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Abstract: In this paper, we study the H∞ optimal filtering for multiparameter
singularly perturbed system (MSPS). In order to obtain the solution, we must solve
the multiparameter algebraic Riccati equations (MARE) with indefinite sign quadratic
term. First, the existence of a unique and bounded solution of such MARE is newly
proven. The main results in this paper are to propose a new recursive algorithm
for solving the MARE and to find sufficient conditions regarding the convergence of
our proposed algorithm. Using the recursive algorithm, we show that the solution of
the MARE converges to a positive semi–definite stabilizing solution with the rate of
convergence of O(||µ||i+1).
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1. INTRODUCTION

Filtering problems for the multiparameter singu-
larly perturbed system (MSPS) have been inves-
tigated extensively (see e.g., Coumarbatch and
Gajić, 2000 and reference therein). The multi-
modeling problems arise in large scale dynamic
systems. For example, the multimodel situation
in practice is illustrated by the passenger car
model (Coumarbatch and Gajić, 2000). In order to
obtain the optimal solution to the multimodeling
problems, we must solve the multiparameter alge-
braic Riccati equation (MARE). Various reliable
approaches to the theory of the algebraic Riccati
equation (ARE) have been well documented in
many literatures (see e.g., Laub, 1979). One of
the approaches is the invariant subspace approach
which is based on the Hamiltonian matrix (Laub,

1979). However, there is no guarantee of sym-
metry for the computed solution if the ARE is
ill-conditioned (Laub, 1979). Note that it is very
difficult to solve the MARE due to high dimension
and numerical stiffness (Coumarbatch and Gajić,
2000).

A popular approach to deal with the MSPS is
the two–time–scale design method (see e.g., Khalil
and Kokotović, 1979; Kokotović et al., 1986).
However, it is known from Coumarbatch and
Gajić (2000) that an O(||µ||) (where µ =

[
ε1 ε2

]
)

accuracy is very often not sufficient. Recently,
the exact slow–fast decomposition method for
solving the MARE of the MSPS has been pro-
posed (Coumarbatch and Gajić, 2000). However,
these results are restricted to the MSPS such that
the Hamiltonian matrices for the fast subsystems
have no eigenvalues in common (Assumption 5,
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Coumarbatch and Gajić, 2000). More recently, in
Mukaidani et al., (2001), the recursive algorithm
(see e.g., Gajić et al., 1990) for the solution of
the regulator type MARE which has the posi-
tive semidefinite sign quadratic term has been
proposed. However, the recursive algorithm for
solving the filter type MARE which has the indefi-
nite sign quadratic term appearing in H∞ filtering
problems has not been investigated.

In this paper, we study the H∞ optimal filtering
for the MSPS. The advantage of the H∞ filter over
the standard Kalman filter is that former does not
require knowledge of the system and measurement
noise intensity matrices. The difficulty encoun-
tered with the H∞ filter for the MSPS is that the
MARE contains an indefinite sign quadratic term.
Therefore, we first investigate the uniqueness and
boundedness of the solution to such MARE and
establish its asymptotic structure. The proof of
the existence of the solution to the MARE with
asymptotic expansion is obtained by an implicit
function theorem (Gajić et al., 1990). The main
contribution of this paper is to propose a new
recursive algorithm for solving the MARE and to
find the sufficient conditions regarding the con-
vergence of the recursive algorithm by using the
reduced–order ARE. It is important to note that
the sufficient conditions derived here are inde-
pendent of the small perturbation parameter µ.
We also prove that the solution of the MARE
converges to a positive semi–definite stabilizing
solution with the rate of convergence of O(||µ||i+1),
where i is the iteration number. As another im-
portant feature, we do not assume here that the
Hamiltonian matrices Zjj , j = 1, 2 for the fast
fast subsystems have no eigenvalues in common.
Thus, our new results are applicable to more re-
alistic MSPS.

