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Abstract: In this paper we propose a design methodology for the robust regulation of uncertain
nonminimum-phase multivariable linear systems. The method basically consists of defining
a suitable vector of parameterized desired output functions and of designing a parameterized
decoupling controller of the nominal plant. Then, a parameterized command function for
each input is determined by means of a stable dynamic inversion procedure. Eventually,
solving an optimization problem permits to minimize the worst-case settling time, subject to
amplitude limits on the control variables and constraints on the overshoots and undershoots
of the outputs. A worked example based on a three-inputs three-outputs plant shows the
effectiveness of the methodologyopyright© 2002 IFAC
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1. INTRODUCTION (Piazzi and Visioli, 200&; Piazzi and Visioli, 2004).
Basically, the method consists of first defining for each
Despite the robust regulation of linear systems af- output a sufficiently smooth desired output function
fected by parametric uncertainties has received much(the “transition polynomials” investigated in (Piazzi
attention in the research community, the determinationand Visioli, 200b)) which depends on the transition
of design procedures for the synthesis of controllers time 1. Then, a parameterized feedback controller is
which are able to achieve predefined performancesdetermined with the aim of both decoupling the nom-
in regulating uncertain systems is a problem which inal plant and ensuring the internal model principle in
has not been solved satisfactorily yet. In this con- order to achieve a zero steady-state error. At this point,
text, we consider a multi-input-multi-output (MIMO)  a parameterized input command function can be cal-
nonminimum-phase system subject to structured un-culated for each nominal decoupled SISO system by
certainties and we propose a new design tool for the means of a stable inversion procedure. Finally, solving
synthesis of a feedforward/feedback control schemean optimization problem permits to find the design
for its robust set-point regulation. In particular, we parameters that minimize the worst-case settling time
search for a feedback controller and a vector of com- subject to the selected constraints.
mand functions in order to minimize the worst-case The general main idea behind the presented method-
settling time subject to arbitrarily given overshoot and ology is the combined synthesis of the feedback con-
undershoot constraints and to amplitude limits for the troller and of the command signals. This differs from
plant control variables. the classical use of dynamic inversion for output track-
The devised solution is based on the concept of dy-ing, where the dynamic inversion is performed on the
namic inversion (see e.g. (Humt al, 1996)) and  nominal plant and the feedback controller, which aims
significantly extends the method we proposed in otherat compensating initial condition mismatches, mod-
papers for the single-input-single-output (SISO) case



eling errors and disturbancesijs designedindepen-
dently (Devasia,2000).In our approactthe dynamic
inversionis appliedto the SISO closed-loopsystems
andthe main purposeof the feedbackcontrolleris to
provide agooddecouplingandto reducetheeffectsof
the uncertainparameter®on the closed-looptransfer
functions.

2. THE MULTIVARIABLE SETPOINT
CONSTRAINEDREGULATION PROBLEM

We considera linear, time-invariant,continuous-time
uncertainMIMO systemwhosematrix transferfunc-
tionis:

P(sq)=[Rj(sa)]i=1,....mj=1...m (1)

whereR(s;q) = bij(s;q)/aij(s, q) arestrictly proper
rational transferfunctions nonlinearly dependingon
anuncertainparametewectorq = [qa, ..., q]" which
belongsto a given multidimensionalinterval (box)

Q=lgy.aq7]{ ---{ Fqai] where:
hij '
aj(sq) = kzoa ix(@)s,

lij

bij(s;q) = kzobij,k(Q)§~

)

Theorderof Rj(s;q) is hjj, its relative orderis pjj =

hij — lij. Polynomialsa;j(s;q) are (Hurwitz) stable
for all g € Q and their coeficients are continuous
nonlinearfunctionsover Q. Moreover, thenormalrank
of P(s;q) is equalto mfor all g € Q assuringn sucha

way the invertibility of the uncertainplant. Denoteas
zp(s;q) the zeropolynomialof P(s;q) andintroduce
the“nominal” parametewvectorq® := mid(Q), i.e. the

midpoint centerof the box Q. Then,in orderto pose
a sensibleregulation problem we do the following

assumptions.

