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Abstract: The real-world optimisation of dynamic processes, such as batch processes, 
space applications and robotic problems, is usually a matter of several objectives and 
constraints. In many cases it is difficult to deal with such problems with conventional 
methods. Evolutionary methods provide an interesting alternative, with less programming 
and computational efforts. This paper presents four Evolutionary methods for solving 
complex multiobjective problems applied to an illustrative example: the optimisation and 
control of the industrial beer fermentation. The first method is based on aggregating 
functions, and the others adopt a Pareto set approach.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
As an alternative to conventional optimisation 
methods, Genetic Algorithms (GAs) offer the 
opportunity of getting satisfactory results with less 
computational cost and with simple programming. 
Their multiobjective variants, Multiobjective 
Evolutionary Algorithms (MOEAs) can be used to 
deal with the multiobjective nature of many real-life 
problems. 
 
In this work a combined problem is considered: to 
get an optimal trajectory for a dynamic system and, 
at the same time, to get a dynamic control effort (to 
drive the system along the optimal trajectory) with 
good properties. This is a multiobjective problem. 
 
An example of such problems is beer fermentation, a 
multivariable problem that can be solved using eight 
different objectives. The fermentation is a batch 
process controlled along time by a temperature 
profile (Ramirez, 1994). To achieve the temperature 
trajectory, sometimes heat must be extracted from 

the system and sometimes added. The industry wants 
to get good beer in less time: this is a goal of this 
research. But the control efforts to make the process 
follow the temperature profile must be feasible: this 
is another goal of the research. The quality of the 
beer is ensured if certain constraints concerning 
ethanol and by-products are fulfilled. 
 
The optimisation objectives and constraints have 
been handled in different ways during this 
investigation. The first approach was to joint five 
objectives and constraints in a single aggregating 
function. A second stage of the research was to use 
MOEAs based on Pareto sets, to be able to include 
more complex scenarios of optimisation objectives. 
During this stage, first the dimension of the problem 
was expanded by considering what happens with the 
heat. Second, the objective of minimizing the total 
process time was also considered. And finally a new 
individual representation with variable time intervals 
designed for the problem was introduced. 
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The GAs have been implemented with EVOCOM, a 
Matlab Toolbox for Evolutionary Algorithms 
developed in the Department during the last two 
years (Besada-Portas et al., 2001a,b). 
 
The paper begins introducing the process example. 
Afterwards, the different multiobjective evolutionary 
optimisation methods are described, using the 
example. Finally, some conclusions are presented. 
 
 

2. PROBLEM FORMULATION 
 
The beer fermentation starts after mixing yeast and 
wort. At the beginning the biomass (yeast) is in a 
latent state, and after a lag phase of some hours, it 
becomes active. Active biomass is the main 
responsible of the fermentation process. During the 
fermentation, ethanol, diacethyl and ethyl acetate are 
produced. The temperature profile followed during 
the process determines the final quantities of these 
products, which are used by the industry to measure 
the quality of the beer. Besides, all the process can be 
spoiled by Lactobacillus plantarum. 
 
The process has been analysed in a pilot plant 
fermenter in compliance with industrial conditions 
(avoiding stirring and using industrial materials) to 
obtain realistic results. After more than 200 
fermentations for acquiring the necessary knowledge 
and data, a mathematical model of the process 
(Andrés-Toro et al., 1198b) was obtained. 
 
The final goal of the study is to obtain a temperature 
profile, which can be implemented by the industry 
(that is with a feasible external heat profile), that 
minimises the time of process and contamination 
risk, while fulfilling the ethanol, diacethyl and ethyl 
acetate final concentration constraints. Taking into 
account all these goals, eight different optimisation 
objectives are used in the different implemented 
MOEAs (fig.1). Three of them are considered 
constraints and the others, objective functions to be 
optimised. Constraints are understood as high-
priority (hard) objectives, which must be satisfied 
before optimising the remaining objectives (soft). 

 
Table 1 shows the specifications of the objectives 
and constraints. The constraint J1 is the final ethanol 
concentration: it must be at least 60g/l. The other two 
constraints are the final concentrations of diacethyl 
(J2) and ethyl acetate (J3). The industry imposes 
limits of 0.2ppm and 15ppm in the diacethyl and 
acetate final concentrations respectively.  
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Fig. 1. Beer Fermentation Multiobjective Problem. 

The first soft objective (J4) to be minimised measures 
the risk of beer spoiling by Lactobacillus plantarum. 
This risk increases a lot with temperatures over 16ºC. 
 
