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Abstract: A mobile robot needs a model of its environment to perform planned tasks.
Abstraction-based (hierarchical) arrangements of information allow the robot to plan its
tasks efficiently. In this paper, a model with multiple hierarchies of abstraction is applied
to mobile robots. It provides better adaptability to a wider range of environments, tasks,
and agents than single-abstraction models. A system is also presented which automatically
constructs such a model. It is inspired on the idea that the best model for an agent is the
one that allows it to operate most efficiently. Some example applications to mobile robots

illustrate these ideas. Copyright (¢) 2002 IFAC.
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1. INTRODUCTION

Many works can be found in the literature relating to
modeling the world where mobile robots explore,
navigate, and plan complex tasks (Kuipers, 2000;
Fennema ¢f 4/, 1990, Dario and Rizzi, 1996, Fernandez
and Gonzalez, 1997). Since mobile robots need to
explore large-scale spaces that are not visible from a
single vantage point, techniques are required to create
“global maps” by integrating a number of “local maps”
acquired during exploration. Usually, free space,
obstacles, and landmarks existing in the environment
are modeled as 2D maps in a variety of formats. These
models range from pure geometrical (Gonzalez et 4/,
1994; Elfes, 1989) to qualitative or hybrid (qualitative
plus quantitative) representations (Levitt er a/, 1987,
Kuipers, 2000). The main problem of pure geometrical
models is the error accumulation in geometrical
measurements (Engelson and McDermott, 1992).
Qualitative models avoid this problem, but often do
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not provide methods for optimizing the amount of
information retrieved for each operation, that is, for
discarding details that are not required.

This problem can be solved by using hierarchical
models (Remolina e @, 1999; Fernandez and
Gonzilez, 1998a; Fennema e 4/, 1990; Dario and Rizzi,
1996), which can be seen as particular types of
qualitative or hybrid models. A classic hierarchical
model arranges information at different levels of detail,
called hierarchical levels, in a single hierarchy of
abstraction, possibly including other types of
information (geometrical, procedural, etc.) associated
with its elements. This kind of representations provides
interesting advantages: it allows the robot to select the
amount of detail that is more appropriate for each
operation; when information is abstracted, concepts
that are barely sensitive to changes in the dynamic real
world are created; the operations on the model can
yield partial results before completion; etc.

In this paper, we contribute with two extensions of
classic single-hierarchy graph-like models for mobile
robots: ) multiple bierarchies of abstraction, and b)
task-driven automatic construction of multiple bierarchies of
abstraction. Both ideas are inspired by the way human
beings arrange information for operating in the world



efficiently. The utility of multiple hierarchies of
abstraction has been demonstrated recently in
(Fernandez and Gonzdlez, 2002) regarding the
operation of hierarchical path search (using hierarchical
information for efficiently searching routes that
connect elements in the model).

In the rest of the paper, multiple abstraction and
task-driven construction of abstractions are presented.
Section 2 overviews a model of multiple abstraction
called Multi-AH-graph. Section 3 describes an
implementation of the task-driven paradigm called
CLAUDIA. Section 4 presents experiments developed
with both CLAUDIA and the Multi-AH-graph model
for mobile robots. Finally, some conclusions and future
work are outlined.

2. AMODEL OF MULTIPLE ABSTRACTION

This section describes a graph-like model of multiple
abstraction, called Multi-AH-graph, which is based on
simpler representations such as plain graphs or
single-hierarchy graphs. Complete formalizations of all
these models can be found in (Fernandez, 2000;
Fernandez and Gonzalez, 2002).