2. H∞ OPTIMAL FILTERING

We consider the linear time–invariant MSPS

ẋ0 = A00x0 + A01x1 + A02x2

+D01w1 + D02w2, (1a)

ε1ẋ1 = A10x0 + A11x1 + D11w1, (1b)

ε2ẋ2 = A20x0 + A22x2 + D22w2, (1c)

with

yj = Cj0x0 + Cjjxj + vj , j = 1, 2, (2)

where xj ∈ Rnj , j = 0, 1, 2 are state vectors,
yj ∈ Rpj , j = 0, 1, 2 are system measurements,
wj ∈ Rqj , j = 1, 2 and vj ∈ Rrj , j = 1, 2
are system and measurement disturbances, re-
spectively. All the matrices are constant matrices
of appropriate dimensions.

ε1 and ε2 are two small positive singular parame-
ters of the same order of magnitude such that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞. (3)

That is, we assume that the ratio of ε1 and ε2 is
bounded by some positive constants kj, j = 1, 2.

In this paper we design a filter to estimate system
states xj. The states to be estimated are given by
a linear combination

zj = Gj0x0 + Gjjxj + vj , j = 1, 2, (4)

where zj ∈ Rsj , j = 1, 2. The estimation
problem is to obtain an estimate ẑi of zj using
the measurements yj (Lim and Gajić, 2000). The
measure of the infinite horizon estimation problem
is defined as a disturbance attenuation function

J =

∞∫
0

||z − ẑ||2Rdt ·
{ ∞∫

0

(||w||2W−1 + ||v||)dt

}−1

,(5)

where z =
[
zT
1 zT

2

]T
, ẑ =

[
ẑT
1 ẑT

2

]T
, w =[

wT
1 wT

2

]T
and v =

[
vT
1 vT

2

]T
, and where R ≥ 0

and W > 0 are weighting matrices to be chosen by
designer. The H∞ filter is ensure that the energy
gain from the disturbances to estimation errors
z − ẑ is less that a attenuation level γ2. That is,

sup
w, v

J < γ2 . (6)

The H∞ filter of (1) and (2) is given by (Lim and
Gajić, 2000)

ξ̇0 = A00ξ0 + A01ξ1 + A02ξ2

+F01η1 + F02η2, (7a)

ε1ξ̇1 = A10ξ0 + A11ξ1 + F11η1 + F12η2, (7b)

ε2ξ̇2 = A20ξ0 + A22ξ2 + F21η1 + F22η2, (7c)

ηj = yj − Cj0x0 − Cjjxj, j = 1, 2, (7d)

where the filter gain F0j and Fjj , j = 1, 2 are
obtained from

F =


 F01 F02

F11 F12

F21 F22


 = CYe, (8)

where Ye satisfies the MARE

AeYe + YeA
T
e − YeV Ye + Ue = 0, (9)

with

Ae =


 A00 A01 A02

ε−1
1 A10 ε−1

1 A11 0
ε−1
2 A20 0 ε−1

2 A22


 ,



De =


 D01 D02

ε−1
1 D11 0

0 ε−1
2 D22


 ,

C =
[

C01 C11 0
C02 0 C22

]
, G =

[
G01 G11 0
G02 0 G22

]
,

V = CT C − γ−2GT RG =


 V00 V01 V02

V T
01 V11 0

V T
02 0 V22


 ,

Ue = DeWDT
e =


 U00 ε−1

1 U01 ε−1
2 U02

ε−1
1 UT

01 ε−2
1 U11 0

ε−1
2 UT

02 0 ε−2
2 U22


 .

Since the matrices Ae and De contain terms of
order ε−1

j , j = 1, 2, a solution Ye of (9), if it
exists, must contain terms of order εj . Taking into
consideration of this fact, we look for a solutions
Ye to the MARE (9) with the structure

Ye =


 Y00 Y T

10 Y T
20

Y10 ε−1
1 Y11

√
ε1ε2

−1
Y T

21

Y20
√

ε1ε2
−1

Y21 ε−1
2 Y22


 ∈ RN×N ,

where N = n0 + n1 + n2, Y00 = Y T
00, Y11 =

Y T
11, Y22 = Y T

22.

If the sign of the MARE (9) is positive semidefi-
nite, then the equation (9) is known as the optimal
Kalman filter, appearing in the multimodeling
(Gajić et al., 1990). However, we do not assume
in this paper that the sign of the MARE (9) is
positive semidefinite. That is, no assumption is
made on the definiteness of V .

In order to avoid the ill–conditioned due to the
large parameter ε−1

j which is included in the
MARE (9), we introduce the following useful
lemma.