Assumptiorl. z(0;q9) #0 VYge Q.

Assumptior?. zp(s;q°) doesnot have ary imaginary
roots.

The rohust constrainedregulation problemto be ad-

dressedcan be posedas follows. Determinea feed-

forward/feedbaclkcontrol strateyy in orderto obtain

for eachsystemoutputi a “robust” transitionfrom a

previous set-pointvaluey® to a nev oney!. Without

loss of generalityin the following we will assume
Y =0 i=1,...,m Obviously, thefirst requirement
to besatisfiedis therobuststability of the closed-loop
over the uncertaindomainQ. Moreover, both transi-

tions have to satisfy an overshootand an undershoot
limitation, anamplitudeconstrainion thecontrolvari-

ablesu;(t) andthe (worst-case}ettlingtime hasto be

minimized.

In other words, the abore problem can be stated
as follows: determinem commandfunctionsr (t) =

r
L ZC u
r

Fig. 1. Thegenerakontrolarchitecture.

P(siq) 1Y

[ri(t) ---rm(t)]" anda controller = (seeFigure 1)
suchthat

(1) theclosed-loopsystemis stablefor all g € Q;

(2) limeVi(t) =y  fori=1,...,mandfor all g €
Q (steady-stateondition);

(3) theovershoobf theith outputin responséor (t)
is boundedby agivenQ; fori =1,...,mandfor
allgeQ;

(4) the undershoobf the ith outputin responseo
r(t) isboundedy agivenU; fori=1,...,mand
forallge Q;

(5) the absolutevalue of the manipulatie inputs
ui(t) is boundedby a givenu® for i = 1,...,m
andfor all q € Q;

(6) it is minimizedthe worst-casesettlingtime.

It appearghat finding a global solution of the posed
problemis a very hardtask.In ary casewe propose
a designmethodology basedon the conceptof sta-
ble dynamicinversion,that provides a valuablesub-
optimalsolution.

3. ANEW INVERSION-BASED
MULTIVARIABLE CONTROL ARCHITECTURE

Figure 2 depictsthe proposedcontrol architectureto

achieve an optimal set-pointregulationunderall the
specificationsgiven in the previous section.In the
inner loop the controllerCy(s) is designedo obtain
a completenominal decouplingfrom variablev to

outputy, i.e. the nominaltransferfunction from v to

y is diagonal Moreover, Cy(s) hasto guaranteeobust
stability of the closed-loopfrom v to y for all g € Q.

The controllerCy(s) is the “regulating” unit ensuring
theinternalmodelprincipleto getsteady-stateobust
regulation.lt is synthesizedccordingto

Co(s a) = %diag(a) 3

wherea = [a1,...,0m]T € RT™ is a vectorgain to
be eventuallydeterminedy solving the optimization
problemof the next section.The devised outputsare
chosento be “transition” polynomialsof (Piazziand
Visioli, 2001b). In thetime intenval [0, t] they canbe
definedasfollows (i=1,...,m):

yi(t;T) == _

1 (2p+ D! 2 (=p°r-

' plt2pe+l i;.)i!(p—i)!(Zp—iJrl)
Fort <Ot is yi(t;T) ;=0 and For t > T it is
yi(t; 1) := yt. Thesedeal outputfunctionsy; (t; 1) per
mit a smoothtransferfrom 0 to y! in thetime intenval
[0,T], T € R" without undershootingnor overshoot-
ing. Moreovery;(t; T) € CP(RR) with continuityorderp
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Fig. 2. The inversion-basednultivariable control ar-
chitecture.

beingchoseraccordingto a relative degreecondition

(seePropositiord). Thetime interval parameter that

greatly affects the actual settling time is eventually
fixed by anoptimizationproblem(16). Thecommand
signalsr; are determinedoy performinga stabledy-

namicinversionfrom desiredoutputsy;(t; T) over the

nominal overall closed-loopsystem(see subsection
3.2).By virtue of thechoserstructuregor controllers
C, andGC; thisresultsin a setof scalarinversions.

