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Abstract: FIR compensator design for H2-optimal decoupling of measurable or previewed
signals in discrete-time linear time-invariant systems is considered. The algorithm for the
FIR system weighting matrices computation is based on pseudoinversion techniques aiming
to minimize the l2 norm of the overall system impulse responses. The inherent dimensionality
constraint of these techniques is overcome by welding problems referring to subsequent time
subintervals of the FIR system window. The solution of the H2-optimal state observation
problem with unknown inputs straightforwardly comes by duality.
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1. INTRODUCTION

It is well known that in the discrete-time case the
use of FIR systems is particularly convenient for the
solution of the decoupling problem of measurable or
previewed signals as well as the perfect tracking prob-
lem (that can be considered as a particular case of the
former). The dual problem i.e., the possibly delayed
unknown-input observation of a linear function of the
state as well as left inversion as a particular case is also
conveniently solved with FIR systems.
The necessity of using FIR systems is due to the na-
ture of the modes which the optimal finite-time state
trajectory arcs consist of. In fact, both stable and anti-
stable modes (corresponding to eigenvalues reciprocal
to each other) are to be reproduced in the control
function.
If a set of geometric-type conditions are met, H2

optimal decoupling or tracking problems and their
duals can be solved cost-free (or almost cost-free).
This aspect has recently been investigated in (Marro
et al., 2000c), where a compensator with a peculiar
structure, a parallel of a FIR system and a dynamic
unit, has been proposed.
As far as previewed signal decoupling and tracking
is concerned, it is well-known that perfect or almost
perfect tracking can be achieved also in the nonmin-

imum phase case if the reference signal is known in
advance. See, for instance, (Devasia et al., 1996) and
(Hunt et al., 1996) for the infinite horizon nonlinear
and linear cases, respectively. Instead, refer to (Gross
and Tomizuka, 1994) and (Marro and Fantoni, 1996)
for two different approaches to the receding horizon
SISO case and also to (Marro et al., 2000a) for the in-
troduction of FIR systems in obtaining the noncausal
inversion of MIMO discrete-time linear systems.
Regarding the dual problems, FIR filter and smoother
design has been extensively investigated and its use
is now well established, mainly for the estimation of
some state variables of stochastic systems ((Park et
al., 2000), (Kwon et al., 1999), (Kwon et al., 1994),
(Kwon and Byun, 1989), (Kwon and Kwon, 1987),
(Kwon et al., 1983), (Kwon and Pearson, 1978)), al-
though some attempts have also been made to intro-
duce the receding horizon technique for the design of
observers in a deterministic environment ((Ling and
Lim, 1996)).
The novelty of this contribution consists in presenting
a solution of the decoupling problem with preview
(hence of its dual) by means of a FIR compensator
achieving the minimum H2 norm of the transfer func-
tion matrix from the input to be decoupled to the
controlled output (or, in the dual case, of the transfer
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function from the unknown input to the estimation
error).
Throughout this paper, R stands for the field of real
numbers, sets, vector spaces and subspaces are de-
noted by script capitals like V , matrices and linear
maps by slanted capitals like A, the image and the null
space of A by imA and kerA respectively, the trace by
trA, the transpose by A′, the pseudo-inverse by A#.

2. STATEMENT OF THE PROBLEM

Consider the linear discrete time-invariant system Σ
described by

x(k + 1) = Ax(k)+ Bu(k)+ H h(k) ,

y(k) = C x(k)+ Du(k)+ Gh(k) ,
(1)

with state x∈R
n, control input u∈R

p, previewed or
measured input h∈R

s and controlled output y∈R
q.

Assume that matrix A is stable, pair (A,B) controllable
and matrices [B′ D′]′ and [H ′ G′]′ full column rank.
Refer to the block diagram in Fig. 1, where the N p-

hp(k) = h(k +Np)

Np-delay
h(k)

u(k) Σ

Φ

y(k)

Fig. 1. Decoupling a measurable or previewed signal.

step preview interval of signal h(k) is accounted for
by the Np-delay unit, so that the overall system having
hp(k)=h(k+Np) as input and y(k) as output is causal.
The particular case Np =0 corresponds to the decou-
pling of a signal which is measurable but not known in
advance. The block Φ denotes a FIR system described
by

u(k) =
N−1

∑
�=0

Φ(�)hp(k− �) , (2)

with window N >Np. Referring to Fig. 1, denote by
W (z) the transfer function matrix from h p(k) to y(k).
The H2 optimal decoupling problem is stated as fol-
lows.

