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Abstract: Piecewise affine systems is an important class of hybrid systems. They consist of
several affine dynamic subsystems, between which switchings occur at different occasions.
In this paper, a verification method for piecewise affine systems is considered, and a method
to determine how sensitive the verified properties are to changes in the dynamics and the
locations of the switching surfaces is proposed. This information can then be used for
robustness analysis or control design.Copyright ©2002 IFAC
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1. INTRODUCTION

Piecewise affine systems constitute a special class
of hybrid systems. These systems consist of several
affine subsystems, between which switchings occur at
different occasions. In this paper, the piecewise affine
systems will be on the form

ẋ = A(v)x+b(v), x∈ X(v) (1)

wherev is a piecewise constant function ofx. This im-
plies that the dynamics of a trajectoryx(t) just depends
on x, not ont or on any external input. The different
regionsX(v) are assumed to be polyhedra. Systems of
this kind occur in many applications. A very simple
example could be a linear system, controlled by linear
feedback, but where the control signal is bounded.

Verification of hybrid systems is a research field that
has received much attention in recent years. General
verification and reachability problems may be very
difficult, or even undecidable, except for some classes
of systems (Aluret al., 2000). Therefore, many ap-
proximating methods have been proposed (Bemporad
et al., 2000; Chutinan, 1999; Einarsson, 2000; Engell
et al., 2000). The problems considered in this paper
arise for example when considering robustness aspects
of one of the methods proposed by Einarsson (2000),
which is a method for verification of piecewise affine

switched systems. In this method, the behaviour of the
vector fieldẋ(t) at the borders of the regionsX(v) is
analysed. Specifically, questions such as “At a given
face of the polyhedronX(v), is there a point,x0, such
that ẋ0 is pointing out ofX(v), or are all trajectories at
this face going intoX(v)?” are answered (this kind of
computations has also been used, e.g., by Johansson
(1999)). This is used to determine which transitions
between different regions are possible, and if tran-
sitions are guaranteed to occur non-deterministically
(i.e., one transition out of a set of transitions from a
given polyhedron is guaranteed to occur). Then finite
automata are constructed, showing the guaranteed or
possible transitions. They give an approximation of
the system, and can be used for different kinds of
verification. For example, it can be guaranteed that
certain states in the original system are not reachable
from a set of initial states, by proving that there is no
sequence of possible transitions in the finite automata,
taking the system state from the region of the initial
states to the region of the final states.

Like all other methods mentioned above, the method
by Einarsson (2000) assumes that a model of the
system is given. It would be desirable to be able to
determine how sensitive the approximating automata
are to changes in the underlying systems, both in
the dynamics and in the switching surfaces. Such
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information could be used to get a measure of how
robust the verification process is to model errors, or
as an aid in a control design process, if the system
dynamics is to be adjusted without losing the verified
property.

Since the approximating method considers the be-
haviour of ẋ(t) at the borders of the regionsX(v), it
must be determined how this behaviour changes with
varying A(v) and b(v), and with translations of the
surfaces that boundX(v). In (Roll, 2000), the case of
varying A(v) andb(v) was studied. Here one further
step is taken, by considering also the case when the
boundaries of the regions ofX(v) are uncertain.

The paper is organised as follows: In Section 2, the
problem is formulated, and necessary notation is intro-
duced. In Section 3, the results from (Roll, 2000) are
summarised. The results concerning translations of the
boundaries ofX(v) are given in Section 4, and finally,
an example is given.

2. NOTATION AND PROBLEM FORMULATION

The systems considered in this paper are on the form

ẋ = (A(v)−∆(v))x+b(v)−δ (v),

x∈ X(v), v∈ {−1,0,1}M
(2)

whereA(v) ∈ Rn×n, b(v) ∈ Rn are given for allv. The
vectorv is a key vector, which is connected toX(v).
The regionsX(v) ⊂ Rn are polyhedra, i.e., they are
regions defined by linear inequalities. The separating
hyperplanes are defined by

{x∈ Rn |Cix = di + γi}, i = 1, . . . ,M (3)

whereCi ∈ R1×n and di ∈ R are given. The role of
∆(v), δ (v), andγi will be treated below. To allow for
a compact representation, letCi form the rows in an
M×n matrixC, and collectdi andγi into the vectors
d andγ, respectively.

