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Abstract: In this paper, we study the H,, optimal filtering for multiparameter
singularly perturbed system (MSPS). In order to obtain the solution, we must solve
the multiparameter algebraic Riccati equations (MARE) with indefinite sign quadratic
term. First, the existence of a unique and bounded solution of such MARE is newly
proven. The main results in this paper are to propose a new recursive algorithm
for solving the MARE and to find sufficient conditions regarding the convergence of
our proposed algorithm. Using the recursive algorithm, we show that the solution of
the MARE converges to a positive semi-definite stabilizing solution with the rate of

convergence of O(|u]™?).
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1. INTRODUCTION

Filtering problems for the multiparameter singu-
larly perturbed system (MSPS) have been inves-
tigated extensively (see e.g., Coumarbatch and
Gajié, 2000 and reference therein). The multi-
modeling problems arise in large scale dynamic
systems. For example, the multimodel situation
in practice is illustrated by the passenger car
model (Coumarbatch and Gajié¢, 2000). In order to
obtain the optimal solution to the multimodeling
problems, we must solve the multiparameter alge-
braic Riccati equation (MARE). Various reliable
approaches to the theory of the algebraic Riccati
equation (ARE) have been well documented in
many literatures (see e.g., Laub, 1979). One of
the approaches is the invariant subspace approach
which is based on the Hamiltonian matrix (Laub,

H, optimal filtering, Recursive algorithm

1979). However, there is no guarantee of sym-
metry for the computed solution if the ARE is
ill-conditioned (Laub, 1979). Note that it is very
difficult to solve the MARE due to high dimension
and numerical stiffness (Coumarbatch and Gajié,
2000).

A popular approach to deal with the MSPS is
the two—time-scale design method (see e.g., Khalil
and Kokotovié, 1979; Kokotovié et al., 1986).
However, it is known from Coumarbatch and
Gaji¢ (2000) that an O(||u]) (where p =[5 &2 ])
accuracy is very often not sufficient. Recently,
the exact slow—fast decomposition method for
solving the MARE of the MSPS has been pro-
posed (Coumarbatch and Gaji¢, 2000). However,
these results are restricted to the MSPS such that
the Hamiltonian matrices for the fast subsystems
have no eigenvalues in common (Assumption 5,



Coumarbatch and Gaji¢, 2000). More recently, in
Mukaidani et al., (2001), the recursive algorithm
(see e.g., Gaji¢ et al., 1990) for the solution of
the regulator type MARE which has the posi-
tive semidefinite sign quadratic term has been
proposed. However, the recursive algorithm for
solving the filter type MARE which has the indefi-
nite sign quadratic term appearing in H, filtering
problems has not been investigated.

In this paper, we study the H,, optimal filtering
for the MSPS. The advantage of the H filter over
the standard Kalman filter is that former does not
require knowledge of the system and measurement
noise intensity matrices. The difficulty encoun-
tered with the H filter for the MSPS is that the
MARE contains an indefinite sign quadratic term.
Therefore, we first investigate the uniqueness and
boundedness of the solution to such MARE and
establish its asymptotic structure. The proof of
the existence of the solution to the MARE with
asymptotic expansion is obtained by an implicit
function theorem (Gaji¢ et al., 1990). The main
contribution of this paper is to propose a new
recursive algorithm for solving the MARE and to
find the sufficient conditions regarding the con-
vergence of the recursive algorithm by using the
reduced-order ARE. It is important to note that
the sufficient conditions derived here are inde-
pendent of the small perturbation parameter u.
We also prove that the solution of the MARE
converges to a positive semi-definite stabilizing
solution with the rate of convergence of O(||u]**1),
where 4 is the iteration number. As another im-
portant feature, we do not assume here that the
Hamiltonian matrices Z;;, j = 1, 2 for the fast
fast subsystems have no eigenvalues in common.
Thus, our new results are applicable to more re-
alistic MSPS.