Problem 1. (H2 optimal decoupling problem with pre-
view) Refer to systems (1) and (2) connected as
shown in Fig. 1. Given the window N and the pre-
view time Np, find the FIR weighting matrices Φ(�)
(�=1, . . . ,N−1) minimizing ‖W‖2.

It is worth noticing that solution of Problem 1 also
applies to the dual problem, as briefly shown in the
sequel. Refer to the linear discrete-time system Σd

described by

x(k + 1) = Ad x(k)+ Bd u(k) ,

y(k) = Cd x(k)+ Dd u(t) ,

e(k) = Hd x(k)+ Gd u(t) ,

(3)

with state x∈R
n, inaccessible input u∈R

q, informa-
tive output y∈R

p, output to be estimate e∈R
s. Matrix

Ad is assumed to be stable, pair (Ad ,Cd) observable
and matrices [Cd Dd ], [Hd Gd ] full row rank.
Let us consider Fig. 2, where Φd is a FIR system with
weighting matrices Φd(�), (�=1, . . . ,N−1). Denote
by Wd(z) the transfer function matrix from u(k) to
η (k−Np).

+
+

u(k)

e(k)

y(k)

e(k−Np)

−ẽ(k−Np)

Np-delay

Σd

Φd

η (k−Np)

Fig. 2. Unknown-input current or delayed observation of a linear
function of the state.

Problem 2. (H2 optimal unknown-input estimation of
a linear function of the state with delay) Refer to sys-
tem (3) connected as shown in Fig. 2. Given the win-
dow N and the delay time Np, find the FIR weighting
matrices Φd(�) (�=1, . . . ,N−1) minimizing ‖Wd‖2.

Solution of Problem 2 can be derived from that of
Problem 1 as Φd(�)=Φ′(�) (�=1, . . . ,N−1), pro-
vided the following correspondences are set: A=A ′

d ,
B=C′

d , C=B′
d , D=D′

d , H =H ′
d , G=G′

d .

2.1 Geometric conditions for perfect decoupling

In this section some geometric conditions guarantee-
ing perfect or almost perfect decoupling are briefly
recalled. They have been proven and applied in
(Barbagli et al., 2000) and (Marro et al., 2000c). Let
us denote by V̂ ∗ the maximum (Â, im B̂)-controlled
invariant contained in ker Ĉ and Ŝ ∗ the minimum
(Â,kerĈ)-conditioned invariant containing im B̂, with
(Â, B̂,Ĉ)=(A,B,C) if both D and G are null matrices
and

Â :=
[

A 0
C 0

]
, B̂ :=

[
B
D

]
, Ĉ :=

[
0 Iq

]
, (4)

if not. Also, define Ĥ := imH if both D and G are null
matrices, Ĥ := im([H ′G′]′) if not.
If system (1) is minimum phase with respect to u, the
condition

Ĥ ⊆ V̂ ∗ (5)

guarantees that perfect decoupling is achievable with
a stable feedforward dynamic unit without any preac-
tion. The condition

Ĥ ⊆ V̂ ∗ + Ŝ ∗ (6)

guarantees that perfect decoupling is achievable with a
stable feedforward dynamic unit with only a relative-
degree preaction.
On the other hand, if the system (1) is nonminimum
phase, condition (6) enables perfect decoupling only



as the preaction time Np approaches infinity. How-
ever, almost perfect decoupling is achievable if N p is
large enough with respect to the time constant of the
unstable zero closest to the unit circle. In the above
mentioned cases ‖W‖2 is zero or can made arbitrarily
small.
If condition (6) is not satisfied or system (1) is non-
minimum phase and the available preaction time is
not large enough, the H2 optimal design object of
this paper is a convenient resort and the use of FIR
compensators instead of dynamic systems unifies and
greatly simplifies the synthesis procedures.

