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Abstract: In the recent past, we considered some parameter estimation problems,
arising from a one dimensional heat diffusion system. In such problems one normally
uses finite order models to approximate the infinite order heat diffusion system, and
estimate the parameters involved. Therefore, all the parameter estimates are bound
to be biased, even if one considers the availability of infinite data sequences. In this
paper we perform an analysis of the bias as well as the variance of the parameter
estimates, obtained by using certain approximations. We derive some expressions,

which we support with simulations.
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1. INTRODUCTION

In the recent past, we did some work in esti-
mating the parameters of a one dimensional heat
diffusion system, see (Bhikkaji, 2000), (Bhikkaji
and Sdderstrém, 2001) and (Remle, 2000). In all
the above mentioned references, we considered a
one dimensional heat diffusion system, which was
modeled by a linear PDE involving some unknown
parameters. To simulate this one dimensional heat
diffusion system, one has to estimate these un-
known parameters. Since the model is of infinite
order, one has to first approximate it by a finite
order model and then to estimate the parameters
by using the finite order approximation. In this
paper we do not go into the details of constructing
finite order approximations, as they had already
been done in the above mentioned references, but
perform an analysis of the bias and the vari-
ance of parameter estimates obtained by using
the approximate models suggested in the above
mentioned references. It must be mentioned that

similar analysis has been done for many other
problems in the past, see (D. Kundu and A. Mi-
tra, 1996), (R. Pintelon and J. Schoukens, 2001)
and (Soderstrém and Stoica, 1989), to name a few.

In section 2 of this paper we define the problem
and our goal, along with a general framework. In
section 3 we derive some bounds for the bias and
the variance in the parameter estimates.

2. A GENERAL FRAMEWORK

In (Bhikkaji, 2000), (Bhikkaji and S&derstrom,
2001) and (Remle, 2000), we have considered a
simple case of a one dimensional heat diffusion
across a homogeneous wall. The dynamics is de-
scribed by the PDE,

T (z,t) _  8*T(z,t)
ot X0 542 )

with boundary constraints



¢:(t) = —ko 6T6(:;, f) lz=0, 2)

T.(t) =T(d,?), (3)

where T'(z,t) is the temperature profile across the
wall, which is of length d units, and ap and &g
are the parameters which characterise the wall.
The problem considered in the above mentioned
references is as follows. Given the boundary data
{gi(kh) , T.(kh)}\ , and the corresponding in-
ternal temperature, {T(0,kh)} ,, for a known
sampling interval of h units, estimate the param-
eters ag and ko.

To estimate the parameter vector
80 = (a0 , ko)", 4)

we converted the above problem into a standard
system identification problem, by first transform-
ing the PDE model, (1), (2) and (3), into a stan-
dard LTI system of the form,

y(t) = G=(s,60)u(t) + v(D), (%)

where G™ (s, 8p)u(t) is a notation used, for conve-
nience, to denote the time domain output of the
LTI system with a transfer function G (s,8p) and
input u(t), y(t) is the net system output, i.e, the
output of the LTI system, T'(0,t), plus the noise
v(t) and

u(t) = [@(t) , ()], (6)

is the input. Further, v(t) denotes a Gaussian
white noise sequence with mean zero and vari-
ance o2. Note that, the symbol s in the transfer
function G (s, 8y) denotes the Laplace transform
of the operator 4. The parameter vector o is
then estimated by using the standard least squares

technique,
1 X
b i L _,m 2
§ = min Nk§=1(y(kh) y™(kh))*, (M

where the model output y™(kh) is
¥y (t) = G=(s,0)u(t) ®)

sampled at the time instants ¢ = h,2h,...,Nh,
and 8 denotes the estimate of the parameter
vector fg.

In the above mentioned references, we have shown
that the dynamics (1) - (3) can be converted to
the transfer function

tanh(d, / %
G (s, 80) = aub(dy/ %) L (9)

Koy/ = ’cosh(d =)

which is a transcendental function (and an infinite
order transfer function). To numerically compute
the parameter estimate, § in (7), one has to

approximate the infinite order transfer function
G™(s,8) by a finite order transfer function, when
computing the model output y™(¢), (8).

