita-
tion condition. Therefore, the application of the
Kalman filter to the extended system is not a triv-
ial problem. In this paper, we typically assume the
uniform complete observability of the matrix pair
(A(t), C(t)), but nothing about the observability
of the extended system.

�

Since fault detection can be handled as a particu-
lar problem of fault isolation, we concentrate our
presentation on fault isolation in this paper.

Now let us formulate the problem of fault isolation
in a more compact manner. Assume that we want
to decide if a subset of p ≤ s faults is present.
Group the p corresponding fault directions ψk(t)
into a matrix Ψf(t) ∈ R

n × R
p. The remaining

q = s − p fault directions are grouped into a
matrix Ψc(t) ∈ R

n×R
q (the subscript c stands for

“complementary”). Accordingly, collect the scalar
parameters θk into two column vectors θf ∈ R

p

and θc ∈ R
q. Then system (1) is rewritten as

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t)
+Ψf(t)θf + Ψc(t)θc (3a)

y(t) = C(t)x(t) + v(t) (3b)

With this formulation, the fault isolation problem
becomes, for each considered partition between
Ψf (t)θf and Ψc(t)θc, to decide whether the vector
θf is zero or not, whatever the value of the
“nuisance” vector θc is.

Remark 3. The class of systems considered in this
paper includes in fact the so-called state-affine
nonlinear systems, in the form of

ẋ(t) = A(t, u, y)x(t) +B(t, u, y)u(t)
+ Ψf(t, u, y)θf + Ψc(t, u, y)θc

y(t) = C(t, u, y)x(t) +D(t, u, y)u(t)

where the dependence of A,B,C,D,Ψf ,Ψc on
u, y can be nonlinear. Since we do not need the
time derivatives of the matricesA,B,C,D,Ψf ,Ψc,
their dependence on the known signals u(t) and
y(t) can simply be viewed as the dependence on
the time t. �

The main contribution of this paper is to pro-
pose a new residual generation method for com-
plete isolation of faults in linear time varying sys-
tems, whereas most residual generation methods
allowing complete fault isolation are restricted to
linear time invariant (LTI) systems. Moreover,
under appropriate assumptions, our method en-
ables complete isolation of an arbitrary number of
faults regardless of the number of output sensors,
whereas most known fault isolation methods have
a strong requirement on the number of sensors.

The theoretic basis of the FDI method proposed
in this paper is a recent result on adaptive ob-
servers (Zhang, 2002). Adaptive observers have
been used for FDI by different authors (Ding
and Frank, 1993; Yang and Saif, 1995; Wang et
al., 1997; Zhang, 2000). As already mentioned, the
particularity of the method proposed in this paper
is to consider fault isolation in LTV systems, with
a minimum requirement on the number of output
sensors. It turns out that our method is somewhat
similar to the one presented in the recent paper
(Zhang et al., 2001), with the main difference in
the way modeling and measurement uncertainties
are handled. In (Zhang et al., 2001), some projec-
tion operator is used in the algorithms to ensure
the boundedness of the estimates, whereas in our
paper, uncertainties are handled through a more
statistical approach.

The paper is organized as follows. In Section 2 we
present the proposed residual generator. Section 3
is devoted to the analysis of the behavior of the
proposed residual. A simulation example is given
in Section 4. Finally, some concluding remarks are
drawn in Section 5.

2. RESIDUAL GENERATION

As the proposed residual generation method is
based on the adaptive observer presented in
(Zhang, 2002), let us shortly recall this result.