Lemma 1: The MARE (9) is equivalent to the fol-
lowing generalized multiparameter algebraic Ric-
cati equation (GMARE) (10a)

F(Y ) := AY T + Y AT − Y V Y T + U = 0,(10a)

Ye = Y T Φ−1
e = Φ−1

e Y, (10b)

where

Φe =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 , A=


 A00 A01 A02

A10 A11 0
A20 0 A22


 ,

U =


 U00 U01 U02

UT
01 U11 0

UT
02 0 U22


 ,

Y =


 Y00 Y T

10 Y T
20

ε1Y10 Y11

√
αY T

21

ε2Y20

√
α
−1

Y21 Y22


 .

Proof: Firstly, by direct calculation we verify that
Ye = Φ−1

e Y . Secondly, it is easy to verify that
A = ΦeAe, Ue = Φ−1

e UΦ−1
e . Hence,

AeYe = Φ−1
e AY T Φ−1

e .

By using the similar calculation, we can immedi-
ately rewrite (9) as (10a). �

3. THE MARE

Firstly, it is assumed that the limit of α exists
as ε1 and ε2 tend to zero (see e.g., Khalil and
Kokotović, 1979; Gajić, 1988), that is

ᾱ = lim
ε1→+0
ε2→+0

α. (11)

Let Ȳ00, Ȳ10, Ȳ20, Ȳ11, Ȳ21 and Ȳ22 be the limiting
solutions of the equations (10) as εj → +0, j =
1, 2, then we obtain the following zeroth order
equations by partitioning the GMARE (10a).

AsȲ00 + Ȳ00A
T
s − Ȳ00VsȲ00 + Us = 0, (12a)

Ȳ T
j0 = Ȳ00S0j − R0j , j = 1, 2, (12b)

AjjȲjj + ȲjjA
T
jj − ȲjjVjjȲjj + Ujj = 0,(12c)

j = 1, 2,

where

As = A00 + A01S
T
01 + A02S

T
02 + R01V

T
01

+R02V
T
02 + R01V11S

T
01 + R02V22S

T
02,

Vs = V00 + S01V
T
01 + V01S

T
01 + S02V

T
02 + V02S

T
02

+S01V11S
T
01 + S02V22S

T
02,

Us = U00 − R01A
T
01 − A01R

T
01 − R02A

T
02

−A02R
T
02 − R01V11R

T
01 − R02V22R

T
02,

S0j = −HT
j0H

−T
jj , R0j = Q̂0jH

−T
jj ,

Q̂0j = A0j Ȳjj + U0j , Hjj = Ajj − ȲjjVjj ,

H00 = A00 − Ȳ00V00 − Ȳ T
10V

T
01 − Ȳ T

20V
T
02,

Hj0 = Aj0 − ȲjjV
T
0j , j = 1, 2,

H0j = A0j − Ȳ00V0j − Ȳ T
j0Vjj .

Now, let us define the sets as Γjf := {γ >
0| the ARE (12c) has the positive semidefinite
stabilizing solutions}, j = 1, 2. If we choose
γjf := inf{γ |γ ∈ Γjf} < γ, Ajj − ȲjjVjj are
stable. Hence, the parameter ᾱ does not appear
in (12) because Ȳ21 = 0. The matrices As, Vs and
Us do not depend on Ȳ11 and Ȳ22 because their
matrices can be computed by using Zpq, p, q =
0, 1, 2 which is independent of Ȳ11 and Ȳ22

(Coumarbatch and Gajić, 2000), that is,

Zs = Z00 − Z01Z
−1
11 Z10 − Z02Z

−1
22 Z20

=
[

AT
s −Vs

−Us −As

]
, j = 1, 2,

Z00 =
[

AT
00 −V00

−U00 −A00

]
, Z0j =

[
AT

j0 −V0j

−U0j −A0j

]
,



Zj0 =
[

AT
0j −V T

0j

−UT
0j −Aj0

]
, Zjj =

[
AT

jj −Vjj

−Ujj −Ajj

]
.