3.1 The decoupling contoller and robust stability
properties

Thenominalzeropolynomialzy(s; q°) of plantP(s; q°)
be factorizedas z, (s)z; (s) wherez, (s) andz} (—s)
areHurwitz stable,i.e. z; (s) hasasrootsall the “un-
stable” multivariablezerosof P(s;q%). We chooseas
nominal transferfunction from v to y the following
diagonalmatrix:

Z(s) .
d(s;w)’

G(s,w) := diag <ki =1,.. .,m) (5)
wherethe denominatod(s; w) is choserto be a But-
terworth polynomial with bandwidthfrequengy w €
R™. Withoutlossof generalitybecausef thesensible
pairing of inputsandoutputsat the outsetof the plant
definition, we assume®; (0;q°) # 0 andconsequently
define(i=1,...,m)

. Hi .0
i = —— |Ri(0; 6
ki Z?S(O)| i ( Q)| (6)
wherey; arereal positive constantgo befixedin the
intenval (0, 1]. Considerthe nominaltransferfunction
of theplantP(s; q°). Its inversecanbewritten as

- B(s)
Pisq®) = —=—~— @)
(925 (9)

where B(s) is a polynomial matrix. Define ¢;j :=
deg[Bij(s)] — dey(zp(s,%)], i, j = 1,...,m andthe to-
tal relative degreeaso := max{c;; :i,j =1,...,m}.
Then,we setthedegreeof theButterworth polynomial
d(s; w) accordingto:

deg[d(s w)] := dey[z} (9)] + 0. (8)

Proposition3. The decouplingcontroller C; be de-
fined by

Ci(sw) := P 150 (1 - G(s;w) 'G(s;w). (9)

Then, the nominal transferfunction from v to y is
exactlygivenby (5). Moreover, if all theunstablgole-
zero cancellationsare performedin (9) to determine
Ci1, thenthenominalclosed-loopsystenmfrom v toy is
internally stable.

Proof. Given a controller Cy, the transfer function
fromv toy is (I +PC;)~1PC;. Then,by insertionof
expression(9) we obtain

[+ (1 — G(s; W) 1G(s,w)] (I — G(s,w)) "1G(s;w).(10)

By takinginto accounthat
I+(1—G(sw) 1G(sw) = (1 -G(s;w)~t (11)

we eventuallyrecognizeexpressiorn(10) asthedesired
diagonalmatrix G(s; w). Now, considerthe structure
of controllerC; asit resultsfrom (9), (5) and(7). First,
notethat

(1 —G(s; m))lgg;(w)) =
. iZh (s L (12)
dlag<(j(s;(k))ik|z<p~>(s), Il,...,m).

Then, performing all the unstablepole-zerocancel-
lations in the expression(9), the controller Cy(s; w)
emepgesas(i,j=1,...,m):

kiBij(s)

GO L Slds 0~k O]

(13)

Fromthe above expression(13) we deducethat only
allowablestablepole-zerocancellationsaremadebe-
tweenCy (s, w) andthenominalplantP(s; q%). Hence,
the internal stability of the nominal closed-loopsys-
temfrom v toy is ensureddy the Hurwitz stability of

the Butterworth polynomiald(s; w) characterizinghe
polesof G(s; w). O

The next result enforcesthe internal stability of the
closed-loopfrom v to y over the entirefamily of un-
certainplants.

Proposition4. Thereexists constantyy € (0,1], i =
1,...,msuchthatinternalstability of the closed-loop
from v toy holdsfor all g € Q.

Proof. By virtue of the definition of k in (6) it is
possibleto choosey; € (0,1] in orderto make |ki| as
smallasdesired By taking into accountthe structure
of the controllerC; givenin (13) it is apparenthat
theinauenceof C; versusthe internalstability of the
closed-loopfrom v to y becomesggligible whenall
the ki’s turn to be arbitrarily small. Consideringthat
P(s;q) is stablefor all g € Q it follows the statement
of Propositiord. O
Building on the previous Proposition4 we can state
thefollowing robustnessesult.