Now v is defined according to the following rule:

vi =


−1 if Cix< di + γi

0 if Cix = di + γi

1 if Cix> di + γi

(4)

In this way there is a one-to-one relationship between
v andX(v). Note that a nonemptyX(v) will be con-
tained in an(n− 1)-dimensional affine subspace of
Rn if and only if there is at least one zero entry in
v. Nonempty polyhedraX(v) corresponding to vectors
v with no zero entries will be calledfull-dimensional
polyhedra.

The matrices∆(v) ∈Rn×n, δ (v) ∈Rn andγ ∈RM can
be viewed either as uncertainties in the model, or as
matrices of our choice. Only values ofγ that do not af-
fect the topology of the state-space partition compared
to the caseγ = 0 will be allowed, i.e., the regionsX(v)
will always have the same number of faces and the

Fig. 1. Three options for the behaviour of the trajecto-
ries in the vicinity of a polyhedron face.

same neighbours as they would have if the separating
hyperplanes were defined byCix = di . Without this
requirement, regions may disappear when changingγ,
and new regions – for which the system dynamics is
not known – can be created.

Now consider one of the full-dimensional polyhedra
X(v), and the trajectoriesx(t) inside it. LetX(v′) be
one of the faces of the polyhedron (i.e.,v′i = 0 for
somei, andv′j = vj , j 6= i). For given∆(v), δ (v) and
γ, there are three different options for the trajectories
nearX(v′) (see Figure 1):

(1) They are all exitingX(v).
(2) They are all enteringX(v).
(3) Some trajectories are entering and some are exit-

ing X(v), or they are all parallel toX(v′).

The three options will lead to different approximating
automata. An interesting question is now: How much
could ∆(v), δ (v) andγ change, without changing the
qualitative behaviour at each face of the polyhedron?
Depending on how many of the parameters are varied
simultaneously, this question may be more or less dif-
ficult to answer. If all of them are varied, the problem
is a nonconvex quadratic problem (see Section 4.1).
In the following section the question is answered for
the case whenγ = 0, and in Section 4 the problem
is solved for∆(v) = 0. Only the two first options (all
trajectories exit/enterX(v)) will be considered, since
the solution sets of these problems will turn out to be
the easiest to describe. The solution sets for the third
option can be obtained as the complement of the union
of the other solution sets.

It is easy to see thatCi is a normal vector of the
polyhedron faceX(v′). Using (2), the three cases from
Figure 1 can be rewritten as

(1) Ci [(A(v) − ∆(v))x + b(v) − δ (v)] > 0 for all
x ∈ X(v′),

(2) Ci [(A(v) − ∆(v))x + b(v) − δ (v)] < 0 for all
x ∈ X(v′),

(3) Ci [(A(v)− ∆(v))x + b(v)− δ (v)] = 0 for some
x ∈ X(v′),

so the task is to find the sets of solutions (in∆(v), δ (v)
and γ) to all these problems. Rearranging the terms,
e.g., the first problem can be written as

Ci(A(v)x+b(v))>Ci(∆(v)x+ δ (v))
for all x∈ X(v′)

(5)



3. SOLUTIONS FOR SYSTEMS WITH KNOWN
REGIONS

To begin with, letγ = 0. To get a solution to (5), a
direct representationof X(v′) is needed:

X(v′) = {
r+h

∑
j=1

λ j x
j | λ j ∈ R, λ j ≥ 0,

r

∑
j=1

λ j = 1}

Herexj ∈ Rn, j = 1, . . . r are the corners ofX(v′), and
xr+ j , j = 1, . . . ,h, are vectors which are parallel to the
unbounded edges ofX(v′). WhenX(v′) is bounded,
we haveh = 0, and the direct representation means
that each point ofX(v′) is written as a convex combi-
nation of the corners.