The AREs (12c) will produce the unique positive
semidefinite stabilizing solution under the follow-
ing condition if γ is large enough. Moreover, let
us define the set as Γs := {γ > 0| the ARE (12a)
has a positive semidefinite stabilizing solution},
γs := inf{γ |γ ∈ Γs}. As the results, for every
γ > γ̄ = max{γs, γ1f , γ2f}, the MARE (9)
has the positive semidefinite stabilizing solution
if ε1 > 0 and ε2 > 0 are small enough. Then, we
have the following result.

Theorem 1: If we select a parameter γ > γ̄ =
max{γs, γ1f , γ2f}, then there exist small ε̃1 and
ε̃2 such that for all ε1 ∈ (0, ε̃1) and ε2 ∈ (0, ε̃2),
the MARE (9) admits a solution such that Ye

is the symmetric positive semidefinite stabilizing
solution, which can be written as (13).

Ye =


 Ȳ00 + O(||µ||) Ȳ T

10 + O(||µ||)
Ȳ10 + O(||µ||) ε−1

1 (Ȳ11 + O(||µ||))
Ȳ20 + O(||µ||) √

ε1ε2
−1

O(||µ||)
Ȳ T

20 + O(||µ||)√
ε1ε2

−1
O(||µ||)

ε−1
2 (Ȳ22 + O(||µ||))


 , (13)

where µ =
[
ε1 ε2

]
.

Proof: We apply the implicit function theorem
(Gajić et al., 1990;Gajić, 1988) to (10a). To do
so, it is enough to show that the corresponding
Jacobian is nonsingular at εj = 0, j = 1, 2. It can
be shown, after some algebra, that the Jacobian
of (10a) in the limit as µ → µ̄ =

[
0 0

]
is given by

JY =




J00 J01 J02 0 0 0
J10 J11 0 J13 J14 0
J20 0 J22 0 J24 J25

0 0 0 J33 0 0
0 0 0 0 J44 0
0 0 0 0 0 J55




, (14)

and

J00 = (In0 ⊗ H00)Un0n0 + H00 ⊗ In0 ,

J0j = (In0 ⊗ H0j)Un0nj + H0j ⊗ In0 ,

Jj0 = Hj0 ⊗ In0 , Jjj = Hjj ⊗ In0 ,

J13 = In1 ⊗ H01, J14 =
√

ᾱ(In1 ⊗ H02)Un1n2 ,

J24 =
1√
ᾱ

(In2 ⊗ H01), J25 = In2 ⊗ H02,

J33 = (In1 ⊗ H11)Un1n1 + H11 ⊗ In1 ,

J44 =
√

ᾱH22 ⊗ In1 +
1√
ᾱ

In2 ⊗ H11,

J55 = (In2 ⊗ H22)Un2n2 + H22 ⊗ In2 , j = 1, 2,

where ⊗ denotes Kronecker products and Unjnj is
the permutation matrix in the Kronecker matrix
sense. The Jacobian (14) can be expressed as

detJY = detJ11 · detJ22 · detJ33 · detJ44 · detJ55

·det[In0 ⊗ H0Un0n0 + H0 ⊗ In0 ], (15)

where H0 ≡ H00 − H01H
−1
11 H10 − H02H

−1
22 H20.

Obviously, Jjj , j = 1, · · · , 5 are nonsingular be-
cause the matrices Hjj = Ajj − ȲjjVjj , j = 1, 2
are stable. After some straightforward but te-
dious algebra, we see that As − Ȳ00Vs = H00 −
H01H

−1
11 H10 − H02H

−1
22 H20 = H0. Therefore, the

matrix H0 is stable if γ is sufficiently large. Thus,
detJY 	= 0. The conclusion of Theorem 1 is ob-
tained directly by using the implicit function the-
orem. The remainder of the proof is to show that
Ye is the positive semidefinite stabilizing solution.
However, the proof is omitted since it is similar
to that of the reference Mukaidani et al,. (2001).
�

4. THE RECURSIVE ALGORITHM

Now, let us define ||µ|| := E =
√

ε1ε2. By making
use of the zeroth order solutions (12), the solution
(13) can be changed as follows.

Ypq = Ȳpq + EFpq, pq = 00, 10, 20, 11, 21, 22,(16)

where F00 = F T
00, F11 = F T

11, F22 = F T
22, Ȳ21 = 0.

Substituting (16) into (10a) and subtracting (12)
from (10a), we arrive at the following error equa-
tions (17).