Proposition5. There exist constanty € (0,1] and
integratorgainsa; > 0,1 = 1,..., msuchthatinternal
stability of the overall closed-loopsystemfrom r to y
holdsfor all g € Q.



Proof. A sketchof proofis offered.First choosecon-
stantgy; € (0, 1] accordingto Propositior2 in orderto

gettherobustinternalstability of theclosed-loogdrom

vtoy. Then,takinginto accounthedefinition of k (6)

andthe structuresof controllerC; andC, asreported
in (13) and(3) we deducepy aroot locusargument,
thatthe internalstability of the overall closed-loops

guaranteed’q € Q providedthatthe positive gainsa;

aresuficiently small. O

Remarkl. In defining the decoupleddynamicsfrom

v to y, see(5), we have chosenas a sensibleand
feasible choice, the Butterworth polynomial d(s; w)

with the frequeng w to be optimally fixed by opti-
mizationproblem(16). At thediscretionof thecontrol
designerotherchoicescouldbe doneaswell. Indeed,
therobustnessesultsof Propositiongt and5 still hold

by substitutingd(s; w) with ary Hurwitz polynomial
d(s).

3.2 Commandsignalsynthesivia stableinversion

Dueto thechoserstructuredor controllersC; andCy,
see(3) and (13), the nominaltransferfunction from
commandsignalr to outputy is thediagonalmatrix

T(s a,w) =diag(Tji(s;aj,w); i=1,....m) (14)
where
~aikizg(9)
- sd(s ) +aikizh (9)

Ti (s, 0, w) (15)
We want to determinethe commandsignalr; asthe
input that causeghe outputy; to be the desiredideal
function y;i(t; ) definedin (4). This calls for a sta-
ble dynamicinversionto be performedon a nominal
system(15) (note that the systemis nonminimum-
phaseandthereforea standardlynamicinversionpro-
cedurecannotbe applied,asthe resultinginput func-
tion would be unbounded)The setof all cause/dect
functionpairs(ri(-),yi(-)) associatedo T; (s, 0, w) be
denotedby B,. A relevant propertyof B is given by
thefollowing result(see(PiazziandVisioli, 2001b)).

Proposition6. Letusconsidempair(ri(-),Yi(:)) € B.
Then,ri(-) € C'(R) if andonly if y(-) € C"*TL(R)
whereo + 1 is thetotal relative degreeof system(15)
(seedefinition (8)).

Relying on the above propositionandtaking into ac-
countthaty;(-) € CP(R) we setp:= o+ 1 in order
to synthesizea continuouscommandsignal. Now, by
following the methodologyexplainedin (Piazziand
Visioli, 2001a), we are able to synthesizei func-
tionsr;(t; 1,0, w), definedover (—o, +0) thatexactly
solve the stabledynamicinversionproblem,i.e. that
exactly causeghe desiredoutputy;(t;t). In orderto
practically usethe synthesizedunction r;(t; T, a;, w)
it is necessaryo truncateit, resultingin an approx-
imate generationof the desiredoutput y;(t;t). This
canbe donewith arbitrarily precision(Piazziand Vi-
sioli, 2001a). The approximatedccommandfunctions

be denotedby ri(t;t,0;,w) (i = 1,...,m). Note that
this stabledynamicinversionprocedurecanyield to
the so-called'preactioncontrol” (Marro, 1996).

4. WORSTCASEDESIGNVIA SEMI-INFINITE
OPTIMIZATION

In the previous sectionwe have synthesizedall the
structuref theinversion-basedultivariablecontrol
architecturethedecouplingcontrollerC; thatdepends
onwe RT andy; € (0,1], see(9) and(6); the regu-
lating unit C, with integratorgainsa;, i = 1,...,m;
and the commandinputs ri(t; 1,0, w), i = 1,...,m
determinedvia stabledynamicinversionon a family
of idealoutputtransfersyi(t; ). Thedesignprocedure
canbethenorganizedasfollows:

(1) Chooseconstantgy; € (0, 1] in suchaway robust
stability of the internal closed-loopfrom v to y
holdsfor all g € Q.