2.1 Single-Hierarchy Graph Model (AH-graph)

Informally, an AH-graph is a sequence of hierarchical
levels. Fig. 1 shows two examples of AH-graphs. Each
hierarchical level contains a plain directed multigraph,
that is, a plain directed graph which can hold more than
one arc between a given pair of nodes. The weights of
these arcs belong to a set of cost intervals, as is shown
later on. In addition, each hierarchical level (except the
higher one) defines two abstraction functions that
permit to abstract the nodes and arcs of the level,
respectively, to nodes and arcs of the next higher level
(called supernodes and superarcs of the lower level
nodes and arcs). Using the inverse of these functions,
we can obtain the set of nodes that are abstracted to a
given supernode. That set is called a cluster. As we will
see further on, clustering a plain graph is the basic
operation for automatically constructing a hierarchy or
a multi-hierarchy.

The lowest level of the hierarchy is also called
ground hierarchical level of the AH-graph. It
represents the data with the maximum amount of detail
that is available. The highest level is also called
universal hierarchical level of the AH-graph, and it
represents the same data with the minimum amount of
detail (usually as a single node). The way this reduction
of data is set up is defined by the abstraction functions
for nodes and arcs. The only existing connections
between nodes of different hierarchical levels in an
AH-graph are given by these functions.

The weights of the arcs of an AH-graph are defined
as cost intervals (numerical intervals), in order to deal
with uncertainty in the quantities they represent (a
useful feature for robotic applications).

Non-structural information is represented in an
AH-graph by annotations both in nodes and arcs. The
number of annotations a node or arc can store is not
restricted. An annotation is defined as a pair (N,J),
where the first value is an unique identifier for the
annotation and the second value is a set (block) of data
which depends on the type of information stored.
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Fig. 1. Two examples of AH-graphs of four and three
hierarchical levels, respectively. The AH-graph on
the left side illustrates the behavior of the
abstraction function for nodes from the lower to
the higher hierarchical levels. The AH-graph on
the right illustrates the behavior of the abstraction
function for arcs.

2.2 Multi-Hierarchy Graph Model (Multi-AH-graph)

The proposed multi-hierarchical model is called
Multi-AH-graph. It is based on the AH-graph model,
that has been enhanced in order to deal with multiple
hierarchies of abstraction.
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Fig. 2. An example of multi-hierarchy. In this directec
acyclic graph, hierarchical levels are represented b
rectangular  boxes. Thick arrows represen
abstraction links. Level A is the only grounc
hierarchical level of this multi-hierarchy, and leve
G the only universal level.

Informally, a Multi-AH-graph is a set of
hierarchies. Fach hierarchy is an AH-graph. In a
Multi-AH-graph, any hierarchical level can be shared by
any number of hierarchies. The number of shared
hierarchical levels depends upon the power of detecting
equivalence between hierarchical levels of the
multi-hierarchy. A polinomial-time algorithm to detect
hierarchical level equivalence (called h-isomorphism)
has been presented elsewhere (Fernandez, 2000).

In general, the hierarchical levels of a
Multi-AH-graph can be considered nodes, and the



abstraction links, arcs of a DAGY The DAG induced
by a given Multi-AH-graph M is denotedp(M) (see fig,
2).

The arcs of @(M) are abstraction links. An
abstraction link between two hierarchical levels
represents all the values of the abstraction functions for
nodes and arcs connecting both levels. There is a
different abstraction link for each hierarchy ofM to
which both hierarchical levels belong,

3. TASK-DRIVEN AUTOMATIC
CONSTRUCTION OF MULTIPLE
ABSTRACTIONS

For  constructing  automatically a  “good”
multi-hierarchy of abstraction, first a definition of this
“goodness” must be given. This paper deals with a
definitton of “goodness” inspired by some
psychological theories (Shepard, 1987, Harnad, 1987),
which claim that abstraction provides an effective way
of reducing the data gathered by the sensory apparatus
of an agent. This claim is the core of our task-driven
approach: a hierarchy of concepts is “good” as long as it
75 good for performing efficiently the operations of an agent in a
given enviromment.  Thus, the so  constructed
multi-hierarchies are used for solving tasks and are
optimized depending on the efficiency achieved at
those tasks. This approach satisfies two important
objectives: first, it provides a flexible enough scheme
that gathers hierarchical information from a wide range
of sources, and second, it is a simple system that can
adapt to very different types of agents, tasks, and
environments, with a relatively small set of
components.