The temperature profiles obtained based only on J1, 
J2, J3 and J4 are too jagged, and therefore the industry 
cannot implement them. So, a new objective (J5) for 
minimising abrupt changes of temperatures is added 
to the optimisation. To further improve the 
smoothness of the temperature profile hill climbing 
procedures were added, as a final local optimisation 
step, to the GAs (Andrés-Toro et al., 1998a), 
obtaining better profiles. 
 

Table 1. Objectives of the Problem 
 

Obj Function Meaning T1 T2 T3 

J1 ethanolend 
Ethanol final 
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However, the control efforts (adding or extracting 
heat) to get the optimal temperature profile were not 
smooth enough to make them applicable. So, new 
soft objectives  (J6 and J7) were incorporated to 
improve the control. J6, implemented as a summation 
of the square of the heat consumed every 0.1 hour, is 
used to minimise both the total and instant heat cost 
of the process. J7, the maximum difference of heat 
between two successive intervals, is used to force 
uniform consume and so to smooth the energy cost. 
 
The last objective is the time of the process (J8) 
which if possible, should also be minimised. 
 
The last three columns of table 1 display how the 
different objectives are considered during the 
optimisation process. T1 shows if the objective is 
considered a constraint (Hard Objective H0) or a 
function to be optimised (Soft Objective S0); T2 if 
the value should be over (o) or under (u) a threshold, 
or minimised (m); and T3 if it is related with the 
quality (Q) of the beer, the spoiling risk (R), the 
control (C) or the time (T). 
 
 
3. MULTIOBJECTIVE GENETIC ALGORITHMS 

 
3.1 Genetic Algorithms Description 
 
A great number of GA variants have been developed, 
during the last years, for different problems 
(Michalewicz, 1999). For this problem, panmitic, 
elitist, with tight linkage GAs are implemented. They 



     

use selection, crossover and mutation operators, 
whose probabilities have been chosen following the 
results obtained in previous research (Andrés-Toro et 
al., 1999). They include a local search operator to 
improve the solutions cyclically. The population size 
is variable and they admit immigrants (some new 
individuals created randomly every generation).  
 
Each individual of the population represents a 
temperature profile as a sequence of temperature 
values. The simplest way to represent it is using a 
piecewise approximation of the temperature profile. 
In the three first algorithms, the profile is divided 
into equal intervals of one hour, and the temperature 
values at the breakpoints are recorded. The sequence 
of numbers obtained is considered an individual and 
each gene represents the temperature after an hour. 
Every gene is a real number between 10ºC and 18ºC. 
An example can be seen in figure 2 (upper graphic). 
 
The size of the intervals can be used as another 
variable of the problem. In the last GA presented, 
each individual stores the information of the 
temperature at the breakpoints and the interval size. 
The GA will determine all the values itself. An 
example can be seen in figure 2 (lower graphic).  
 
 
3.2 Multiobjective Genetic Algorithms 
 
In multiobjective problems all the components of the 
vector which stores the different objectives should be 
optimised simultaneously. These problems usually 
have no unique solutions, but a set of nondominated 
solutions, known as the Pareto-optimal set 
(Miettinen, 1999). 
 
Figure 3 shows an example of a problem with two 
objective functions and the Pareto-optimal set. In the 
example, minimizing an objective means to increase 
the other: a good compromise is near the origin. 
 
Many different MOEAs have been presented in the 
literature (Coello, 1999; Ban Veldhuizen, 2000). 
They can be classified in two groups: aggregating 
functions and non-aggregating functions. The use or 
not of the Pareto set approach is also another 
criterion for classifying MOEAs. 
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Fig. 2. Individual Representations of the Problem. 
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Fig. 3. An Example of Pareto-optimal Set. 
 
The fermentation problem is solved with GAs that 
implement both techniques, allowing us to compare 
the results. Let us describe in order the different 
solutions studied along the research. 
 
The first algorithm makes use of an aggregating 
function. The other three GAs implement a non-
aggregating function, based on Pareto-optimal sets. 
All the algorithms are implemented with EVOCOM. 
 
GA based on Aggregating Function. The first GA 
implemented for solving the problem uses a 
Weighting Sum Approach. In this way the 
multiobjective problem is converted in a 
monoobjective problem. Some knowledge of the 
objective functions must be used to be successful 
with the technique of Aggregating Functions. The 
main advantages of these techniques are the 
simplicity of the implementation and the 
computational efficiency. However, they have the 
disadvantage of missing concave portions of the 
trade-off curve. 
 