Rewrite system (3) as

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t) + Ψ(t)θ (4a)
y(t) = C(t)x(t) + v(t) (4b)

with



Ψ(t) =
[
Ψf (t) Ψc(t)

] ∈ R
n × R

s θ =
[
θf

θc

]
∈ R

s

Let Γ ∈ R
s × R

s be a symmetric positive definite
matrix, Σ(t) ∈ R

m × R
m a bounded symmetric

positive definite matrix, and K(t) ∈ R
n × R

m a
gain matrix. Under appropriate assumptions, the
ordinary differential equation (ODE) system

Υ̇(t) = [A(t) −K(t)C(t)]Υ(t) + Ψ(t) (5a)
˙̂x(t) = A(t)x̂(t)+B(t)u(t)+Ψ(t)θ̂(t)
+
[
K(t)+Υ(t)ΓΥT (t)CT Σ(t)

]
[y(t)−C(t)x̂(t)] (5b)

˙̂
θ(t) = ΓΥT (t)CT (t)Σ(t) [y(t) − C(t)x̂(t)] (5c)

is a global exponential adaptive observer for sys-
tem (4) with convergence in the mean. Note that
the matrix Υ(t) ∈ R

n × R
s has the same size as

Ψ(t). See (Zhang, 2002) for the details.

Typically, Σ(t) is chosen to be the inverse of the
covariance matrix of the output noise v(t), K(t)
is set to the Kalman gain designed for the fault-
free system, Γ is used to balance the convergence
speeds of state estimation and parameter estima-
tion.

With such an adaptive observer, one may want to
directly solve the FDI problem by on-line param-
eter estimation. Alternatively, the method pro-
posed in this paper is based on residuals generated
with the aid of the adaptive observer. One reason
for this choice is its robustness against false alarms
even when the system is not sufficiently excited for
parameter estimation. See Theorem 1 in Section 3.

The basic idea of the residual generator presented
below is to use an adaptive observer to estimate
the “nuisance” parameter θc. The residual is then
generated as the prediction error of the adaptive
observer that should be insensitive to the “nui-
sance” parameter θc, but sensitive to the moni-
tored parameter θf .

Residual generator Let Γ ∈ R
q × R

q, Σ(t) ∈
R

m × R
m, and K(t) ∈ R

n × R
m be as in the

adaptive observer (5). We introduce the residual
r(t) as follows:

Υ̇c(t) = [A(t) −K(t)C(t)]Υc(t) + Ψc(t) (6a)
˙̂x(t) = A(t)x̂(t)+B(t)u(t)+Ψc(t)θ̂c(t)

+
[
K(t)+Υc(t)ΓΥT

c (t)CT Σ(t)
]

· [y(t)−C(t)x̂(t)] (6b)
˙̂
θc(t) = ΓΥT

c (t)CT (t)Σ(t) [y(t) − C(t)x̂(t)] (6c)

r(t) = Σ
1
2 (t)[C(t)x̂(t) − y(t)] (6d)

Note that the generated residual r(t) ∈ R
m has

the same dimension as y(t).

The residual r(t) is intended to monitor the pres-
ence of the faults Ψf (t)θf but to ignore the faults
Ψc(t)θc. In order to isolate different faults, several

residual generators should run in parallel, each
with a different partition between Ψf (t)θf and
Ψc(t)θc.

The behavior of the proposed residual is analyzed
in the following section.

3. RESIDUAL BEHAVIOR ANALYSIS

Let us investigate the behavior of the resid-
ual, first in the absence of the monitored faults
Ψf (t)θf , then in their presence.

3.1 In the absence of the monitored faults

Assumption 1. Assume that the matrix pair
(A(t), C(t)) is such that a bounded (time-varying)
matrix K(t) ∈ R

n × R
m can be designed so that

the system

ẋ(t) = [A(t) −K(t)C(t)]x(t) (7)

is exponentially stable.

This assumption means that the fault free system
has an exponential observer. It is known that,
if the matrix pair (A(t), C(t)) is uniformly com-
pletely observable, then the Kalman gainK(t) can
fullfil Assumption 1 (Jazwinski, 1970). Note that
the observability of the extended system (2) is
never required in this paper.

Theorem 1. Under Assumption 1, if the moni-
tored faults are absent, i.e., θf = 0, then, what-
ever the value of θc is, the residual r(t) gener-
ated by (6) tends to zero in the mean, that is,
Er(t) → 0 when t→ ∞.

Note that this theorem holds regardless of any
excitation condition of the system. It implies the
robustness of the FDI method against false alarms
when the system is not sufficiently excited for
parameter estimation.

