
A QUASI-ARX MODEL INCORPORATING NEURAL
NETWORK FOR CONTROL OF NONLINEAR

SYSTEMS

Jinglu Hu ∗ Kotaro Hirasawa ∗ Kousuke Kumamaru ∗∗

∗ Department of Electrical and Electronic Systems Engineering,
Kyushu University, Hakozaki 6-10-1, Higashiku,

Fukuoka 812-8581, Japan
TEL: (+81)92-642-3956, FAX: (+81)92-642-3962

E-mail: jinglu@cig.ees.kyushu-u.ac.jp
∗∗ Department of Control Engineering and Science,

Kyushu Institute of Technology, Kawazu 680-4,
Iizuka 812, Japan

Abstract: Neural networks have been known as flexible nonlinear black-box models
and have attracted much interest in control community. This paper introduces a new
neural-network based prediction model for control of nonlinear systems. Distinctive
features of the new model to the conventional neural-network based ones are that it
has not only meaningful interpretation on part of its parameters but also is linear for
the input variables. The former feature makes the parameter estimation easier and
the latter allows deriving a nonlinear controller directly from the identified prediction
model. The modeling and the parameter estimation are described in detail. The
usefulness of the new model is demonstrated by applying it to control of two simulated
nonlinear black-box systems.
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1. INTRODUCTION

Neural networks have recently attracted much
interest in system control community because
they learn any nonlinear mapping (Narendra and
Parthasarathy, 1990). Many approaches have been
proposed to apply neural networks to prediction
and control of general nonlinear systems (MillerIII
et al., 1990; Sjöberg et al., 1995; Zhang and
Wang, 2001). In most of these approaches, neural
networks are used directly as nonlinear models
(Narendra and Parthasarathy, 1990; Chen and
Chen, 1993). However, there are two major crit-
icisms on using neural network models; one is
that they do not have useful interpretations in
their parameters, especially for multilayer percep-
tron (MLP) network (Benitez et al., 1997); the

other is that they do not have structures favorable
to certain applications such as controller design
and system analysis (Narendra and Mukhopad-
hyay, 1997; Chen and Chen, 1993). In this paper,
a new neural-network based model is introduced;
the motivation is intended to introduce a desir-
able model structure and to make part of model
parameters meaningful.

In many areas of linear control and some areas of
nonlinear control, the theory and design method-
ology are well studied. In such areas neural net-
works can play a supportive role to synthesize and
tune feedback controllers autonomously instead of
replacing conventional controllers. This approach,
combining the existing results in the literature
of control theory and neural networks, is more
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acceptable by engineers and practitioners (Zhang
and Wang, 2001). Following this consideration,
a quasi-ARX prediction model is developed with
incorporating MLP network. The model has some
linear properties similar to linear ARX model,
which are useful for control design and system
analysis.

It has been shown that a general nonlinear sys-
tem can be represented as ARX like regression
form by using mathematical transformations such
as Taylor expansion (Hu et al., 2001). Such an
ARX macro-model has “state dependent coeffi-
cients”. The “state dependent coefficients” are
then parameterized by using a multi-input and
multi-output (MIMO) MLP network. The model
obtained in this way is called quasi-ARX model,
which has useful interpretation in part of its pa-
rameters. Moreover, by introducing a virtual in-
put variable, the quasi-ARX model is transformed
into one linear in the input variables, which is a
useful linearity for controller design.

There are many estimation algorithms available
for neural-network based models (Sjöberg and
Ljung, 1995; Ljung, 1999). However, it has been
found that these methods are not efficient for
the quasi-ARX prediction model. To solve this
problem, a hierarchical estimation algorithm is
introduced. The algorithm consists of two learning
loops, corresponding to the meaningful part and
the meaningless part of model parameters. Nu-
merical simulation results show that that the pro-
posed dual learning algorithm is efficient to solve
local minimum problem and can solve overfitting
problem to some extent (Hu et al., 2001).