For notational simplicity, let us drop the argumentv of
A(v) etc. for a while. Now, the set of solutions to the
problem is given by

S∆δ = {(∆,δ )
∣∣Ci(Axj +b)>Ci(∆xj + δ ), (6)

j = 1, . . . , r; CiAxr+ j ≥Ci∆xr+ j , j = 1, . . . ,h}

Proof. See (Roll, 2000).

Note that the solution set is a polyhedron in the space
Rn×n×Rn, and therefore convex.

3.1 Multiple requirements

So far, only one single polyhedron face has been con-
sidered. In most cases, however, several transitions of
an approximating automaton should remain invariant.
This case is easily handled by partitioning the problem
into subproblems of the form treated above, and then
taking the intersection of the solution sets as the solu-
tion set for the entire problem. How many transitions
needed to consider will depend on the system and
what to verify. For example, if all that is needed is to
keep the state on one side of a hyperplane, transitions
through this hyperplane have to be considered. Note
that considering fewer transitions will lead to a larger
– and therefore less conservative – solution set, and
will also require less computations.

4. SOLUTIONS FOR NON-FIXED REGIONS

The problem gets more complicated as soon asγ is
not fixed anymore. One can immediately note that the
regionsX(v) will no longer be fixed, but vary with
γ. Also, several regionsX(v) have to be considered
simultaneously, since moving a hyperplane will affect
all regions adjacent to it. As mentioned in Section 2,
only values ofγ that keep the topology of the state-
space regions invariant will be allowed. With this re-
quirement, and with∆(v) = 0 for all v, the problem is
still convex. However, some more notation is needed.
First, note that each cornerxj of the full-dimensional
polyhedronX(v) is itself a regionX(vj), wherevj

contains (at least)n zeros. Here only the case when

vj has exactlyn zeros will be treated; other cases can
be regarded as degenerate special cases of this, with
several corners in the same point.

Let D[vj ] = diag(vj). ConstructQ[vj ] ∈ R
(M−n)×M by

deleting all rows inD[vj ] containing only zeros. Sim-

ilarly, define P[vj ] ∈ R
n×M by deleting all rows in

I − D2
[vj ] containing only zeros. NowP[vj ] has the

following property: When multiplying another matrix
from the left by P[vj ], it picks out the rows corre-

sponding to the zero entries ofvj . Q[vj ]
, on the other

hand, picks out the rows not picked out byP[vj ], and
furthermore multiplies the rows corresponding to the
−1 entries ofvj by−1.

With this notation, the equalities in (4) can be picked
out by writing

P[vj ]Cxj = P[vj ](d+ γ)

Sincexj is uniquely determined by the equalities in
(4), P[vj ]C will always be invertible. Hence,

xj = (P[vj ]C)−1P[vj ](d+ γ). (7)

The demand that the topology should be preserved is
the same as saying that it should always be possible
to express each cornerxj as a regionX(vj), wherevj

must be constant. In other words, the equalities and
inequalities (4) that definevj should remain invariant.
The equalities are satisfied by the construction ofxj in
(7). Thus, the following set of inequalities are obtained
for each cornerX(vj) and alli = 1, . . . ,M:

Ci(P[vj ]C)−1P[vj ](d+ γ)< di + γi if vj
i =−1

Ci(P[vj ]C)−1P[vj ](d+ γ)> di + γi if vj
i = 1,

or more compactly

Q[vj ]

(
C(P[vj ]C)−1P[vj ]− I

)
(d+ γ)� 0 (8)

where� denotes componentwise inequality.

What remains now is to take care of the requirements
on the flow through the surfaces. This can be done
completely analogously to Section 3, but with∆ = 0.
However, now the expression (7) has to be used in the
inequalities of (6), yielding, e.g.,

Ci(A(P[vj ]C)−1P[vj ](d+ γ)+b)>Ciδ ,

j = 1, . . . , r;

CiAxr+ j ≥ 0, j = 1, . . . ,h

(9)

for problem 1. Since the surfaces are only translated,
the directions of the unbounded edges do not change,
so xr+ j are not affected byγ. Inequalities like these,
together with (8), give the final solution set. As can
be seen, all inequalities are linear inδ andγ, and the
resulting solution set is therefore a polyhedron.