3. THE MODIFIED FINITE HORIZON LQ
PROBLEM

Solution of Problem 1 can easily be obtained by
slightly extending an efficient algorithm for solv-
ing the finite-horizon linear quadratic optimal control
problem, possibly cheap or singular. This extension
and the corresponding algorithmic solution are pre-
sented below as Problem 3 and Theorem 1.

Problem 3. (Finite-horizon LQ problem with a pre-
viewed impulse input and constrained final state)
Consider system (1) with given initial state x(0)=x0

and final state constrained as

Γ x(N) = y f , (7)

where matrix Γ and vector y f are given. The final
time N is assumed to be greater than the controllability
index of (A,B). Let h(k)= h̄δ(k−Np), where both h̄
and Np <N are given. Find a control sequence u(k)
(k=0, . . . ,N−1) minimizing the cost

J :=
N−1

∑
k=0

y′(k)y(k)+ x′(N)Z′Zx(N). (8)

where Z, a penalty matrix on the final state, is given.

Let us introduce the following compact notation for
the control sequence:

uN :=




u(0)
u(1)

...
u(N −1)


 . (9)

A solution of Problem 3 is provided by the following
theorem.

Theorem 1. A solution of Problem 3 is given as

uo
N = TN x0 +VN y f +WN h̄ , (10)

where the matrices TN , VN and WN are defined by

TN := −PBN (Γ LN)#Γ AN −K (BNK)# AN ,

VN := PBN (Γ LN)#,

WN := −PBN (Γ LN)#Γ AN−Np−1H −K (BNK)# HN ,

being PBN =
(

I −K (BNK)# BN

)
and

AN :=




C
CA

...
CAN−1

ZAN


 , BN :=




D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAN−2B CAN−3B · · · D
ZAN−1B CAN−2B · · · ZB


 ,

HN :=
[

0 · · · G′ (CH)′ . . . (CAN−Np−2H)′ (ZAN−Np−1H)′
]′

,

LN :=
[

AN−1B AN−2B · · · B
]
.

(11)

and K is a basis matrix for ker(Γ LN). The optimal cost
is

Jo =


 x0

y f

h̄



′

C′
NCN C′

N DN C′
N EN

D′
NCN D′

NDN D′
NEN

E ′
NCN E ′

NDN E ′
NEN




 x0

y f

h̄


 , (12)

where matrices CN , DN and EN are defined by

CN = PBN

(
AN −BN(Γ LN)#Γ AN) , (13)

DN = PBN BN(Γ LN)# , (14)

EN = PBN

(
HN −BN(Γ LN)#Γ AN−Np−1H

)
. (15)

The proof of Theorem 1 has been omitted. A complete
proof of the theorem is given in (Marro et al., 2000b).
Theorem 1 provides an algorithm framework to deal
with the following finite horizon LQ optimization
problems.
1. Standard LQ problem with both the initial and the
final state completely assigned. In this case matrices
H and G and, consequently, WN , HN and EN are not
defined. The problem is solved by assuming Γ = In,
y f =x f , and Z =01,n.
2. Standard LQ problem with the initial state assigned
and the final state simply weighted. In this case ma-
trices H, G, WN , HN and EN are not defined like in
the previous case. The problem is solved by assuming
Γ =0n, y f =0n,1, while Z is given to define the cost of
the final state. The solution does not depend explicitly
on the final state (matrices VN and DN are null).
3. LQ problem with both the initial and the final
state completely assigned and an impulsive input
h(k)= h̄δ(k−Np). The problem is solved like in case
1 above, but with all the matrices defined.
4. LQ problem with both the initial state assigned,
the final state simply weighted, and an impulsive
h(k)= h̄δ(k−Np). The problem is solved like in case
2 above, with all the matrices defined.
Theorem 1 describes a pseudoinversion procedure
to solve the optimal control Problem 3 with a N p–
previewed impulse disturbance input and weighted
final state. Since the dimensions of the matrices to
be pseudo-inverted are proportional to the number of
steps N of the control time interval, this technique is
subject to a dimensionality constraint depending on
the computational capability available. However, this
drawback can be overcome by means of the additive
procedure described in Section 5.