The paper is organized as follows: Section 2 de-
scribes the system to deal with. Section 3 pro-
poses the quasi-ARX prediction model. Section 4
introduces a dual loop learning algorithm for pa-
rameter estimation. Section 5 applies the model to
control of two numerical systems. Finally, Section
6 presents Conclusions.

2. SYSTEM DESCRIPTION

Let us consider a single input single output
(SISO) nonlinear time-invariant system whose
input-output relation described by

y(t) = g(ϕ(t)) + e(t) (1)

ϕ(t) = [y(t− 1) ... y(t− ny)u(t− 1)

... u(t− nu − d+ 1)]T (2)

where y(t) is the output at time t (t = 1, 2, ...),
u(t) the input, ϕ(t) the regression vector with
known order (ny, nu), d the known integer time
delay, e(t) the disturbance, and g(·) the unknown

nonlinear function. We further introduce the fol-
lowing assumptions:

• Assumption 1, the elements of the regression
vector ϕ(t) are bounded;

• Assumption 2, g(·) is a continuous function,
but at a small region around ϕ(t) = 0, it is
C∞ continuous.

3. QUASI-ARX PREDICTION MODEL

Our aim is to develop a neural-network based
prediction model similar both in the form and in
the properties to a linear ARX prediction model.

3.1 ARX Like Macro-Model

Introduce two polynomials A(q−1, φ(t)) and
B(q−1, φ(t)), defined by

A(q−1, φ(t)) = 1− a1,tq
−1 − ... − any,tq

−ny

B(q−1, φ(t)) = b0,t + b1,tq
−1 − ...− bnu−1,tq

−nu+1

where coefficients ai,t and bi,t are nonlinear func-
tions of a regression vector φ(t) = [y(t) ... y(t −
ny +1)u(t) ... u(t−nu−d+2)]T . By using Taylor
expansion and other mathematical transforma-
tions, it is easy to show that the system (1) can
be represented by an ARX macro-model

A(q−1, φ(t− d)) ∗ y(t, φ(t− d))
= g(0) +B(q−1, φ(t− d))q−du(t) + e(t) (3)

where y(t, φ(t − d)) is the model output. ‘∗’ is a
new multiplication operator, for which A(q−1, φ(t))
and B(q−1, φ(t)) are commutable, e.g., q−1 ∗
A(q−1, φ(t)) = A(q−1, φ(t)) ∗ q−1, see (Hu et
al., 2000; Hu et al., 2001) for more details

Theorem For a system described by (3), the
one-step-ahead prediction, yo(t+ d|t, φ(t)), of y(t)
satisfies

yo(t+ d|t, φ(t))
= yφ + α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t) (4)

where

yo(t+ d|t, φ(t)) = y(t+ d)− F (q−1, φ(t))e(t + d),

yφ = F (q−1, φ(t))g(0),

α(q−1, φ(t)) =G(q−1, φ(t))),

= α0,t + α1,tq
−1 + ...+ αny−1,tq

−(ny−1),

β(q−1, φ(t)) = F (q−1, φ(t)) ∗B(q−1, φ(t)),

= β0,t+β1,tq
−1+...+βnu+d−2,tq

−nu−d+2,

and G(q−1, φ(t)), F (q−1, φ(t)) are unique polyno-
mials satisfying



F (q−1, φ(t)) ∗A(q−1, φ(t))

= 1−G(q−1, φ(t))q−d

Proof : See (Hu et al., 2001).

3.2 Linearity for the Input Variable u(t)

Based on linear control system theory, it is easy
to derive a control law if the prediction model
used is linear in the control variable u(t). However,
a general nonlinear prediction model is nonlinear
for the variable. To solve this problem, a virtual
variable x(t) and an assumption are introduced.