2. Hy, OPTIMAL FILTERING

We consider the linear time-invariant MSPS

o = Aooxo + Ao171 + A2

+Do1w1 + Doaws, (1a)
€121 = A10xo + A1121 + D11w, (1b)
g9y = Aopxg + Aaxa + Dagwo, (1c)

with

y; = Cjoxo + Cjjm5 +vj, 7 =1, 2, (2)

where z; € R™, j = 0, 1, 2 are state vectors,
y; € RP7, j =0, 1, 2 are system measurements,
w; € RY, 7 =1, 2andv; € R, j =1, 2
are system and measurement disturbances, re-
spectively. All the matrices are constant matrices
of appropriate dimensions.

€1 and €9 are two small positive singular parame-
ters of the same order of magnitude such that

0<k1§0{5§—1§k2<00. (3)
2

That is, we assume that the ratio of €1 and &5 is
bounded by some positive constants k;, j =1, 2.

In this paper we design a filter to estimate system
states x;. The states to be estimated are given by
a linear combination

zj = GjQJ?Q + ijxj + vy, 7=1, 2, (4)

where z; € R%, j = 1, 2. The estimation
problem is to obtain an estimate Z; of z; using
the measurements y; (Lim and Gaji¢, 2000). The
measure of the infinite horizon estimation problem
is defined as a disturbance attenuation function

J = / e — 2|2t - { / (ol + ||v||>dt} )

where z = [z ZQT]T, 2 = [3 5’2T]Ta w =

[w] wQT]T and v = [v] UQT]T, and where R > 0
and W > 0 are weighting matrices to be chosen by
designer. The H filter is ensure that the energy
gain from the disturbances to estimation errors
z — % is less that a attenuation level 2. That is,

sup J < ~%. (6)

w, v

The H filter of (1) and (2) is given by (Lim and
Gajic, 2000)

€0 = Aooo + Ao1é1 + Ag2bo
+Fo1m + Foanz,
11 = A1o&o + Aniér + Frum + Fian,
e2€a = Anoo + Al + Formy + Faanpa,
n; =y — Cjoro — Cjjzj, j =1, 2,

(7a)
(7b)
(7c)
(7d)

where the filter gain Fp; and Fj;, j = 1, 2 are
obtained from

Fo1 Fo2
F=|Fn Fia | =CY,, (8)
Iy o
where Y, satisfies the MARE
AYe + Y AL =Y VY, + U, =0, (9)
with
Ao Aot Aoz
Ae = El_lAl() El_lAll 0 y

—1 -1
€y AQO 0 €y A22



Dy Dyo
De = El_lDll 0 s
0 52_1D22
= Cor Ci1 O G = Go1 Gu1 0O
Co2 0 Ca|’ Goz 0 Gag |’
Voo Vor Voo
V=CTC—-~+2GTRG = |V Vi1 0 |,
Vis 0 Vi
U 7 Uoi g5 U2
Us=DWD!I = | e7'UL 672U 0

17T —2
g5 Uy 0 €y U2

Since the matrices A, and D, contain terms of
order 5]-_1, j =1, 2, a solution Y, of (9), if it
exists, must contain terms of order ¢;. Taking into
consideration of this fact, we look for a solutions
Y. to the MARE (9) with the structure

T T
Yoo Yo Yzol
—1 — NxN
Yo=|Yo e'Vii eiex Yy | € RV

—1
€y Yoo

-1
Yoo ve1ea Yo

where N = ng + n1 + na,
Yijia YéQ = YVQE

If the sign of the MARE (9) is positive semidefi-
nite, then the equation (9) is known as the optimal
Kalman filter, appearing in the multimodeling
(Gajié¢ et al., 1990). However, we do not assume
in this paper that the sign of the MARE (9) is
positive semidefinite. That is, no assumption is
made on the definiteness of V.

YE)O = YE)Z(;) Yil -

In order to avoid the ill-conditioned due to the
large parameter Ej_l which is included in the
MARE (9), we introduce the following useful
lemma.