H00F00 + F00H
T
00 + H10F10 + F T

10H
T
10 + H20F20

+F T
20H

T
20 − E(F00V00F00 + F T

10V
T
01F00

+F00V01F10 + F T
20V

T
02F00 + F00V02F20

+F T
10V11F10 + F T

20V22F20) = 0, (17a)

F00H
T
10 + F T

10H
T
11 + H01F11 +

√
αH02F21

+
ε1

E H00Y
T
10 − E(F00V01F11 + F T

10V11F11)

−E√α(F00V02F21 + F T
20V22F21)

−ε1(F00V00 + F T
10V

T
01 + F T

20V
T
02)Y

T
10 = 0, (17b)

F00H
T
20 + F T

20H22 + H02F22 +
1√
α

H01F
T
21

+
ε2

E H00Y
T
20 − E(F00V02F22 + F T

20V22F22)

− E√
α

(F00V01F
T
21 + F T

10V
T
11F

T
21)

−ε2(F00V00 + F T
10V

T
01 + F T

20V
T
02)Y

T
20 = 0, (17c)

H11F11 + F11H
T
11 +

ε1

E (H10Ȳ
T
10 + Ȳ10H

T
10)

+ε1(H10F
T
10 + F10H

T
10)

−ε2
1

E Y10V00Y
T
10 − ε1(F11V

T
01Y

T
10 + Y10V01F11)



−ε1

√
α(F T

21V
T
02Y

T
10 + Y10V02F21)

−E(F11V11F11 + αF T
21V22F21) = 0, (17d)

√
αF T

21H22 +
1√
α

H11F
T
21 +

ε1

E Ȳ10H
T
20

+
ε2

E H10Ȳ
T
20 + ε1F10H

T
20 + ε2H10F

T
20

−ε1(Y10V02F22 +
1√
α

Y10V01F
T
21)

−ε2(F11V
T
01Y

T
20 +

√
αF T

21V
T
02Y

T
20)

−ε1ε2

E Y10V00Y
T
20 − E(

√
αF T

21V22F22

+
1√
α

F T
11V

T
11F

T
21) = 0, (17e)

H22F22 + F22H
T
22 +

ε2

E (H20Ȳ
T
20 + Ȳ20H

T
20)

+ε2(H20F
T
20 + F20H

T
20)

−ε2
2

E Y20V00Y
T
20 − ε2(F22V

T
02Y

T
20 + Y20V02F22)

− ε2√
α

(F21V
T
01Y

T
20 + Y20V01F

T
21)

−E(F22V22F22 +
1
α

F21V11F
T
21) = 0. (17f)

Hence, we propose the following iterative algo-
rithm (18) which is based on the recursive algo-
rithm.

H11F
(i+1)
11 + F

(i+1)
11 HT

11

= −ε1

E (H10Ȳ
T
10 + Ȳ10H

T
10)

−ε1(H10F
(i)T
10 + F

(i)
10 HT

10) +
ε2
1

E Y
(i)
10 V00Y

(i)T
10

+ε1(F
(i)
11 V T

01Y
(i)T
10 + Y

(i)
10 V01F

(i)
11 )

+ε1

√
α(F (i)T

21 V T
02Y

(i)T
10 + Y

(i)
10 V02F

(i)
21 )

+E(F (i)
11 V11F

(i)
11 + αF

(i)T
21 V22F

(i)
21 ), (18a)

H22F
(i+1)
22 + F

(i+1)
22 HT

22

= −ε2

E (H20Ȳ
T
20 + Ȳ20H

T
20)

−ε2(H20F
(i)T
20 + F

(i)
20 HT

20) +
ε2
2

E Y
(i)
20 V00Y

(i)T
20

+ε2(F
(i)
22 V T

02Y
(i)T
20 + Y

(i)
20 V02F

(i)
22 )

+
ε2√
α

(F (i)
21 V T

01Y
(i)T
20 + Y

(i)
20 V01F

(i)T
21 )

+E(F (i)
22 V22F

(i)
22 +

1
α

F
(i)
21 V11F

(i)T
21 ), (18b)