4. DESIGN OF THE H2 OPTIMAL FIR
COMPENSATOR

The solution of the H2 optimal control problem stated
in Problem 1 can easily be derived by using the algo-
rithm provided in Theorem 1. The H2 optimal control
design of a FIR controller Φ with the Np-previewed
signal h(k) corresponds to solve a finite horizon linear
quadratic problem with impulse disturbance of the
type stated in Problem 3. In fact, the H2 norm of the
transfer function of the overall system from h p(k) to
y(k), see fig. 1, can be written as

‖W‖2 =


 1

2π
tr


 π∫
−π

W (e jω)W ∗(e jω)dω






1
2

=

(
tr

[
∞

∑
k=0

w(k)w′(k)

]) 1
2

=

(
tr

[
∞

∑
k=0

w′(k)w(k)

]) 1
2

,

(16)

where w(k) denotes the impulse response matrix cor-
responding to W (e jω). By using (16) Problem 1 is
easily re-stated in terms of Problem 3, and solved with
Theorem 1.

Theorem 2. A solution of Problem 1 is provided by

Φ( j) =
[

φ(0) φ(1) · · · φ(N −1)
]
WN ,

with

{
φ(i) = 0s for i �= j
φ(i) = Is for i = j

,
(17)

where WN is defined as in Theorem 1, eq. (15). Matri-
ces BN and HN in eq. (11) are computed with Z =

√
S∞,

where S∞ denotes the solution of the Liapunov equa-
tion

S−A′SA = C′C . (18)

Proof: Owing to (16), it is immediate to verify that
‖W‖2

2 is equal to the cost index (8) in the statement of
Problem 3 under the assumptions

x(0) = 0n,s , Γ = 0n , y f = 0n,s ,

Z =
√

S∞ , h̄ = Is .

Note that x(N)S∞ x(N) accounts for the cost from
k=N to k=∞ and is evaluated through the Liapunov
equation (18), since the control input becomes zero
from k=N on.

5. EXTENSION OF THE CONTROL INTERVAL

Referring to Fig. 3, assume that the overall control
interval Nt is divided in a finite number of subintervals
whose length N satisfies the computational constraint
and is greater than the the controllability index of
(A,B). Three subarcs can easily be distinguished: it
will be shown that the costs on the intervals 1 and 3

0

NNNNNNN

x1 x2 x f

interval 1 interval 2 interval 3

h̄

Nt

Fig. 3. Subarcs within the H2-optimal decoupling problem.

are expressed by quadratic forms of x1 and x2, respec-
tively. Once the corresponding cost matrices S1 and
S2 have been determined as described in Section 5.2
below, it is possible to derive x1 and x2 as follows.

5.1 Solution for interval 2

The cost for the whole interval [0,Nt ] can be expressed
as

c = x′1 S1 x1 + x′2 S2 x2 +


x1

x2

h̄



′

C′
NCN C′

NDN C′
NEN

D′
NCN D′

NDN D′
NEN

E ′
NCN E ′

NDN E ′
NEN






x1

x2

h̄


 (19)

or, by setting ξ :=[x′1 x′2]
′ and consequently defining

new matrices,

c = ξ ′M ξ +

[
ξ
h̄

]′[
R1 R2

R′
2 R3

][
ξ
h̄

]
, (20)

The optimal value of ξ is derived as

ξ o = −(M + R1)′#R2 h̄ . (21)

Being x1 and x2 known, the control sequences of inter-
vals 1 and 3 can be derived as (VN)1 x1 and (TN)3 x2,
respectively, where (VN)1 and (TN)3 denote the global
matrices obtained with the iterative procedure de-
scribed in the subsequent Section 5.2. The control
sequence of interval 2 is computed as TN x1 +VN x2 +
WN h̄, according to (10).