4.1 ∆, δ andγ are varied

The final case, when all parameters are allowed to
vary, is quite similar to the one when only∆ is fixed.
Like above, the inequalities (8) are obtained. The
requirements on the flow through the surfaces of a
region are obtained by using (7) in (6):

Ci

(
(A−∆)(P[vj ]C)−1P[vj ](d+ γ)+b−δ

)
> 0,

j = 1, . . . , r;

CiAxr+ j ≥Ci∆xr+ j , j = 1, . . . ,h (10)

However, here the inequalities become quadratic, and
the solution set is nonconvex. This makes it harder to
efficiently represent and work with, and therefore this
case will not be further discussed.

5. INTERPRETATIONS

Perhaps the most obvious interpretation is to view
∆(v), δ (v) andγ as uncertainties due to model errors
and/or noise. Sections 3 and 4 then provide bounds
for the uncertainties for the requirements of the ap-
proximating automata to hold. For natural reasons, the
bounds may be very asymmetric, indicating that the
system is more sensitive to certain types of model
errors than to others.

The problem formulation is quite general in that no
structure of∆(v), δ (v) or γ is assumed. The only struc-
ture that is assumed is the topology of the different
polyhedral regionsX(v). If the uncertainty has some
further structure,∆(v), δ (v) andγ can be parametrised
accordingly, thereby reducing the dimensionality and
simplifying the problem. For example,∆(v) = 0 gives
a model with additive noise.

An alternative interpretation is to consider∆(v), δ (v)
and/orγ as parameters of our choice, to be used for
control design. One natural parametrisation would be
γ = 0, δ (v) = 0, ∆(v) = B(v)L(v), whereB(v) are
fixed vectors, whileL(v) can be chosen freely. This
gives (piecewise) linear state feedback control. An-
other parametrisation would be the one in Section 4,
whereγ can be regarded as a vector that lets us place
the switching surfaces of a controller in an optimal
manner.

6. EXAMPLE: A CHEMICAL REACTOR

To demonstrate the properties of this kind of problems,
let us look at a simple example. In (Einarsson, 2000), a
(fictional) chemical reactor is modelled, and a control
strategy is proposed, after which some properties are
verified. In this paper, bounds are computed for how
large parameter uncertainties can be tolerated, and
how much some of the control rules can be changed,
before the verification is not valid any more.

On/Off

On/Off

On/Off

On/Off

On/Off

Heater Cooler

Fig. 2. A schematic figure of the chemical reactor

Table 1. Inputs to the chemical reactor

Signal Interpretation
ub blender signal
ui inflow valve signal
ud draining valve signal
uh heater signal
uc cooler signal
ur reaction signal

6.1 System model and requirements

A figure of the chemical reactor is shown in Figure 2.
It consists of a tank containing a mixture of two fluids.
When a certain temperature is reached, a reaction
between the fluids starts, giving the desired product.
The temperature can be controlled by a heater and
a cooler. There is also a blender helping to mix the
fluid. The mixture is provided through an inflow valve.
There is also a draining valve. The valves can be either
open or closed.

The system model in (Einarsson, 2000) has two con-
tinuous state variables: the fluid levelx1 and the tem-
peraturex2. There are also six control signals, each
one taking a value in{0,1}. They are described in
Table 1.ur is an artificial, uncontrollable signal that
indicates if the reaction is in progress. The plant dy-
namics is described by

ẋ = A(u)x+b(u) (11)

where

A(u) = 10−3 ·
[
−1.23ud 0

0 −0.15−0.07ub

]
b(u) = 10−3 ·

[
9838ui

29.43uh +44.15(uc−ur)

]
−

−
[

δhui
δheatuh + δcooluc + δreacur

]
Here the coefficients inA(u) are assumed to be known,
while the coefficients inb(u) are uncertain.