(2) Determinethe optimalcontrollerparameterso®,
andaj, ..., dy, andoptimal outputtransitionin-
tenal ™ that minimize the worst-casesettling
time subjectto all the requiredcontrol and set-
point specifications.

Thedesignphasel relieson Proposition2 andon the
practicalsidewe cansetall the 1;’s equalto 1 andif
robuststability doesnothold we make the;’s smaller
andsmalleruntil robustnessgs ensuredTo thisend for
checkingtherobuststability a variety of toolsis avail-
able, for example (Balakrishnanet al., 1991; Bhat-
tacharyyeetal., 1995;PiazziandMarro, 1996).

In thesecondandfinal designphaseasemi-infiniteop-
timizationproblememepgeswithoutary conserative-
nessandan approximatesolutioncanbe obtainedby
usinggeneticalgorithms.Roluststability of the over
all closed-loopcan be taken into accountby means
of the following resultthat canbe derived, as shovn
in (Piazziand Visioli, 2001a), from the Lienardand
Chipards criterionandOrlandos formula.

Proposition7. Theoverall closed-loopsystemfrom r
toy is stablefor all g € Q if andonly if

Si(w,a,q) >0, S(wa,q)>0VqeqQ,
%(w?a?qo) > O? A '?&c(w?a7q0) > 01

wheren, is the degreeof the characteristigole poly-
nomialof theoverall closed-loogsystemandfunctions
S(w a,q),i=1,...,n; areassociatedoeficientsor
Hurwitz determinantasexplainedin (Piazziand Vi-
sioli, 2001a).

Denote by UA(t;T,w,a,q) and ya(t;T,w,«,q), | =
1,...,m respectiely the inputs and outputs of the
plantwhenthe commandsignalsarer?(t; 1, w, a;,q),
i = 1,...,m. By virtue of the dynamicinversionap-
proachadoptedto synthesizedhe commandsignals
we have thaty?(t; T, , o, q°) is almostequalto y; (t; T)



(seethe final sentencesf subsectiorB8.2). Consider
ing the presencef theregulatingunit Cx(s; o) ensus
ing the internal model principle, the steady-statee-
quirementis alwayssatisfiedprovided thatthe robust
stability of the overall closed-looyis satisfied:

lim YAt T,w,a,q) = y* VT >0 and Vg € Q.

For the ith output, the settling time t3(t,w, ., q) be
definedasthe minimumtime (includingthe preaction
time |to|) afterthattheregulatedscalaroutputremains
within a 2% rangeof the desiredsteady-statgalue:

(1, w, @, q) = [to|+
min{se R" : |y3(t;T,w,,q) —y!| <0.02y! vt >s}.

Taking a worst-caseviewpoint, the (worst-case)kset-
tling time of the overall multivariableset-pointtrans-
fer canbedefinedas:
twes(T, 0, @) max max:= {t3(t,w,«,q)}.
i=1,....mgeQ
Findingthe optimal designparametersy*, a*, andt*

entails solving the following semi-infinite optimiza-
tion problem:

min{tyes(T,w, @) : T,w € RT, a € R} (16)
subjectto (i =1,...,m):

Si(wa,q) > S(wa,q)>e VgeQ;
Ss(w,a,q%) >¢,..., S (w0 a,q%) > &
VAt T, w, e, ) < (1+0.010))y! vt >0 vqeQ;
VA(t:T,00,0,q) > —0.010y! Wt >0 Vg € Q;
U (t; T, 0,0,0)| U VE>0 Vg eQ;

wherethe thresholdconstant is a sufficiently small
positive value. In solving (16) we can rely on the
following result:

Proposition8. For ary givenvaluesof the overshoot-
ing and undershootingooundsO; > 0 and U; > O,
i = 1,...,m, the semi-infinite optimization problem
(16) admitsa solutionif, fori=1,...,m,

m%x{ith componendfP~1(0;q)y'} <u®  (17)
qe

wherey! :=[yi .. yAIT.