In this first algorithms only the three constraints and 
the two first objectives were included. The final goal 
is minimising the next sum: 
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The constants are the weights used to balance the 
importance of the objectives. The weights were 
determined experimentally after several tests using 
information about the model and the importance of 
each objective. The exponential terms with J2 and J3 
are used to penalize the violation of the limits of the 
final by-products concentrations. Note that the 
process time is not yet subject of optimisation. 
 
GA based on Non-Aggregating Functions. In order to 
get flexibility for more complex scenarios, a 
multiobjective approach based on Pareto-optimal sets 
was used in the next GAs. Three GAs which differ in 
the way of dealing with the time of process were 
implemented under this approach. 
 
Goldberg (1989) introduced the idea of Pareto-based 
fitness assignment. It makes easy to increase the 
number of objectives, and avoids better the local 
optima. An interesting advantage of these techniques 
is that the solution of the problem can be a set with 
several solutions considered equally good by the GA. 
Many researchers have developed different MOEAs 
according to Goldberg�s idea. Fonseca and Fleming 
(1998) proposed a multiobjective method based on 



     

goals, priorities and Pareto sets. The objectives are 
ordered in different priority levels and constraints for 
each of them can be imposed. The method is 
advantageous because it can see a concave trade-off 
surface as convex in some cases. Its main drawback 
is that it favours some objectives over others, and so 
it makes the population converge to a particular part 
of the Pareto set, rather than to cover it totally. 
 
In line with the approach by Fonseca and Fleming 
several priority levels have been considered by our 
next three GAs. The method was modified, so all the 
hard objectives are set to the same value once the 
constraints have been reached, and the soft objectives 
are discretised into intervals. These changes, which 
can make two different individuals have the same 
objective values, and so be considered equally good, 
speeds up the GA. 
 
Figure 4 shows the ranking of levels for the beer 
fermentative process and summarises the differences 
among the three GAs. All the three look first to the 
constraints (J1, J2 and J3) because they must be 
satisfied before optimising the others. Once the 
constraints satisfaction is guaranteed the procedure 
works with the second level. This level is dedicated 
to minimise the spoiling risk (J4), the total and instant 
heat (J6) and the heat smoothness (J7). Finally the 
procedure goes to the third level dedicated to the 
temperature smoothness (J5). 
 
The way the three GAs handle time is as follows: 
 
The first of them, Multiobjective by Levels (ML), 
considers that the time interval and total process time 
are constants in each experiment. The algorithm is 
run for different process times and the solutions for 
each of them compared. 
 
The second algorithm, Constant Interval 
Multiobjective (CIM) optimises also the total process 
time and so a new objective (J8) is included. The size 
of each interval is kept constant in this GA.  
 
For the last one, Variable Interval Multiobjective 
(VIM), the size of each interval is also a variable of 
each individual. New crossover, mutation and 
initialisation operators, which include knowledge 
about the problem, are implemented (easily with our 
toolbox EVOCOM) for VIM. The algorithm also 
optimises the total time of the process. 
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Fig. 4. Non-Aggregating Function GAs. 

4. EXPERIMENTAL RESULTS 
 
In this section some experimental results obtained 
with the different GAs explained in this paper are 
shown. Figure 5 displays the temperature and energy 
profiles that actually breweries are applying. The 
objective of this research is to improve these profiles. 
When analysing the figures, note that the energy and 
temperature axis are not the same in all the cases. 
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Fig. 5. Industrial Fermentation Profile. 
 
 
4.1 Results of Aggregating GA 
 
This Aggregating GA was our first approach to solve 
the problem. It was run for different process times, 
from 120 hours to 160 hours.  
 
Good results were obtained considering only the five 
objectives used in this GA. Figure 6 shows the results 
obtained with the 150 hour optimisation. Although 
the temperature profile reached is quite smooth, this 
algorithm obtains an energy control really difficult to 
apply due to the peak of energy that must be applied 
at the beginning. After analysing these results, it was 
clear that new optimisation objectives should be 
included for obtaining more feasible energy 
managements (no steep peaks). 
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Fig. 6. Profiles for the Aggregating GA. 
 
 
4.2 Results of ML Algorithm 
 
New objectives (J6 and J7) were added to improve the 
energy profile and a Pareto set approach used to deal 
better with the complexity of the new scenario.  
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Fig. 7. Profiles with ML. 
 