The system is controlled according to the following
rules, whereγ1, . . . ,γ5 are design parameters:

(1) ub = 0 whenx1 < 3+ γ1, ub = 1 otherwise.
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Fig. 3. The switching hyperplanes and an example
trajectory.

(2) ui is set to 0 when 25x1 + x2 = 300+ γ3, and is
set to 1 when 25x1 +x2 = 250+ γ2.

(3) ud = 0 whenx2 < 50,ud = 1 otherwise.
(4) uh = 1 whenx2 < 50,uh = 0 otherwise.
(5) uc is set to 0 whenx2 = 110+ γ4, and is set to 1

whenx2 = 130+ γ5.
(6) ur = 0 whenx2 < 50,ur = 1 otherwise.

The switching hyperplanes and a trajectory are shown
in Figure 3. Note that the system contains hysteresis
in ui anduc. This is handled by considering each poly-
hedron where the hysteresis occurs as two polyhedra
with two different subsystems.

The requirements considered here are:

(1) Temperature should stay between 0 and 150.
(2) The tank must not be empty, and it must not

overflow. The maximum level is 13.
(3) There should be an operating region with moder-

ate temperature and fluid level which is invariant.
In (Einarsson, 2000), this region is chosen to be
{x | 250≤ 25x1 + x2 ≤ 300, 110≤ x2 ≤ 130}.
Here, the boundaries will also be affected by the
values ofγ.

These requirements can be translated to mathematical
formulas:

(1) (a) ẋ2 > 0 when 0≤ x1≤ 13, x2 = 0.
(b) ẋ2 < 0 when 0≤ x1≤ 13, x2 = 150.

(2) (a) ẋ1 > 0 whenx1 = 0, 0≤ x2≤ 150.
(b) ẋ1 < 0 whenx1 = 13, 0≤ x2≤ 150.

(3) (a) ẋ2 > 0 when 250≤ 25x1 + x2 ≤ 300, x2 =
110.

(b) ẋ2 < 0 when 250≤ 25x1 + x2 ≤ 300, x2 =
130.

(c)
[
25 1

]
ẋ> 0 when 25x1 + x2 = 250, 110≤

x2≤ 130.
(d)

[
25 1

]
ẋ< 0 when 25x1 + x2 = 300, 110≤

x2≤ 130.

One also has to know what affine subsystems ˙x will
satisfy in the different cases, which is found by con-
sidering the control rules.

6.2 Adjusting control rules

Let us now try to find bounds, inside which the thresh-
olds of the controller rules can be moved without
affecting the properties to verify, i.e., how much the
values ofγ1, . . . ,γ5 can be changed.

The first requirement is to preserve the topology. Ap-
plying (8) to all corners yields the condition (after
removing several redundant inequalities)



−1 0 0 0 0
1 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1
25 −1 0 1 0
25 −1 0 0 1
25 −1 0 0 0
25 0 −1 1 0
25 0 −1 0 1
25 0 −1 0 0
0 1 −1 0 0
0 −1 0 1 0
0 1 0 −1 0
0 −1 0 0 1
0 1 0 0 −1
0 0 −1 1 0
0 0 1 −1 0
0 0 −1 0 1
0 0 1 0 −1
0 0 0 1 −1



γ ≺



3
10
100
75
150
25
60
40
80
20
65
45
25
115
95
75
50
140
185
120
205
190
135
170
155
20



(12)

The first ten inequalities make sure that the moving
hyperplanes do not pass any of the corners of the fixed
hyperplanes (cf. Figure 3). The remaining inequalities
state the relations between the moving hyperplanes
(e.g., the last inequality means that the cooler should
be turned off at a lower temperature than when it is
turned on).