Proof. Omittedfor brevity. It is anextensionof a proof
appearedn (PiazziandVisioli, 2001c).

Two remarks are in order on the abose proposi-
tion. First, the condition (17) is well posed be-
causedet(0;q) £ 0 Vq € Q by virtue of Assump-
tion 1. Secondly Proposition8 comesas a suffi-
cient condition but it can be also consideredan al-
most necessaryone. Indeed, if there exist an un-
certain parameterg € Q and an index i for which
{theith componentfP~1(0;q)y*} > u® thenthe set-
point regulation problemis intrinsically not solvable
regardlessof the adoptedcontrol method.Whenthis
is the caseit meansthat the plant static gain is too
smallto sustainin the steady-statéhe desiredyil.

Problem(16) is a difficult nonlinearsemi-infinite op-
timization for which an approximatesolution canbe
obtainedby relaxingor discretizingthe semi-infinite
constraintsA simpleway to do this is to substitute
the box Q with its vertexesandto usea geneticalgo-
rithm to finding estimatef w*, a*, andt* (Houck
et al., 1995). This approachrequires,as explained
in (Piazzi and Visioli, 2001c), an algorithmic post-
processingto ensurethe feasibility of the obtained
approximatesolution. A more effective but effortful
approachs to adoptthe genetic/interal algorithmof
Guarino Lo Bianco and Piazzi (GuarinoLo Bianco
andPiazzi,2001)thatprovidesestimate®f theglobal
minimizersand feasibility is guaranteedvithout ary
needof a post-processingalidationphase.

5. A DESIGNEXAMPLE

As anillustrative example,considertheuncertainsys-
tem(m=3)
2 1

S+01 s+5
S—03
(s+au)(s+ ) 553

P(sq) =

S+

whereq; € [0.8,1.2], g2 € [1.6,2.4], g3 € [0.8,1.2].
Theresultingzeropolynomialof P(s; q°) is:

S+ 02

61,118
9 9

thatmeanghatthereis asingleright half planezeroin
z1 = 0.941.Thetotal relative degreeo is equalto one
andthereforewe selecteda secondorderButterworth
polynomial:

z(sq°) =S+ %)32 +

d(sw):§+xf2§)+l;

Then,we fixed s = 1, i = 1,2, 3, and consequently
we obtainedk; = —0.152andky, = ks = —0.076,ver
ifying that for thosevaluesthe internal stability of
the closed-loopfrom v to y holds (see Proposition
4). Having fixed the structureof the decouplingcon-
troller andof the regulatingunit, we canperformthe
dynamic inversion procedureon the resulting three
scalarsystemg(15) whosetransferfunctionsdepend
onaj, i = 1,2, 3andw. As desiredbutputfunction,for
all the threescalaroutputswe adoptedthe transition
polynomialof fifth order:
6 15 10
y(t;T) = T—5t5 - T—4t4+ T—3t3, te[o1].

The optimizationproblemhasbeensolved by means
of geneticalgorithms(Houck et al., 1995). We fixed
u? = 1.5,i =1, 2,3 anda maximumovershooif 10%
anda maximumundershoobf 5% for all the outputs.
It resultsa] = 2.766,05 = 5.277,0; = 6.090, w* =
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9.652 and 1" = 16.84 and the correspondingworst-

casesettling time is 23.82s.The optimal command
signalsare plotted in Figure 3 and the correspond-
ing worst-casecontrol signalsandsystemoutputsare

shawvn in Figures4 and5 respectiely.

6. CONCLUSIONS

In this papemwe have presenteéd designmethodology
basedon dynamicinversion, for the robust regula-
tion of uncertairmultivariablesystemsThecombined
synthesiof the controllerandof the commandnput
functions,which is accomplishednainly by solving

the optimization problem (16) is a strong point of
theoveralltechniquepecausebhasically thefeedback
controllerssignificantly reduceghe effectsof the un-
certaintiesandof thecouplingandthereforepermitsto
thestabledynamicinversionbaseccommandsignalto
improve the performancesf the set-pointtransfers.
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