The first Pareto set based GA (ML) was run for 
constant process times, from 120 hours to 160 hours. 
Figure 7 shows the results for 150 hours. The new 
objectives used for optimising the control and the 
new GA specification (Pareto set fitness) show 
improvements compared to the results of the 
Aggregating GA. The initial great peak has 
disappeared and the control is smoother with less 
energy consume.  
 
 
4.3 Results of CIM Algorithm 
 
After the promising results of the previous GA, an 
additional objective, minimising the time of process 
(J8) was included. A new algorithm, denoted CIM, 
was developed. The range for the total process time 
was defined between 120 and 160 hours. This 
algorithm searches for optimal profiles with optimal 
time inside this range. The result found by CIM was 
of 125 hours. Figure 8 shows the solution of this GA. 
 
Although the total process time is optimised by CIM, 
the control profile obtained is too irregular for 
practical application. Furthermore, after repeated 
running of the three previous GAs, different optima 
where obtained which showed that all the algorithms 
were falling in local optima. 
 
This situation can be improved incorporating specific 
problem knowledge to the algorithm. That leads to 
the last GA presented in this paper. 
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Fig. 8. Profiles with CIM. 
 
 

4.4 Results of VIM Algorithm 
 
VIM algorithm considers the length of the intervals 
as variables included in the individuals. Variable 
time intervals mean two important advantages. First, 
the initial population, created at random, corresponds 
to smoother initial solutions. Second the size of the 
Pareto set increases, and so local optima are more 
easily avoided.  
 
The results presented in this paper are selected from 
the final Pareto-optimal set (of ninety different 
optima solutions) returned by VIM. Its large size 
give us an interesting freedom for selecting a 
practical solution.  Users can compare the different 
solutions and choose the one they prefer according 
with any of the optimisation criteria or a compromise 
among several of them. Different examples are 
shown below.  
 
This individual representation is also advantageous 
because the individuals are smaller (they need less 
storing space). The total process time is represented 
with a moderate number of time intervals, and a 
temperature for each of them.  
 
Let us show some of the solutions selected from the 
final VIM Pareto set according with different beer 
industrial requirements.   
 
Figure 9 shows the solution with minimal instant heat 
(J6), especially interesting if minimising the total and 
instant energy consumption is an important 
requirement. The total fermentation time is 145 hours 
a both the energy and temperature profiles are very 
smooth, and so they can be easily applied by the 
industry.  Not only has the energy cost been reduced 
(half of the industrial one) in this solution, but also 
the time has been decremented (in 20 hours) and the 
smoothness of the energy and temperature profiles 
improved. So, this temperature profile is better than 
the industrial one and could be a good selection. 
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Fig. 9. Profiles with VIM and Minimum J6. 
 
However, if minimising the total process time (J8) is 
an important requirement and the improvement of 20 
hours is not enough, the individual of the Pareto-
Optimal set with minimum process time (120 hours) 
can be selected. Figure 10 shows the corresponding 
profiles.  
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Fig. 10. Profiles with VIM and Minimum J8. 
 
The profile which requires minimum total time 
means an improvement of 48 hours with respect to 
the industrial process. However, the energy and 
temperature profiles are more jagged, which will 
make more difficult their application. The industry 
should decide if the time improvement justifies the 
control difficulties. 
 
Of course many other solutions could be considered, 
selecting other optimisation objectives and 
compromises between them. 
 
 

5. CONCLUSIONS 
 
This paper has presented several Evolutionary 
methods to deal with multiobjective optimisation of 
dynamic processes. One of the methods is based on 
an aggregating function, while the others adopt a 
Pareto set approach. 
 
As an example of the type of processes where the 
multiobjective optimisation methods can be applied, 
the paper takes the case of beer fermentation. The 
problem is to find an optimal trajectory of the 
process and an optimal control effort profile, 
fulfilling some constraints. Many other different 
cases, such as batch chemical processes, spacecraft 
motions, mobile robotics path planning and 
following, etc., could be also considered by our 
methods (perhaps with minor adaptations).  
 
The main advantage of the multiobjective GAs is 
their versatility for including a variety of objectives 
and constraints. The VIM optimal set lets users select 
amongst different solutions, all equally good for 
VIM, according with some final requirements. 
 
In particular, the VIM beer fermentation profile with 
minimum total and instant energy cost improves the 
heat waste, reduces the total process time, and 
smoothes the control. 
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