Proof of Theorem 1

For notational convenience, we do not explicitly
write the dependence on t of all the variables,
though the proof is valid for time varying systems.

Combine (6b) and (6c) to obtain

˙̂x = Ax̂+Bu+ Ψcθ̂c +K(y − Cx̂) + Υc
˙̂
θc

Let x̃ = x̂−x, θ̃c = θ̂c−θc and notice that θf = 0,
θ̇c = 0, then

˙̃x = (A−KC)x̃+ Ψcθ̃c + Υc
˙̃
θc − w +Kv (8)

The key step of the proof is to define the following
linear combination of x̃ and θ̃c:

η(t) = x̃(t) − Υc(t)θ̃c(t)



then we have

η̇ = (A−KC)(η + Υcθ̃c) + Ψcθ̃c − Υ̇cθ̃c − w +Kv

= (A−KC)η + [(A−KC)Υc + Ψc − Υ̇c]θ̃c

− w +Kv

Because Υc is generated by (6a), we have

η̇ = (A−KC)η − w +Kv (9)

Take the mathematical expectation on both sides
of this equation, exchange the order between the
expectation and the derivative, and denote

η̄(t) = Eη(t)

then

˙̄η = (A−KC)η̄ (10)

By Assumption 1, system (10) is exponentially
stable. Choose a constant positive definite matrix
Q ∈ R

n × R
n such that the matrix 2Σ(t) −

Σ(t)C(t)Q−1CT (t)Σ(t) is positive definite for all
t. According to (Brockett, 1970), for any positive
definite matrix Q ∈ R

n × R
n (in particular, the

above chosen one), there exists a positive definite
matrix P (t) such that

d

dt

[
η̄T (t)P (t)η̄(t)

]
= −η̄T (t)Qη̄(t)

Now let us study the behavior of θ̃c. As θ̇c = 0,
then

˙̃θc = ΓΥT
c C

T Σ(y − Cx̂)

= −ΓΥT
c C

T ΣCx̃+ ΓΥT
c C

T Σv

= −ΓΥT
c C

T ΣC(η + Υcθ̃c) + ΓΥT
c C

T Σv (11)

Take the mathematical expectation on both sides
of the last equation, exchange the order between
the expectation and the derivative, and notice
that v is independent of ΓΥT

c C
T , then

˙̃̄
θc = −ΓΥT

c C
T ΣC(η̄ + Υc

¯̃θc) (12)

where
¯̃
θc(t) = Eθ̃c(t)

Since ¯̃
θc depends on η̄, we have to study the joint

behavior of η̄ and ¯̃
θc.

Define the Lyapounov function candidate

V (t) = η̄T (t)P (t)η̄(t) + ¯̃
θ

T

c (t)Γ−1¯̃θc(t)

Then

V̇ (t) = −η̄TQη̄ − 2¯̃
θ

T

c ΥT
c C

T ΣC(η̄ + Υc
¯̃
θc) (13)

= −
[
η̄T ¯̃

θ
T

c

] [
Q

1
2 0
S R

] [
Q

1
2 ST

0 RT

] [
η̄
¯̃
θc

]
(14)

with

S = ΥT
c C

T ΣCQ− 1
2

R =
[
ΥT

c C
T (2Σ − ΣCQ−1CT Σ)CΥc

] 1
2

Note that Q has been chosen such that 2Σ −
ΣCQ−1CT Σ is positive definite, so the matrix
square root R exists.

From (14) we know that V̇ (t) ≤ 0. It follows that
V (t) is non increasing. Therefore, η̄(t) and ¯̃θc(t)
are both bounded.

It is easy to check that V̈ (t) is bounded, as
Υc(t), η̄(t), Υ̇c(t), ˙̄η(t) are all bounded. Then by
Barbalat’s lemma (Slotine and Li, 1991), V̇ (t) →
0.