Lemma 1: The MARE (9) is equivalent to the fol-
lowing generalized multiparameter algebraic Ric-
cati equation (GMARE) (10a)

FY):=AYT +Y AT —YVYT + U =0,(10a)

Ye=Y'e ! =]y, (10b)
where
I, 0 0 Aoo Ao Aoz
G.=| 0 gl,, O , A= Ao Ain 0 |,
0 0 ey, Asp 0 Aao
[ Uoo Uo1 Uo2
U=|U,{ Uy 0 |,
| Uy 0 Uso

Yoo Yio Ya0
Y=|eaYo Y VaYs
-1
LeaYog vVa Yar Yoo

Proof: Firstly, by direct calculation we verify that
Y. = ®_;'Y. Secondly, it is easy to verify that
A=9.A., U, = (IJe_lUtI)e_l. Hence,

AY, =0t Avy ot

By using the similar calculation, we can immedi-
ately rewrite (9) as (10a). O

3. THE MARE

Firstly, it is assumed that the limit of o exists
as €1 and ey tend to zero (see e.g., Khalil and
Kokotovié, 1979; Gajié, 1988), that is

a= lim a. (11)

Let %0, ?10, Eo, ?11, El and Eg be the limiting
solutions of the equations (10) as e; — 40,5 =
1, 2, then we obtain the following zeroth order
equations by partitioning the GMARE (10a).

AYoo + Yoo AL — YooViYoo +Us =0, (12a)
Yo = Yo0S0; — Roj, j =1, 2, (12b)
A5+ Yj5A7; = Y5V55Y55 + Ujj = 0{12¢)
j=1, 2

where

Ag = Ago + A1 S, + A2 Say + Ro1 Vg,
+Ro2Vgs + Ro1 V1158, + Ro2VaaSes,
Vi = Voo + So1Vgh + Vo1 S + So2 Vs + Ve Sy
+801 V11581 + S02V22.505,
Us = Uy — Ro1 A5y — Ao R§) — Ro2 AL,
—Aga Ry — Ro1 Vi1 R, — RoaVaa RY,,
Soj = —H%Hj_jT, Ro; = QOjHj_jTa
Qoj = Ao;Yj; + Unj, Hjj = Ajj — Yj3Vjj,
Hoo = Aoo — Yoo Voo — YioVyy — Yoy Vi,
Hjo=Ajo—Y;;Vih, j=1, 2,
Hoj = Aoj — YooVo; — Yo Vi
Now, let us define the sets as I';; = {y >
0] the ARE (12c¢) has the positive semidefinite
stabilizing solutions},j = 1, 2. If we choose
vig o= inf{y |y € Ljp} < v, Aj; —Yj;Vj; are
stable. Hence, the parameter & does not appear
in (12) because Y1 = 0. The matrices A, Vi and
Us do not depend on Yj; and Yss because their
matrices can be computed by using Zq, p, ¢ =

0, 1, 2 which is independent of Yi; and Yas
(Coumarbatch and Gaji¢, 2000), that is,

Zs = Zoo — Zo1 211 Zro — Zo2 253" Zao
AT v
=% TV =1, 2
[_US _AS ) J 9 b

_ [ A% —Voo [ A Vo
ZOO - |: ’ ZO] - _UOj _AOj ’



T T
Ay, —VOj],ij:[AjTj —ij].

Zio =
70 [—Ug; —Ajo —Uj; —Ajj

The AREs (12¢) will produce the unique positive
semidefinite stabilizing solution under the follow-
ing condition if « is large enough. Moreover, let
us define the set as I'; := {7 > 0| the ARE (12a)
has a positive semidefinite stabilizing solution},
vs = inf{y |y € T's}. As the results, for every
v > 7 = max{ys, 7y, Y2r}, the MARE (9)
has the positive semidefinite stabilizing solution
if e1 > 0 and 5 > 0 are small enough. Then, we
have the following result.

Theorem 1: If we select a parameter v > 7 =
max{vs, y1s, Y25}, then there exist small &; and
€y such that for all e; € (0, &1) and &2 € (0, &2),
the MARE (9) admits a solution such that Y,
is the symmetric positive semidefinite stabilizing
solution, which can be written as (13).

Yoo + O([u])) 1571{) +O(lul)
Y, = | Yio+ O(|u]) e7 (Va1 + O(Jul))

Yoo+ O(|p])) 2122 O(|p)
Ya0 + O(|l)

Ve o(lul) | (13)
e (Yoo + O(Jul)

where p = [e1 &2 ].