√
αF

(i+1)T
21 H22 +

1√
α

H11F
(i+1)T
21

= −ε1

E Ȳ10H
T
20 −

ε2

E H10Ȳ
T
20

−ε1F
(i)
10 HT

20 − ε2H10F
(i)T
20 +

ε1ε2

E Y
(i)
10 V00Y

(i)T
20

+ε1(Y
(i)
10 V02F

(i)
22 +

1√
α

Y
(i)
10 V01F

(i)T
21 )

+ε2(F
(i)
11 V T

01Y
(i)T
20 +

√
αF

(i)T
21 V T

02Y
(i)T
20 )

+E(
√

αF
(i)T
21 V22F

(i)
22 +

1√
α

F
(i)
11 V T

11F
(i)T
21 ), (18c)

H0F
(i+1)
00 + F

(i+1)
00 HT

0

= −H01H
−1
11 L

(i)T
01 − L

(i)
01 H−T

11 HT
01

−H02H
−1
22 L

(i)T
02 − L

(i)
02 H−T

22 HT
02

+E(F (i)
00 V00F

(i)
00 + F

(i)T
10 V T

01F
(i)
00 + F

(i)
00 V01F

(i)
10

+F
(i)T
20 V T

02F
(i)
00 + F

(i)
00 V02F

(i)
20

+F
(i)T
10 V T

11F
(i)
10 + F

(i)T
20 V22F

(i)
20 ), (18d)

F
(i+1)T
j0 = (L(i)

0j − F
(i+1)
00 HT

j0)H
−T
jj , (18e)

where j = 1, 2,

L
(i)
01 = −H01F

(i+1)
11 −√

αHT
02F

(i+1)
21 − ε1

E HT
00Y

T
10

+E(F (i)
00 V01F

(i)
11 + F

(i)T
10 V11F

(i)
11 )

+E√α(F (i)
00 V02F

(i)
21 + F

(i)T
20 V T

22F
(i)
21 )

+ε1(F
(i)
00 V00 + F

(i)T
10 V T

01 + F
(i)T
20 V T

02)Y
(i)T
10 ,

L
(i)
02 = −HT

02F
(i+1)
22 − 1√

α
HT

01F
(i+1)T
21 − ε2

E HT
00Y

T
20

+E(F (i)
00 V02F

(i)
22 + F

(i)T
20 V22F

(i)
22 )

+
E√
α

(F (i)
00 V01F

(i)T
21 + F

(i)T
10 V T

11F
(i)T
21 )

+ε2(F
(i)
00 V00 + F

(i)T
10 V T

01 + F
(i)T
20 V T

02)Y
(i)T
20 ,

Y
(i)
j0 = Ȳj0 + EF

(i)
j0 , i = 0, 1, · · · .

F
(0)
00 = F

(0)
10 = F

(0)
20 = F

(0)
11 = F

(0)
21 = F

(0)
22 = 0.

The following theorem indicates the convergence
of the algorithm (18).

Theorem 2: If we select a parameter γ > γ̄,
there exist the unique and bounded solutions Fpq

of the error equation in a neighborhood of ||µ|| = 0.
Moreover, the algorithm (18) converges to the
exact solution Fpq with the rate of convergence
of O(||µ||i), that is

||Fpq − F (i)
pq || = O(||µ||i), i = 1, 2, · · · . (19)

Proof: As a starting point we need to show the
existence of a unique and bounded solution of
Fpq in neighborhood of ||µ|| = 0. To prove that
by the implicit function theorem, it is enough to
show that the corresponding Jacobian JF of (17)
is nonsingular at ||µ|| = 0. The Jacobian is given
by

JF = JY . (20)

Taking into consideration the fact that JY is
nonsingular at ||µ|| = 0, JF is also nonsingular.
Therefore, there exists a unique and bounded
solution of the error equations (17). Secondly,
the proof of (18) uses mathematical induction.
However, in order to respect pages limitations, the
proof is omitted since it is similar to that of the
reference Mukaidani et al,. (2001). �



Table 1.