Therefore, in the earlier references we constructed
some finite order approximations of (5), by
using certain standard numerical PDE solvers
like Finite-Difference scheme in (Remle, 2000),
Chebyshev-Galerkein, Chebyshev-Tau, Chebyshev-

Collocation and Chebyshev Interpolation, in (Bhikkaji,

2000). These approximate models were typically
of the form

y™(t) = Gr(s,0)u(t), (10)
where
Gn(s,8)=[G7(s,0) , G3(s,0)), (1)
with
G (s,0) = %Dl +C(sI - aA)‘liaBl (12)
and
G3(s,0) = D2+ C(sI — aA) 'aB,, (13)

8 = (a, k)T and u(t) as defined in (6). In (12)
and (13) A is an n X n matrix, By and B, are
n % 1 column vectors, C is a 1 x n row vector and
D; and D, are scalars. For the sake of notational
convenience we rewrite (12) and (13) in a more
compact form,

Gn(s,0) =D + C(sl —aA)'aB, (14)

where
B= [%B1 | Bal, (15)
D= [%D1 , Dyl. (16)

Note that, the scaling done in the first column of
B and D, by a factor 1, is consistent with the
scaling done in the first column of G*(s,8y) by
Ko-

From the results we obtained in (Bhikkaji, 2000),
(Bhikkaji and Soderstrom, 2001) and (Remle,
2000), we assume the following

(1) The convergence

Gn(s,0) = G>(s,0), (17
is uniform in both the variables s and 8, as
n = oo.
(2) If

Gn(s,0,) =Gn(s,0;) Vs (18)
then
61 =65, (19)
and the same holds for G*(s, §) also.



(3) For any given s and 4
s M
| G*=(s,8) — G™(s,8) [I< 7171, (20)

where M, is a positive constant and k is an
integer > 1. The value of k depends on the
choice of approximation.

(4) For any given s and 8

G (s,9) _, 96(s,9)
a6 89

It must be mentioned here that, the (17) and
(20) have not been proved for the all approximate
models constructed in the above mentioned refer-
ences. In most cases they are justified by using
simulations. Nevertheless we accept them here.
Using (17) and (20) one can prove (21).

21

Since we use the finite order approximation
G (s,8), (14), to estimate the parameters, the
parameter estimate 8, (7), is replaced by

7, £ argmin V5 (6), (22)

where
L
Vi) =+ D (y(kh) —y™(kR))?,  (23)
k=1

and {y™(kh)}{_, is y™(t), (10), sampled at t =
h,2h,...,Nh. Note that, from here on for tech-
nical ease, we refer to the time samples y(kh)
and y™(kh) by G*(s,8)u(k) and G"(s,8)u(k),
respectively.

Here, our goal is to derive bounds on the bias (for
a large n) in the parameter estimates and also
obtain an expression for the variance (for a large
N) of the parameter estimates. In the ideal case
where both n — oo and N — 00, it can be easily
shown the parameter estimate that

2 = 6o, (24)
provided the input u(t) is second order persis-

tently exciting, see (Séderstrdm and Stoica, 1989)
for details.

3. BIAS ANALYSIS

In this section, we do an analysis of the bias in
the parameter estimates, (22), as N — oo. It must
be mentioned here that, a similar analysis of the
bias in the parameter estimates has been done in
(Remle, 2000).

Let
VE(0)2 Jim Vi6), (25)

where V() is as defined in (23), and define the
asymptotic parameter estimate as

6 2 arg min V2 (6). (26)

A standard argument, see (S6derstrém and Stoica,
1989), shows that

V2 (0) = B{(y(k) — Gn(s,0)u(k))’}.  (27)

Note that

Va(8) = E{([G™(3,00) — G (5,0)lu(k))*} + o,

AW) + 0. (28)
Since
lim, G™(s,0) - G™(s,0), (29)

uniformly in 8, one can see that
lim VZ2(6) = V(6) (30)

uniformly in 4. This implies that

. < rn . 1,00
nli)n;o min Ve (@) = min V2 (8)- (31)
Since gy is a unique minimum of V.2°(6),

Jim 67, — 6o. (32)
Thus the convergence of the parameter estimates
8%, to fg has been rather easily established. To ob-

tain a bound on the bias present in the parameter
estimates, we do the following.

Since G (s,6) is of the form (14), it is infinitely
differentiable with respect to the parameter 6
and hence, V2 (0) is also infinitely differentiable.
Therefore by applying the mean value theorem
on V;'(G) in a closed and bounded domain D
containing both 930 and 69, we have

VR (6n) = V2 (80) + (82, — 60)T VR (6")(33)

where 8* is a unique element contained in D, and
is a convex combination of 6y and 6% ,.