From (13), and because V̇ (t) → 0, η̄(t) → 0, we
get

¯̃
θ

T

c ΥT
c C

T ΣCΥc
¯̃
θc → 0 (15)

This implies

Σ
1
2CΥc

¯̃
θc → 0 (16)

Therefore,

Er(t) = E
{
Σ

1
2 (t)[C(t)x̂(t) − y(t)]

}
= E

{
Σ

1
2 (t)[C(t)x̃(t) − v(t)]

}
= Σ

1
2CEx̃

= Σ
1
2C(η̄ + Υc

¯̃θc)

= Σ
1
2Cη̄ + Σ

1
2CΥc

¯̃
θc

→ 0

�
Remark that quation (16) does not necessarily
mean ¯̃θ → 0. The latter would be true only under
some persistent excitation condition, that is not
required in Theorem 1.

3.2 In the presence of the monitored faults

We have shown that the residual r(t) converges in
the mean to zero when θf = 0, whatever the value
of θc is, and whatever the excitation is.

The residual should also allow the detection of the
monitored faults θf 6= 0. For this purpose, some
persistent excitation is required.

Assumption 2. Let Υ(t) ∈ R
n×R

s be a matrix of
signals generated by the ODE system

Υ̇(t) = [A(t) −K(t)C(t)]Υ(t) + Ψ(t) (17)

Assume that Ψ(t) is persistently exciting, so
that there exist two positive constants α, T and
some bounded symmetric positive definite matrix
Σ(t) ∈ R

m ×R
m such that, for all t, the following

inequality holds∫ t+T

t

ΥT (τ)CT (τ)Σ(τ)C(τ)Υ(τ)dτ ≥ αI (18)



Theorem 2. Under Assumptions 1 and 2, if the
monitored faults are present, i.e., θf 6= 0, then for
the residual r(t) generated by (6), the mean Er(t)
cannot tend to zero when t→ ∞.

Proof of Theorem 2 We prove the contrapos-
itive of the theorem instead of directly proving
itself. More precisely, we show that, if Er(t) → 0,
then θf = 0.

As in the proof of Theorem 1, combine (6b) and
(6c) to obtain

˙̂x = Ax̂+Bu+ Ψcθ̂c +K(y − Cx̂) + Υc
˙̂
θc

Let x̃ = x̂ − x and θ̃c = θ̂c − θc. Now θf is not
assumed to be zero, so

˙̃x = (A−KC)x̃− Ψfθf + Ψcθ̃c + Υc
˙̃
θc − w +Kv

Now define

η(t) = x̃(t) + Υf (t)θf (t) − Υc(t)θ̃c(t) (19)

where Υf (t) ∈ R
n × R

p is generated by

Υ̇f (t) = [A(t) −K(t)C(t)]Υf (t) + Ψf (t) (20)

Then we get

η̇ = (A−KC)(η − Υfθf + Υcθ̃c) − Ψfθf + Ψcθ̃c

+ Υ̇fθf − Υ̇cθ̃c − w +Kv

= (A−KC)η − [(A−KC)Υf + Ψf − Υ̇f ]θf

+ [(A−KC)Υc + Ψc − Υ̇c]θ̃c − w +Kv

Because Υf is generated by (20) and Υc by (6a),
we obtain again

η̇ = (A−KC)η − w +Kv (21)

As before, let η̄(t) = Eη(t), then

˙̄η = (A−KC)η̄ (22)

By Assumption 1, system (22) is exponentially
stable, therefore η̄ → 0 exponentially fast.

Now let us study the behavior of θ̃c. As θ̇c = 0,
then

˙̃
θc = ΓΥT

c C
T Σ(y − Cx̂) (23)

= −ΓΥT
c C

T ΣCx̃+ ΓΥT
c C

T Σv

= −ΓΥT
c C

T ΣC(η − Υfθf + Υcθ̃c)

+ ΓΥT
c C

T Σv

= −ΓΥT
c C

T ΣCΥcθ̃c + ΓΥT
c C

T ΣCΥfθf

− ΓΥT
c C

T ΣCη + ΓΥT
c C

T Σv (24)

Let ¯̃θc(t) = Eθ̃c(t), then
˙̃̄
θc = −ΓΥT

c C
T ΣCΥc

¯̃
θc + ΓΥT

c C
T ΣCΥfθf

− ΓΥT
c C

T ΣCη̄ (25)

Now assume that

Er(t) = E
{
Σ

1
2 (t)[C(t)x̂(t) − y(t)]

}
→ 0

It implies, through (23), that
˙̃̄
θc → 0, i.e., ¯̃

θc tends
to a constant vector.