• Assumption 3 :
The variable u(t) can be synthesized by a
unknown function defined by u(t) = ρ(ξ(t)),
where ξ(t) = [y(t) ... y(t − n1 + 1) x(t +
d) ... x(t−n3 + d+1) u(t− 1) ... u(t−n2)]T .

Remark : It is clear that if a system is controllable,
the assumption 3 is satisfied. ρ(·) can be seen as
a unknown control law, and x(t) is considered
as reference signal. It is reasonable to choose
n1 = ny, n2 = nu + d − 2, n3 = 1, which gives
ξ(t) = [y(t) ... y(t−ny+1) x(t+d) u(t−1) ... u(t−
d+ 2)]T .

By replacing the variable u(t) in φ(t) with ρ(·),
a prediction model linear in the variable u(t) is
obtained

yo(t+ d|t, ξ(t))
= yξ + α(q−1, ξ(t))y(t) + β(q−1, ξ(t))u(t) (5)

where yξ is yφ whose variable u(t) is replaced
by ρ(·). By introducing Φ(t) = [1 y(t)...y(t −
ny + 1)u(t)...u(t − nu − d + 2)]T , and Θξ =
[yξ α0,t ... αny−1,t β0,t ... βnu+d−2]T , the ARX-like
macro-model (5) is expressed by

yo(t+ d|t, ξ(t)) = ΦT (t)Θξ. (6)

3.3 Incorporation of Neural Network

The macro-model (6) is not feasible at this stage
because the elements of Θξ are unknown nonlinear
function of ξ(t), which must be parameterized.
In contrast with our previous work (Hu et al.,
2001), in the new method we will parameterize the
elements of Θξ using MLP network. A significant
advantage of using neural network is that it can
be used to deal with higher dimensional problems.

Parameterizing Θξ with a multi-input multi-
output (MIMO) MLP network, the quasi-ARX
prediction model is expressed by

M : yo(t+ d|t, ξ(t)) = ΦT (t)N (ξ(t),Ω) (7)

+

+
Σ

y  (t+d|t,ξ(t))

. . .

...... ...

  MIMO MLP neural network

Φ(t)

ξ(t)

1

y(t)

y(t-ny+1)

u(t)

u(t-nu-d+2)
x(t+d)

. . .
. . . o

...

Fig. 1. The quasi-ARX prediction model incorpo-
rating MLP network.

where N (·, ·) is a 3-layer MLP network with n
input nodes, M sigmoidal hidden nodes and n +
1 linear output nodes 1 . Figure 1 shows the
quasi-ARX prediction model incorporating MLP
network.

Let us express the 3-layer MLP network by

N (ξ(t),Ω) =W2Γ(W1ξ(t) +B) + θ (8)

where Ω = {W1, W2, B, θ}, W1 ∈ RM×n, W2 ∈
R(n+1)×M are the weight matrices of the first and
second layers, B ∈ RM×1 is the bias vector of
hidden nodes, θ ∈ R(n+1)×1 is the bias vector
of output nodes, and Γ is the diagonal nonlinear
operator with identical sigmoidal elements σ (i.e.,
σ(x) = 1−e−x

1+e−x ). Then the quasi-ARX prediction
model (7) is expressed in a form of

M : yo(t+ d|t, ξ(t)) =

ΦT (t) ·W2Γ(W1ξ(t) +B) + ΦT (t)θ. (9)

The quasi-ARX prediction model consists of two
parts: the second term of the right side of (9) is
a linear ARX prediction model part, while the
first term is a nonlinear part. Therefore, in the
quasi-ARX prediction model the bias of output
nodes θ describes a linear approximation of the
object system. This makes θ be distinctive to
other parameters. This feature allows us to use
a dual loop leaning algorithm for the estimation.