In addition to the topological requirement, the system
also has to satisfy the properties to verify. This is
achieved if the following inequalities, obtained from
(9), are satisfied:



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
25 0 0 1 0 0.0012 0 −0.001 0
25 0 0 1 0 0.0012 0 0 −0.001
0 0 0 1 0 0 0 0.0002 0
25 0 1 1 0 0.0012 0 −0.001 0
25 0 1 1 0 0.0012 0 0 −0.001
0 0 −1 −1 0 0 0 0 −0.0002
0 0 0 −1 0 0 −0.0012 0.001 0
0 0 0 −1 0 0 −0.0012 0 0.001
0 0 −1 −1 0 0 −0.0012 0.001 0
0 0 −1 −1 0 0 −0.0012 0 0.001





δbh
δheat
δcool
δreac

γ1
...

γ5



4



9.8380
0.0294
0.0225

245.7977
245.8179
0.0200

245.7536
245.7738
0.0286
0.2138
0.1935
0.2579
0.2377



(13)



Together with (12), (13) now describes the region, in
which the values ofδbh, δheat, δcool, δreac, andγ are
allowed to vary.

From (13), one can go further and, e.g., find the val-
ues of γ that allow as large uncertainties as possi-
ble in the b parameters. This gives in a sense the
maximally robust controller satisfying the verification,
and is calculated similarly to the computation of the
Chebychev centreof a polyhedron (the centre of the
largest sphere inscribed in a polyhedron (see Boyd and
Vandenberghe, 1999)). What should be computed here
is the largest disc, parallel to theγ coordinate axes and
with its centre somewhere along the subspaceδ = 0,
inscribed in the polyhedron defined by (12) and (13).
Represent the disc as

D = {
[
0
γ

]
+
[

δ
0

]
| ‖δ‖ ≤ R} (14)

where the vector
[

0
γ
]

is the centre of the disc andR
is the radius. NowR should be maximised, subject to
the constraint thatD satisfies (12) and (13). Stack (12)
and (13) on top of each other, and denote the resulting
matrices according to

F

[
δ
γ

]
4 g (15)

For each rowi in (15), the constraint thatD should
satisfyFi

[δ
γ
]
≤ gi can be expressed

Fi

[
0
γ

]
+ sup
‖δ‖≤R

Fi

[
δ
0

]
≤ gi

But since

sup
‖δ‖≤R

Fi

[
δ
0

]
= sup
‖δ‖≤R

Fi

[
I
0

]
δ = R

∥∥∥∥Fi

[
I
0

]∥∥∥∥
(whereI is an identity matrix with the same number
of rows asδ ), it follows that

Fi

[
0
γ

]
+R

∥∥∥∥Fi

[
I
0

]∥∥∥∥≤ gi

This is a linear inequality inγ andR, and the desired
value ofγ can be computed from the LP

max
γ ,R

R

subj. to Fi

[
0
γ

]
+R

∥∥∥∥Fi

[
I
0

]∥∥∥∥≤ gi , i = 1, . . . ,MF

whereMF is the number of rows ofF .

7. CONCLUSIONS

This paper presents an approach to investigate how
sensitive approximating automata for piecewise affine
systems, as described in (Einarsson, 2000), might be
to changes in the underlying subsystems and to trans-
lations of the switching surfaces. Sections 3 and 4 pro-
vided the sets of system matrices that satisfy certain
demands on the behaviour of the system. As pointed
out, these can either be seen as giving a measure of

how robust the approximating automata are to un-
certainties in the system, or as giving limits for how
much the system can be changed, e.g., in a control
design process, without altering the overall behaviour
described by the approximating automata.

It would be natural to combine these demands with
other objectives. One example of this was given in
Section 6.2. To give another example, when using the
state feedback parametrisation described in Section 5,
one would probably want to findL(v) that are optimal
in a certain respect. Since the solution sets of the
two first problems in Sections 3 and 4 are convex, all
sorts of convex optimisation problems can be formed,
which can be solved efficiently once the direct repre-
sentations of the polyhedra are known (see Boyd and
Vandenberghe, 1999).

The theory in this paper is immediately extendible to
switched systems as described in (Einarsson, 2000).
The important thing is that the switch sets are hyper-
planes in the state space.
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