Proof: We apply the implicit function theorem
(Gaji¢ et al., 1990;Gaji¢, 1988) to (10a). To do
S0, it is enough to show that the corresponding
Jacobian is nonsingular at ¢; =0, j =1, 2. It can
be shown, after some algebra, that the Jacobian
of (10a) in the limit as p — i = [0 0] is given by

Joo Jor Jo2 0 O O
Jio Jir 0 Ji3 Jig O
Jog 0 Jaz 0 Jog Jos

=109 0 o Js3 0 0 | (14)
0 0 0 0 Jy 0
00 0 0 0 Js

and

Joo = (Iny ® Hoo)Ungno + Hoo @ In,,

Joj = (Iny ® Hoj)Ungn,; + Hoj @ In,,

Jjo = Hjo @ Ing, Jjj = Hjj @ Ing,

Jiz = I, @ Hot, Jia = Va(l,, @ Hy2)Up,n,,

1
Joy = ﬁ(lng ® Ho1), Jos = I, ® Hog,
J33 = (In, @ H11)Upyny + Hi1 @ L,
1
Juu=vVaHyp @I, + —
44 22 ® In, 7z
J55 = (Ing X HQQ)Un2n2 + H22 39 Inw ] = 1’ 2’

ITLQ ® Hll)

where ® denotes Kronecker products and Uy, ;»; is
the permutation matrix in the Kronecker matrix
sense. The Jacobian (14) can be expressed as

det.]y = detJ11 . detJQQ . det.]33 . det.]44 . detJ55
det[[no ® HOUTL()TL() + HO 0 Ino]7 (15)

where HQ = HO() — H01H1_11H10 — H02H2_21H20.
Obviously, Jj;, j = 1,---,5 are nonsingular be-
cause the matrices H;; = A;; — Y;;Vij, j =1, 2
are stable. After some straightforward but te-
dious algebra, we see that A, — YooV, = Hpg —
H01H1_11H10 — H02H2_21H20 = HQ. Therefore, the
matrix Hj is stable if v is sufficiently large. Thus,
detJy # 0. The conclusion of Theorem 1 is ob-
tained directly by using the implicit function the-
orem. The remainder of the proof is to show that
Y. is the positive semidefinite stabilizing solution.
However, the proof is omitted since it is similar
to that of the reference Mukaidani et al,. (2001).
O

4. THE RECURSIVE ALGORITHM

Now, let us define ||p| := & = \/E1e2. By making
use of the zeroth order solutions (12), the solution
(13) can be changed as follows.

Ypq = Ypq + EFpq, pg = 00,10,20,11,21,22,(16)
where Fog = FL, Fiy = FL, Fao = FL, Yo, =0.

Substituting (16) into (10a) and subtracting (12)
from (10a), we arrive at the following error equa-
tions (17).

HooFoo + FooHgy + HioF1o + FigHio + HaoFao
+FyHayy — E(FooVooFoo + Fio Vi Foo
+FooVo1 Fio + Fao Vs Foo + FooVoz Fao
+F{oVi1Fio + FyyVaa Fag) = 0, (17a)

FooHly + FLHE + HorFiy + VaHe Fa

€
—l-?lHooleo — E(FooVo1 Fi1 + FiyVi1 F1y)

—Eva(FooVoa Fa1 + FayVaa Fay)

—e1(FooVoo + FioVor + FagVga) Yo = 0, (17b)
1
Ja
HooYqn — E(FooVo2Faa + FapVas Fao)

FooHay + FayHos + HoaFao + Ho F3y

e
£
~ = (FuoVau FE + VL)

—e(FooVoo + FioVor + FaoVis)Yap = 0, (17¢)
HyFi+ FuH{ + Eg—l(HmYlg + Yi0H{y)
+e1(HioFiy + FioH{y)

et

&

+

YioVooYih — e1(F11 VgL Yih + Yio Vo1 Fir)



—e1Va(F Vs Yih + Yio Voo Fa1)
—E(F11 Vi1 Fiy + oF ) Voo Fay) = 0,

\/aF2T1H22 +

(17d)
1 €
Hy Ff o+ -

Ja £

£ _
—l-?QHlngTo + e FioHgy + e2HioFyg

1
—1(Yi0Voe Fao + —=Y10Vo1 F3,)

o
—ea(Fu1 Vi) Yoo + VaF Vi Yag)

€1€
—%YloVongo E(VaF) | Vaa Fay

YioH3,

+—= PV Fy) =0, (17e)

ﬁ

E — —

HopFoo + Fag HYy + ?Q(HQOYég + Yoo HJp)
+ea(HaoFay + FaoH3)

2
5
—fYQOVOOYQTo — e2(Faa Vi Yot + Yoo Voo Fao)

13
—\/—Qa(FmV(EYQTO + Yao Vo1 F5y)
1
—E(Foa Voo Fog + EF21V11F2T1) =0. (17f)
Hence, we propose the following iterative algo-

rithm (18) which is based on the recursive algo-
rithm.