4. HIERARCHICAL ALGORITHM

In the quasi-ARX prediction model, parameter
vector θ describes a linear approximation. There-
fore, it is natural to estimate θ in a different
way to other parameters. Let zL(t) = yo(t +
d|t, ξ(t)) − ΦT (t)W2Γ(W1ξ(t) + B) and zN(t) =
yo(t+ d|t, ξ(t))−ΦT (t)θ, then the model (9) may
be decomposed into the following two submodels

SM1 : zL(t) =ΦT (t)θ (10)

SM2 : zN (t) =ΦT (t)W2Γ(W1ξ(t) +B) (11)

1 The number of input node is n = dim(ξ(t)) = ny+nu+
d − 1, the number of output node is equal to dim(Φ(t)) =
n+ 1.



where zL(t) is regarded as the output of linear
submodel (10), and zN(t) the output of nonlinear
submodel (11). In this way, a hierarchical training
algorithm can be introduced for the parameter
estimation, described by

• Step 1 : set θ = 0, and small initial values to
W1, W2, and B.

• Step 2 : calculate zL(t), then estimate θ
for submodel SM1 by using a recursive
least square (RLS) algorithm as described in
(Ljung and Söderström, 1983).

• Step 3 : calculate zN (t), then estimate W1,
W2 and B for submodel SM2. This is re-
alized by using the well-known backpropa-
gation (BP) algorithm, but the BP is only
performed for a few epochs L.

• Step 4 : stop if pre-specified condition is met,
otherwise go to Step 2 and repeat the esti-
mation of θ, and W1, W2, B.

The hierarchical algorithm consists of two loops.
One is RLS estimation of θ, which does not have
drawbacks such as overfitting and getting stuck at
local minimum. The other loop is BP estimation
of W1, W2, and B, which suffers problems of
overfitting and local minimum. The hierarchical
learning can reduce the risk of getting stuck local
minima. Moreover, reducing the BP estimation
step L in each iteration, the role of BP estimation
is reduced. This is found to have role to solve
the overfitting problem to some extent. For small
noisy data sets, the step L should be small, see
(Hu and Hirasawa, 2001).

5. NUMERICAL SIMULATIONS

The quasi-ARX prediction model is applied to
control two simulated nonlinear systems in order
to show its usefulness.

5.1 Numerical Systems to Be Controlled

Example 1: The system to be controlled is as-
sumed to have a dead zone, shown in Fig.2. The
linear part of the system is described by

G(q−1) =
0.7q−1 − 0.68q−2

1− 1.72q−1 + 0.74q−2
, (12)

while the nonlinear element is a dead zone de-
scribed by

z(t) =



u(t)− 1.75 if u(t) > 2
0.0625× sign(u(t)) × u2(t) if |u(t)| ≤ 2
u(t) + 1.75 if u(t) < −2

Example 2: The system is a nonlinear one gov-
erned by

−1.72 +0.74q−1 q−2

0.7 −0.68q−1

1

UNKNOWN NONLINEAR SYSTEM

q−2 y(t)u(t)

u(t)

z(t)

z(t)

dead zone

Fig. 2. A unknown nonlinear system with dead
zone in the input.

y(t) = f [y(t− 1), y(t− 2),

y(t− 3), u(t− 1), u(t− 2)] (13)

where

f [x1, x2, x3, x4, x5] =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

.

The above two systems are treated as unknown
nonlinear ones. No prior information concerning
system nonlinearity is used in the following simu-
lations.

Table 1. Specifications of quasi-ARX models
used for Example 1 and Example 2

ny nu d M MLP NOP

Example 1 2 2 1 15 N4×15×5 155

Example 2 3 2 1 20 N5×20×6 246

5.2 Identification of Prediction Models

The quasi-ARX prediction models used for Ex-
ample 1 and Example 2 are described by (9), and
their specification are shown in Tab.1, where NOP
denotes number of parameters.

To identify the models, from each system we
record 1000 input-output data sets by exciting
the system with a kind of random input sequence.
Figure 3 shows the first 300 data sets taken from
Example 1. Note that there is a virtual input
variable in the models, which is corresponding to
the reference signal in a control system. A kind
of random sequence shown in Fig.3(c) is used for
this input variable in order to obtain quasi-ARX
prediction models that are able to deal with any
reference signals in the control systems.