Y =




7.7443e − 1 −1.5934e − 1 1.1995e − 2 3.0145e − 2 3.0483e − 1 −1.7552e − 2 −5.2303e − 2 −1.2068e − 1 −1.1517e − 1
−1.5934e − 1 7.7443e − 1 3.0145e − 2 1.1995e − 2 −3.0483e − 1 −1.2068e − 1 −1.1517e − 1 −1.7552e − 2 −5.2303e − 2

1.1995e − 2 3.0145e − 2 6.4581e − 3 2.9175e − 3 1.2093e − 2 2.1547e − 2 −8.7334e − 3 −7.5655e − 3 −1.1394e − 2
3.0145e − 2 1.1995e − 2 2.9175e − 3 6.4581e − 3 −1.2093e − 2 −7.5655e − 3 −1.1394e − 2 2.1547e − 2 −8.7334e − 3
3.0483e − 1 −3.0483e − 1 1.2093e − 2 −1.2093e − 2 1.1827e + 0 1.1885e − 1 −3.7194e − 2 −1.1885e − 1 3.7194e − 2

−1.7552e − 4 −1.2068e − 3 2.1547e − 4 −7.5655e − 5 1.1885e − 3 1.6204e − 2 1.6222e − 2 3.5482e − 4 3.4417e − 4
−5.2303e − 4 −1.1517e − 3 −8.7334e − 5 −1.1394e − 4 −3.7194e − 4 1.6222e − 2 5.0369e − 2 3.4417e − 4 4.5092e − 4
−1.2068e − 3 −1.7552e − 4 −7.5655e − 5 2.1547e − 4 −1.1885e − 3 3.5482e − 4 3.4417e − 4 1.6204e − 2 1.6222e − 2
−1.1517e − 3 −5.2303e − 4 −1.1394e − 4 −8.7334e − 5 3.7194e − 4 3.4417e − 4 4.5092e − 4 1.6222e − 2 5.0369e − 2


 .

5. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our
proposed algorithm, we have run a numerical
example. The system matrix is given by

A00 =



0 0 4.5 0 1
0 0 0 4.5 −1
0 0 −0.05 0 −0.1
0 0 0 −0.05 0.1
0 0 32.7 −32.7 0


 ,

Ajj =
[−0.05 0.05

0 −0.1

]

A01 =


02×2

Ap

02×2


 , A02 =


03×2

Ap

01×2


 , Ap =

[
0.1
0

]T

A10 =
[
02×2 −4Aq 02×2

]
, Aq =

[
0 0.1

]T

A20 =
[
02×3 −4Aq 02×1

]
, D0j = 05×1, Djj = Aq

CTC = diag(1, 1, 1, 1, 1, 0, 0, 0, 0), R = 20

GTRG = diag(1, 1, 1, 1, 1, 1, 1, 1, 1), γ = 5.

The small parameters are chosen as ε1 = ε2 =
0.01. Note that we can not apply the tech-
nique proposed in Coumarbatch and Gajić, (2000)
to the MSPS since the Hamiltonian matrices
Zjj , j = 1, 2 have eigenvalues in common. We
give a solution of the GMARE (10a) in Table 1.
We find that the solution of the GMARE (10a)
converge to the exact solution with accuracy of
||F(Y (i))|| < e − 10 after 22 iterative iterations,
where “e − x” stands for “×10−x. For different
values of ε1 and ε2, in order to verify the exac-
titude of the solution, the errors (i.e. ||F(Y (i))||)
and the necessary iteration numbers of the algo-
rithm (18) are given by Table 2. From Table 2,
since for sufficiently small perturbation param-
eters the convergence speed is quite good, the
resulting algorithm of this paper is very useful.

Table 2. Error ||F(Y )||
ε1 ε2 Iterations Errors

1e − 2 1e − 2 22 3.5484e − 10
1e − 2 5e − 3 24 7.3850e − 10
1e − 3 1e − 3 5 5.6755e − 10
1e − 3 5e − 4 5 3.5433e − 10
1e − 4 1e − 4 3 2.1241e − 10
1e − 4 5e − 5 3 1.2052e − 10
1e − 5 1e − 5 2 2.1017e − 10

6. CONCLUSION

In this paper, we have proposed a new recursive
algorithm for solving the MARE which has the
indefinite sign quadratic term. We have proven
that the solution of the MARE converges to
a positive semi–definite stabilizing solution with
the rate of convergence of O(||µ||i+1). As another
important feature, since we do not assume that
the Hamiltonian matrices Zjj , j = 1, 2 for
the fast fast subsystems have no eigenvalues in
common compared with Coumarbatch and Gajić,
(2000), our new results are applicable to more
realistic MSPS.
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