5.2 Welding subarcs in intervals 1 and 3

Let us consider Problem 3 with h̄=0. Recall that, if
both the initial state x0 and the final state x f are given,
Theorem 1, which refers to interval [0,N], defines
matrices TN , VN , CN and DN that provide an optimal
control sequence expressed as

uo
N = TN x0 +VN x f , (22)

and the corresponding optimal cost as

Jo =

[
x0

x f

]′[
M1 M2

M′
2 M3

][
x0

x f

]
, (23)

with M1 = C′
NCN , M2 = C′

NDN , M3 = D′
NDN . We

shall show that the control interval can arbitrarily
be enlarged by welding optimal subarcs. Let us sup-
pose that the generic time interval [0, N̄] has been
divided into two subsequent subintervals, [0,N1] and
[N1,N1 +N2] and that the corresponding control input



and cost matrices (TN1 , VN1 , M1,1, M2,1, M3,1) and (TN2 ,
VN2 , M1,2, M2,2, M3,2) have already been computed.
Assume x(0)=x0, x(N1)=x1, x(N̄)=x(N1 +N2)=x f .
The overall cost is

c = x′0 M1,1 x0 + 2x′0 M2,1 x1 + x′1 M3,1 x1

x′1 M1,2 x1 + 2x′1 M2,2 x f + x′f M3,2 x f .
(24)

The value of x1 minimizing c is derived by nulling
∇ cx1 as

x1 = Q1 x0 + Q2 x f , (25)

where

Q1 := −(M3,1 + M1,2)′#M2,1 ,

Q2 := −(M3,1 + M1,2)′#M2,2 .
(26)

By substitution in (24) we obtain the cost matrices
referring to the overall interval [0, N̄] as

M̄1 := M1,1 + 2M2,1Q1 + Q′
1(M3,1 + M1,2)Q1 ,

M̄2 := M2,1Q2 + Q′
1(M3,1 + M1,2)Q2 + Q′

1M2,2 ,

M̄3 := Q′
2(M3,1 + M1,2)Q2 + 2Q′

2M2,2 + M3,2 .

(27)

and the corresponding control input matrices as

TN̄ =
[

TN1 +VN1Q1

TN2Q1

]
, VN̄ =

[
VN1Q2

TN2 Q2 +VN2

]
. (28)

The above described procedure can be iterated to
achieve the solution of the problem in an arbitrarily
large control interval, starting from two intervals for
which direct computation as provided in Theorem 1 is
feasible. At the last iteration, if the final state is not
sharply assigned but just weighted (like in the case
of interval 3), matrices VN2 , M2,2 and M3,2 should be
omitted in eqs. (26), (27) and (28) since they are not
defined.

6. AN EXAMPLE

Let

A =




0.5 1 −0.4 0
0.1 0.7 0 −0.5
0 0 0.4 0

0.2 0 0 0.6


 , B =




1 0
0 1
1 0
0 1


 , H =




0
1
1
4


 ,

C =
[

1 0 0 0
0 1 0 0

]
, D =

[
0 0
0 0

]
, G =

[
0
0

]
.

The system (A,B,C,D) is both left and right invert-
ible. The plant is nonminimum phase (with invariant
zeros 0.8 and 1.1). Condition (6) is satisfied because
of right invertibility, so that perfect decoupling could
be achieved at the limit as both Np and N−Np ap-
proach infinity. Suppose that, due to restricted pre-
view time of the signal to be decoupled, a preaction
time Np =20 is only possible and assume N =40 for
the FIR compensator window. Fig. 4 shows the FIR
gains that optimally decouple a previewed unit im-
pulse h(k)=δ(k−Np) occurring at k=Np and the cor-
responding optimal responses. The square of the H2

optimal norm computed in this case is ‖W‖2
2 =0.246.
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−0.3
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0

0.1

Fig. 4. FIR gains (left) and optimally decoupled out-
puts (right) for N =40, Np =20.
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Fig. 5. FIR gains (left) and optimally decoupled out-
puts (right) for N =40, Np =0.



Suppose now that no preview of signal h(k) is avail-
able. A FIR compensator with Np =0 and N =40 is
derived. The FIR gains and corresponding optimal re-
sponses referring to this case are shown in Fig. 5. The
square of the H2 optimal norm is ‖W‖2

2 =11.333 in
this case, hence significantly greater than the preview
case.