The hierarchical algorithm described in Section 4
is used to estimate model parameters. For each
example, 200 iterations are carried out, where BP
estimation step L is 500. When a noise signal is
used as disturbance, one should decrease the value
of L and increase the total iterations. Figure 4
shows the root mean square (RMS) error for the
estimations; solid line is the result of Example 1,
and dashed line the result of Example 2.
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Fig. 3. (a) and (b) Input-output data taken from
the system in Example 1 ; (c) A kind of
random input sequence used for the virtual
input variable of the quasi-ARX prediction
model.
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Fig. 4. Root mean square errors for estimation of
the quasi-ARX prediction models for Exam-
ple1 (solid line) and Example 2 (dashed line).

5.3 Control of the Systems

The systems are then controlled by applying the
identified quasi-ARX prediction models

yo(t+ 1|t, ξ(t)) = ΦT (t)Θ̂ξ (14)

where Θ̂ξ = [ŷξ α̂0,t ... α̂ny−1,t β̂0,t ... β̂nu+d−2,t]T .

5.3.1. Control Systems Let us consider a min-
imum prediction error control by minimizing a
criterion function defined by

y*

e

yu

+

-

ŷ

Controller 
parameters

  Quasi-ARX prediction model
y   (t+d|t,ξ(t))=yξ+α(q  ,ξ(t))y(t)+β(q   ,ξ(t))u(t)-1 -1

Nonlinear black-box systems-1ρ(yξ, α(q   ,ξ(t)), β(q   ,ξ(t)))-1

Controller

Fig. 5. Quasi-ARX model based control system for
unknown nonlinear systems.

J(t+ d) =
1
2

[
(y(t+ d)− y∗(t+ d))2 + λu(t)2

]
(15)

where y∗(t) is reference signal, and λ = 0.001 is
weighting factor for the control input. Using the
identified quasi-ARX models (14) as prediction
models, we can easily obtain controllers by the
minimization of (15)

u(t) =
β̂0,t

β̂2
0,t + λ

{[
(β̂0,t − β̂(q−1, ξ(t)))q

]
u(t− 1)

+y∗(t+ 1)− α̂(q−1, ξ(t))y(t)− ŷξ

}
, (16)

due to the linearity of the quasi-ARX model for
the variable u(t). In the control law (16), as
an element of ξ(t), the virtual input variable of
prediction model x(t + d) is replaced by using
reference signal y∗(t). Figure 5 shows the quasi-
ARX model based control system for unknown
nonlinear systems.

5.3.2. Control Results The aim of the control
system is to track the reference signals y∗(t).
When identifying the quasi-ARX prediction mod-
els, random sequences have been used for the
virtual input variable x(t). The control laws (16)
are able to deal with any reference signals.

The two systems in Example 1 and Example
2 are rather nonlinear. Linear ARX prediction
model has been found to be not able to con-
trol the systems well. Because of page limita-
tion, we only show the results using the quasi-
ARX prediction model. Figure 6 and 7 show the
control results for Example 1 and Example 2 by
using the proposed quasi-ARX prediction model,
respectively. Although the reference signals have
suddenly changes at t = 100 and t = 150, the
controlled systems can track the reference signal
quite well; the RMS control errors are 0.158 and
0.050, respectively.

6. CONCLUSIONS

A new neural-network based prediction model
is proposed for control of black-box nonlinear
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Fig. 6. Control results for Example 1.
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Fig. 7. Control results for Example 2.

systems. In the new model, MLP network is not
used directly as models, but is embedded in an
ARX macro-model. One of distinctive features of
the new quasi-ARX prediction model is that it
is linear for the input variables, which must be
synthesized in a control system. This feature is
very useful for controller design. The usefulness
of the new model has been confirmed by applying
it to control of two simulated nonlinear systems.
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