Note that, from (32), for an n large enough”
87 =~ 6y, and so §* = 6y. Therefore, since V2 " (8)
varies continuously with respect to 8, we have

Va6 = VR (60). (34)

Note that by definition, (26),

va'(6%) =o. (35)
Hence using (34) and (35) in (33), we have
(0, —80) = —[v2" @) (V2 60)) " - 36)

Therefore to obtain an estimate for the bias (36),
one has to compute the first and the second
derivatives of V2 (6).



Note that from (28),
V' (60) =W (80) (37)
V" (60) =W (60)- (39)
Further, from (28) we have

W’ (60) =E{2<—M *)

X ((G*(s,80) — G"(3,60))u(k))X39)
The Hessian (38) can be evaluated as follows:

8Gn (s 80)

W (60) = 2E{(~ u(k))
x(~ M w(k)T)
+2E{ ((G°°(s,00) - Gn(s,oo))u(k))
2
(-2 ). (40)

If one chooses a large n, the second term of (40)
is much smaller than the first term. Hence, for a
large n, (40) can be approximated by

" aGn(s, 6
W' (80)m 25((- 250 )
aGn(s, 0
(- 2C )y,
£93%, (41)
which is a 2 x 2 positive definite matrix.

Note that

aGr (s %) k) dGn (s %) k)

=[5

LD ;; o, @2
Let )
x =200y,
v() = 2800, 4 (1)
and

Z(k) = (G (s, 60)
Hence, from (39), we have

W'(60) = E{{X(k), Y(k)]TZ(k)}. ~ (46)

—Gn(s,00))u(k). (45)

Since Z(k), (45), is a scalar, by using the triangle
inequality on (46) we have

| W' (60) 1< | E{X(k)Z(k)} |
+ E{Y(K)Z(k)}|.  (47)
By Cauchy-Schwartz inequality,

| E{X(kK)Z2(k)} | < VE{| X (k) |’}
xVE{| Z(k) |’} (48)

and

| E{Y(k)Z(k)} | < VE{| Y (k) |*}
xVE{| Z(k) |’} (49)
Hence, form (47), (48) and (49), we have
| W' (80) | < 2/E{| X (k) P} + VE{[ Y (%) P})
xv E{| Z(k) |*}. (50)
Note that the expected values E{X(k)Z(k)},
E{Y(k)Z(k)}, E{| X(k) |’} and E{| Y (k) |’}

exist, since 267(8,60) g 4 gtable transfer function
and u(t) is a bounded input.

Note that, from (41),
(V" 6o 1< <:
Since, from (36),
166~ 6% 1< [V&a" (Bo)] ™" {lll V2 (60) I1(52)
by using (50) and (51) in (52) we have

LR R

Il 60 — 67,

VE(IZ Y.

To obtain an expression for the rate of con-
vergence, we estimate E{| Z(k) |2}. Note that
E{| Z(k) |?} is a sampled version of

“ 2
E{((G(5,80) - Gn(s,00))u(t)) }.  (54)

Hence any bound that holds for (54) holds for
E{| Z(k) |?} also. Note that

N 2
E{((G™(s,60) — G"(5,60))u(t)) '}
- /_ ” (G™ (i, 80) ~ G (i, 80))Bu ()
X(G* (—iw, 80) — G (—iw,80)) Tdw, (55)

where &, (w) is the power spectrum of the input
u(t), see (Soderstrém and Stoica, 1989) for a
definition of power spectrum. Therefore
00
Bz P [ 116w bo) -
—o0

x| @u(e) | do,
<(B) [T e e @

Note that, the above inequality is obtained by
using the assumption (20). Let

Gn (iw, 8o) ||

m =/_°° [ ®u() || dw<oo.  (57)

Note that, if the input «(t) is a zero mean sta-
tionary random process, then its variance is given
by

I<IZ I (VE{ X P} + VE{Y [2}) x



BE{u?(t)} = /_ Z &, (w)dw

Hence m;, in some sense, can be interpreted as
a measure of the variance of the input u(t). Note
that, from (53),

A K
160 - 62 1< ., (59)

where K is a constant,

K=|12' | VE{I X P} + VE{|Y I?})
x Myv/m,. (60)

In summary, the parameter estimates 9& converge
to g at the same rate O(z5) as the approximate
transfer function G"(s,8) approaches G™(s,8),
see (59) and (20).

4. VARIANCE ANALYSIS

In the last section, we have done an analysis on the
asymptotic bias present in the parameters due to
the use of a finite order model. Here, we look into
the asymptotic variance of the parameters from
the true value 6q.

Note that the estimation error (é"N — 6p) can be
written as

0% — 8 = (8% — 82) + (62, — 80).  (61)

The first term in the right hand side of (61) is
referred to as the variance contribution, and the
second term as the bias contribution. We have
dealt with the bias contribution in the previous
section. Here we consider the variance contribu-
tion (%, — 7).