Hy PG+ POV HEE
5 _ _
= —gl(HloYlTo + YioH}y)
2
—51(H10F(1)T + Fl(é)HlT()) + §1Y1%)V00Y1%)T
+er(FY VR Yy " + Yo Vo FYY)
+€1 \/_(F(z)Tva('L)T + Yi((;)‘/E)QFQ(,{))
+E(FWVIEY + aF T Var YY),
Ho Py ™ + PtV HD,
5 _ _
= —f(HszTo + Yoo Hyp)

(18a)

2
~ea(HaoFyy) + Fyg Hig) + 230 VooYyg "
+eo (P VR Yad " + Yo Voo Fid))

+ L (FOVEYRT + ViV FOT)

NG

FE(FWVRE + ~FPVaEYT),  (sh)

, 1 ,
\/aFQ(?rl)THQQ + ﬁHan(iH)T
€1 = [30) —
= —§1Y10H2T0 - §H10Yg€

£1€
—ey FY)HL — eg HyoFS)T + 22

£
\/—Yl(S)Vo 1 EYT)

Y('L) V Y'Q(O'L)T
e (Vi Voo Fly) +
\/_F(l)Tva(l)T)

+E(VaFy) Vo Fy) + ﬁFﬁ)vﬁFQ‘?T), (18¢)

+52(F1(? TY(z)T

Hor§ )+ KR

= —Ho H' L§)" - L) By, HG,
— Hoo Hop' L) " — L3 Hy"
+E(FG) Voo Fyy + Fio Vi g + Fag Vor Fg
+ Py VRS + Fy Voo g
+F VR + R Vas B, (184)
Fot" = () - F HL) T, (18¢)

where j =1, 2,

1 €1
— VaHLF T — gH(%YlTo

L) = —Hy Fi™
FEFWVa P + F v FY)
+EVa(F Voo By + Fi)TVEFY)
_|_€1(F(§é)vb0 +F(i)T%11“ _'_F(i)TVbQ)Y(IL)T,

+1)T
H(MF(z T _HOOYQO

ng) = _HOQF(H_I) I3

\/_

FE(F§Vor Fy) + FS) T Vas FLY)
£

+—=(F Vo F3)" +

=

te2(Fig Voo + FLg " Vil +
YW =Y+ EFY, i=0, 1,
Fo = Fy = Fy = F{Y) = By = ) = 0.

FTVAR)

Fa Vi) Yao

The following theorem indicates the convergence
of the algorithm (18).

Theorem 2: If we select a parameter v > 7,
there exist the unique and bounded solutions Fj,,
of the error equation in a neighborhood of |u| = 0.
Moreover, the algorithm (18) converges to the
exact solution Fj,, with the rate of convergence
of O(||u|?), that is

|Fpq — BN = O(lul), i=1, 2, ---. (19)
Proof. As a starting point we need to show the
existence of a unique and bounded solution of
F,q in neighborhood of || = 0. To prove that
by the implicit function theorem, it is enough to
show that the corresponding Jacobian Jg of (17)
is nonsingular at |u|| = 0. The Jacobian is given
by

Jp=Jy. (20)

Taking into consideration the fact that Jy is
nonsingular at |u| = 0, Jp is also nonsingular.
Therefore, there exists a unique and bounded
solution of the error equations (17). Secondly,
the proof of (18) uses mathematical induction.
However, in order to respect pages limitations, the
proof is omitted since it is similar to that of the
reference Mukaidani et al,. (2001). O



7.7443e — 1 —1.5934e — 1 1.1995e — 2  3.0145e — 2
—1.5934e — 1 7.7443e —1 3.0145e — 2 1.1995e — 2
1.1995e — 2  3.0145e — 2  6.458le —3 2.9175e — 3