The assumption Er(t) → 0 implies Σ
1
2CEx̃ → 0.

From (19), that is, η = x̃ + Υfθf − Υcθ̃c, and
because η̄ → 0, we get

Σ
1
2C(Υfθf − Υc

¯̃
θc) → 0 (26)

Notice that Υ = [Υf ,Υc]. Then, rewrite (26) as

Σ
1
2CΥ


 θf

−¯̃
θc


→ 0

We have shown that ¯̃
θc tends to a constant vector,

so when t→ ∞,(∫ t+T

t

ΥT (τ)CT (τ)Σ(τ)C(τ)Υ(τ)dτ

) 
 θf

−¯̃
θc


→ 0

By Assumption 2, the integral in the last equation
is positive definite and bounded from below. It
follows that θf = 0 and ¯̃

θc → 0. We then have
proved the contrapositive of Theorem 2, and thus
the theorem itself. �

4. NUMERICAL EXAMPLE

This example, adapted from the one of (Marino
and Tomei, 1995), is a single link robot arm ro-
tating in a vertical plane. The equation of motion
is

Iq̈ +
1
2
mgl sin q = u

where q is the rotation angle, u the input torque,
I the moment of inertia, g the gravity constant,
m the mass and l the length of the arm.

Let x1 = q, x2 = q̇, y = q, θ1 = 1/I, θ2 =
mgl/(2I), then the state space model is

ẋ1 = x2

ẋ2 = −θ2 sin y + θ1u

y = x1

which fits into the form of (1) with ψ1(t) =
[0, u(t)]T and ψ2(t) = [0,−siny(t)]T .

The simulation parameters as follows. The nom-
inal parameter values are: m = 1, l = 1, I = 0.5.
The input signal is u(t) = 5(sin 2t + cos 3t). The
initial condition is x(0) = [1, 1]T . A Gaussian
noise with standard deviation 0.1 is added to y.

As shown in Figure 1, at the 20th second, θ1
changes from 2 to 2.8, and at the 40th second,
θ2 changes from 9.8 to 17.64.

Two residuals as formulated in (6) are generated:
r1(t) and r2(t) to monitor the changes in θ1 and
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Figure 1. Single link robot arm: the parameters θ1
(lower) and θ2 (upper).
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Figure 2. Single link robot arm: the residuals r1(t)
monitoring θ1 (top) and r2(t) monitoring θ2
(bottom).

θ2, respectively. Remind that θ2 is estimated in
the generator of r1(t), whereas θ1 is estimated
in the generator of r2(t). The parameters of the
residual generator r1(t) are K = [2, 2]T ,Σ =
10,Γ = 6,Σ = 10. For r2(t) the parameters are
K = [2, 2]T ,Σ = 10,Γ = 5,Σ = 10.

The two residuals are plotted in Figure 2. At
the beginning, the behaviors of the two residuals
are essentially due to the simulated measurement
noise. At the 20th second, both r1(t) and r2(t)
react to the change of θ1. The residual r2(t)
quickly reestablishes its nominal behavior after
a short transient, whereas r1(t) is persistently
affected by the change. Starting from the 40th
second, the behavior of r2(t) is affected by the
change of θ2.

Because of the presence of the noise, a statistical
method should be used for the evaluation of the
residuals. A related result can be found in (Zhang,
2000). This issue is not further discussed here due
to the limitation of space.

5. CONCLUSION

We have proposed a new residual generation
method for detection and isolation of faults in
linear time varying (LTV) systems. It allows to

completely isolate any number of faults regardless
of the number of output sensors, thanks to an
appropriate assumption on the fault profiles and
to some persistent excitation condition.
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