7. CONCLUDING REMARKS

A design procedure for a FIR system with given win-
dow N, providing H2-optimal decoupling of a Np-step
previewed signal has been described. The use of a FIR
compensator instead of a dynamic unit, although not
extensively treated in the literature, is advisable since
preaction reduces the H2 norm of the transfer function
matrix from the input to be decoupled to the controlled
output also in the minimum phase case if the geo-
metric conditions (5) and (6) recalled in Section 2.1
are not satisfied. Since feedthrough matrices D and G
are present in the system equations, the disturbance
decoupling problem also includes as a particular case
H2 optimal right inversion (or tracking). The results
obtained are directly applicable to the dual problem,
H2 optimal unknown-input observation of a linear
function of the state with Np-step postknowledge and,
as a particular case, left inversion (estimation of an
unknown input).

8. ACKNOWLEDGEMENTS

This work was supported in part by the Italian Min-
istry of University and Scientific and Technological
Research under grant Ex–60%.

9. REFERENCES

Barbagli, F., G. Marro and D. Prattichizzo (2000).
Solving signal decoupling problems through self-
bounded controlled invariants. In: Proceedings of
the 39th IEEE Conference on Decision and Con-
trol (CDC 2000). Sydney, Australia.

Devasia, S., D. Chen and B. Paden (1996). Nonlinear
inversion-based output tracking. IEEE Transac-
tions on Automatic Control 41(7), 930–942.

Gross, E. and M. Tomizuka (1994). Experimental flex-
ible beam tip tracking control with a truncated
series approximation to uncancelable inverse dy-
namics. IEEE Trans. on Control Syst. Techn.
3(4), 382–391.

Hunt, L.R., G. Meyer and R. Su (1996). Noncausal
inverses for linear systems. IEEE Transactions on
Automatic Control 41(4), 608–611.

Kwon, W.H., A.M. Bruckstein and T. Kailath (1983).
Stabilizing state-feedback design via the moving
horizon method. International Journal of Control
37(3), 631–643.

Kwon, W.H. and A.E. Pearson (1978). On feedback
stabilization of time-varying discrete linear sys-
tems. IEEE Transactions on Automatic Control
AC-23(3), 479–481.

Kwon, W.H. and D.G. Byun (1989). Receding horizon
tracking control as a predictive control and its sta-
bility properties. International Journal of Control
50(5), 1807–1824.

Kwon, W.H. and O.K. Kwon (1987). FIR filters
and recursive forms for continuous time-invariant
state-space models. IEEE Transactions on Auto-
matic Control AC-32(4), 352–356.

Kwon, W.H., K.S. Lee and J.H. Lee (1994). Fast
algorithms for optimal FIR filter and smoother
of discrete-time state-space models. Automatica
30(3), 489–492.

Kwon, W.H., P.S. Kim and P. Park (1999). A reced-
ing horizon Kalman FIR filter for discrete time-
invariant systems. IEEE Transactions on Auto-
matic Control 44(9), 1787–1791.

Ling, K.V. and K.W. Lim (1996). State observer de-
sign using deterministic least square technique.
In: Proceedings of 35th Conference on Decision
and Control. pp. 4077–4082.

Marro, G. and M. Fantoni (1996). Using preac-
tion with infinite or finite preview for perfect
or almost perfect digital tracking. In: Proceed-
ings of the Melecon ’96 – 8th Mediterranean
Electrotechnical Conference. Vol. 1. Bari, Italy,.
pp. 246–249.

Marro, G., D. Prattichizzo and E. Zattoni (2000a).
Convolution profiles for noncausal inversion of
multivariable discrete-time systems. In: Proceed-
ings of the 8th IEEE Mediterranean Confer-
ence on Control & Automation (MED 2000) (P.P.
Groumpos, N.T. Koussoulas and P.J. Antsaklis,
Eds.). University of Patras, Rio, Greece.

Marro, G., D. Prattichizzo and E. Zattoni (2000b).
H2 optimal decoupling of previewed signals with
fir systems. Technical report. Dipartimento di In-
gegneria dell’Informazione. Università di Siena.

Marro, G., D. Prattichizzo and E. Zattoni (2000c). A
unified algorithmic setting for signal–decoupling
compensators and unknown–input observers. In:
Proceedings of the 39th Conference on Decision
and Control (CDC 2000). Sydney, Australia.

Park, S.H., P.S. Kim, O.-K. Kwon and W.H. Kwon
(2000). Estimation and detection of unknown
inputs using optimal FIR filter. Automatica
36, 1481–1488.