3.0145e — 2 1.1995e — 2  2.9175e — 3  6.4581e — 3

Y= 3.0483e — 1 —3.0483e — 1 1.2093e — 2 —1.2093e — 2

—1.7552e — 4 —1.2068e — 3 2.1547e — 4 —7.5655e — 5
—5.2303e —4 —1.1517e — 3 —8.7334e — 5 —1.1394e — 4
—1.2068e — 3 —1.7552e — 4 —7.5655e —5 2.1547e — 4
—1.1517e — 3 —5.2303e —4 —1.1394e — 4 —8.7334e — 5

5. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our
proposed algorithm, we have run a numerical
example. The system matrix is given by

00 45 0 1

00 O 4.5 -1
Agp=100-0.05 0 -0.1],

00 0 -0.05 0.1

_0 0 32.7 =32.7 0

—0.05 0.05
Aij = [ 0 —0.1]

022 O3x2 o1?
Apr = | Ap |, Ao = | 4 aAp:|:6:|

1022 O1x2

Avg = [02xs =444 05xs] , Ay = 0.1]"

Aoy = [02x3 —4A4 02x1] , Doj = 05x1, Djj = Aq
CTC =diag(1, 1, 1, 1, 1, 0, 0, 0, 0), R =20
GTRG = diag(1, 1, 1, 1, 1, 1, 1, 1, 1),y = 5.

The small parameters are chosen as €1 = g9 =
0.01. Note that we can not apply the tech-
nique proposed in Coumarbatch and Gajié¢, (2000)
to the MSPS since the Hamiltonian matrices
Zii, 3 = 1, 2 have eigenvalues in common. We
give a solution of the GMARE (10a) in Table 1.
We find that the solution of the GMARE (10a)
converge to the exact solution with accuracy of
|F(Y®)| < e — 10 after 22 iterative iterations,
where “e — z” stands for “x107%. For different
values of €1 and €9, in order to verify the exac-
titude of the solution, the errors (i.e. |F(Y®)|)
and the necessary iteration numbers of the algo-
rithm (18) are given by Table 2. From Table 2,
since for sufficiently small perturbation param-
eters the convergence speed is quite good, the

resulting algorithm of this paper is very useful.
Table 2. Error |F(Y)]

&1 €9 Iterations Errors
le—2 | 1le—2 22 3.5484¢ — 10
le—2 | 5e—3 24 7.3850e — 10
le—3 | 1le—3 5 5.6755¢ — 10
le—3 | be — 4 5 3.5433e — 10
le—4 | le—4 3 2.1241e — 10
le—4 | 5e—5 3 1.2052¢ — 10
le—51]1le—5 2 2.1017¢ — 10

Table 1.

3.0483e — 1 —1.7552e — 2 —5.2303e — 2 —1.2068e —1 —1.1517e — 1
—3.0483e — 1 —1.2068e —1 —1.1517e — 1 —1.7552e — 2 —5.2303e — 2
2.1547e — 2 —8.7334e — 3 —7.5655e —3 —1.1394e — 2
—7.5655e — 3 —1.1394e — 2

1.2093e — 2
—1.2093e — 2

2.1547e — 2 —8.7334e — 3

1.1827e 4+ 0 1.1885e — 1 —3.7194e —2 —1.1885e — 1 3.7194e — 2
1.1885e —3 1.6204e — 2 1.6222e —2 3.5482e — 4 3.4417e — 4
—3.7194e — 4 1.6222e — 2 5.0369e —2 3.4417e — 4  4.5092e — 4
—1.1885e — 3  3.5482e — 4  3.4417e — 4 1.6204e — 2 1.6222e — 2
3.7194e — 4  3.4417e —4 4.5092e —4 1.6222e — 2  5.0369e — 2

6. CONCLUSION

In this paper, we have proposed a new recursive
algorithm for solving the MARE which has the
indefinite sign quadratic term. We have proven
that the solution of the MARE converges to
a positive semi-definite stabilizing solution with
the rate of convergence of O(|u|**!). As another
important feature, since we do not assume that
the Hamiltonian matrices Z;;, j = 1, 2 for
the fast fast subsystems have no eigenvalues in
common compared with Coumarbatch and Gayji¢,
(2000), our new results are applicable to more
realistic MSPS.
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