As before, see (33), by using the mean value
theorem and the fact that V2 (%) = 0, we have

@5 -0z =~V " @™ (V' 6)) " (62)

where 8* lies on the straight line between é?v and
OAQO. It Athe data length N is large enough, tIgen

~ = 05, which in turn implies that §* ~ 67.
And since 62 ~ 6y, we have

. N " , T
@ —62) = -V " @)™ (V' (60)) - (63)

Therefore, to quantify (éN oy ™), one has the
evaluate the first and the second derivatives of
V4 (0) at 6.

Note that, from (23), we have

N
Vi (0%) = = Slw(k) — Go(s,60)u(b)
k=1

[—a—G%—Z—’@u(k)]

Z <k)[—m @7

-|~—]\7 Z((G“’(s,é’g) — G (3,60))u(k))
k=1

R CL I

If n is large enough, then the second term in the
RHS of (64) can be neglected, i.e,

V' (60) - Z (k)("’G (0,80) (k). (65)

By using the central limit theorem, see (S6derstrom
and Stoica, 1989), one can show that

VNVZ' (60) = N(0,40°%,) (66)

as N — oo, where T, is as defined in (41).
From (23), one can see that
N

Z{(—"’G GLN

6G (S, 00)

Vi (80) =

x(= u(k))}

+2— Z{((G“(s 80) — G™(s,80))u(t))

82 G’ (s,60)

X(——5p2 u(t)"}- (67)

As before, by choosing a large n, we approximate
(67) by

N
V" (60) = NZ{(—M ()

0G" (s, 6
x(~ M w7}, (68)
which implies that
Jim Vg "(8o) = 25,. (69)
Therefore

VN(§BF — 67) 5 N(0,0%2;13,2:1)
= N(0,0%Z;1), (70)

In summary, (70) implies that (for a large n) 472, is
asymptotically (as N — oco) Gaussian distributed,
with a covariance matrix that can be found from
(70) and (41).
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Fig. 1. Asymptotic variance of the random vari-
able VN(&% — ao) along with its predicted
variance.

5. NUMERICAL ILLUSTRATION

In this section, we present some numerical illus-
tration of the variance result (70).

To make the simulations comprehensive, the fol-
lowing input sequence was generated for our iden-
tification experiment. First we generate two inde-
pendent white noise sequences of variance one and
pass them thorough the low pass filter

1
1—1.88¢~1 +0.9732¢~2’

H(g™") = (71)
which is of finite bandwidth and has a resonant
peak. The output of the filter is further added with
white noise sequences of variance 0.2, so that the
net signal is reasonably frequency rich within the
filter band. The net signal is then chosen as the
input u(k).

In Figures 1 and 2 we have plotted the variance
of the random variables

VN(&}y - o) (72)
and
VN (R — ko), (73)

along with their respective predicted variances,
for different values of the noise variance (or noise
power, o2). Note that the predicted variances of
(72) and (73) are the diagonal elements of the
covariance matrix ¢2%;1. The variance of the
random variables (72) and (73) were estimated
using a standard Monte Carlo technique with
the number of noise realisations N, = 300, the
number of data points N = 1000 and the model
order n = 100.

Note that the predicted variance is reasonably
close to the estimated variance.

6. CONCLUDING DISCUSSION

We conclude this paper by briefly discussing some
results presented in this paper. First, note that the
bias, (59), converges at a rate, which is at least as
fast as the convergence rate of the approximate
transfer functions, (20).
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Fig. 2. Asymptotic variance of the random vari-
able VN (k% — ko) along with its predicted
variance.

In the case of the bias, (59), note that the constant
K is finite iff either ¢(w) has compact support
or has an exponentially decaying tail. This is not
surprising, since all the approximate models con-
structed in the above mentioned references con-
verge to the D matrix, (16), where | D |> 0,
as w — oo. Therefore the sum of the output-
error is not finite, if the input has high frequency
components. Hence, for this identification experi-
ment it is always advisable to choose those inputs,
for which the spectrum ¢(w) diminishes beyond a
particular band-width, where the approximation
of the transfer-function deteriorates.

Note that the expression for the covariance
%%, 1, (70), is similar to the expression obtained
in chapter 7 of (Soderstrom and Stoica, 1989).
More importantly, note that the predicted covari-
ance, 02X, 1, depends directly on the input. The
larger the input spectrum, the larger the value of
Y., and hence the lower the predicted variance,
gzl
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