Task-driven construction of multi-hierarchies has
been implemented in a system called CLAUDIA? that
improves a multi-hierarchy of abstraction for a given
agent, tasks to perform, and environment. The system
is divided into two main parts: the ground information
interface (GI%), and the optimizer (ACO) (see fig. 3).
The GI? provides ground concepts and relations to the
ACO. When CLAUDIA 1is used in mobile robots, the
GI is the interface between the information acquired
by the sensory system and the multi-hierarchical model:
it yields a plain graph whose nodes represents elements
detected by the sensors (for example: range data,
regions in an image, or line segments from laser 2D
maps), and whose arcs represent relations existing
between nodes (for example: similar regions, line
paralellism, etc.)’. The ACO subsystem constructs
multi-hierarchies upon the ground plain graph provided
by the GI? by using several clustering methods, and
optimizes the result through task-driven techniques.

The internal composition of the ACO (shown in fig.
3) permits us to plug in different procedures for
acquiring hierarchical information. This is done
through the dustering and  single-hierarchy  constructor
modules. The former is in charge of defining groups of
concepts (nodes) in a given plain graph, whereas the

latter constructs the hierarchical levels of a given
hierarchy by using the clustering module recursively,
and detects h-isomorphism for reducing storage
requirements. The clustering module plays the main
role in the construction of multi-hierarchies.

ABSTRACTION
GROUND CONSTRUCTION
INFORMATION AND
INTERFACE OPTIMIZATION
©1?) SUBSYSTEM
(ACO)

CLAUDIA

EXTERNAL
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SINGLE-
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Fig. 3. Tgp: CLAUDIA as a part of an agent tha
operates in a given environment. a) Pxterna
world data is acquired by the GI?* througl
agent’s physical perceptors, and provided to the
optimizer as a plain graph. b) The ACC
constructs an initial Multi-AH-graph anc
optimizes it using feedback information from
the results of operating in the real world. ¢) The
Multi-AH-graph may be part of a more
sophisticated internal model of the agent and it
environment. d) The physical agent operates ir
the real world by consulting its internal model. e
This produce consequences (f) and (g) that ar
also a source of information for the GI2, and the
ACO. Bortom: Components of the task-driver
automatic abstraction subsystem of CLAUDIA
(ACO).

The multi-hierarchy optimizer module of the ACO
subsystem is in charge of improving the goodness of a
multi-hierarchy. It searches automatically for better
multi-hierarchies of abstraction wusing a classic
hill-climbing algorithm (other optimization procedures
are possible but appreciably more complex (Holland,
1992; Hopfield and Tank, 1985)). DBroadly, the
implemented procedure consists of making local
variations in the shape of the current multi-hierarchy to
produce new multi-hierarchies (its nezghbors), and then
selecting the best neighbor for continuing the search.
The wvariations of the current multi-hierarchy are

! Directed Acyclic multiGraph.

* CL.AU.D.IA: Concept Learning, AUtonomous Device that Improves Abstraction.
’ Both nodes and arcs can store other types of information as annotations (range measurements, distance traveled, etc.).



generated by creating randomly new hierarchical levels
(through new clusterings).

4. EXPERIMENTS

CLAUDIA and the Multi-AH-graph model have been
implemented for large-scale space modeling in mobile
robots. In the first set of experiments (section 4.1), the
ACO  subsystem of CLAUDIA is evaluated by
providing it with some particular types of plain graphs.
The definition of goodness has been based on the task
of hierarchical path search (Fernandez and Gonzilez,
2002). In the second set of experiments (section 4.2),
CLAUDIA 1is included as part of the software
architecture of the RAM-2 mobile robot in order to
plan paths for navigation.

Based on this particular kind of task, the goodness
of a multi-hierarchy is defined to account for the
following issues: the percentage of path planning
tasks that cannot be solved with the multi-hierarchy (
J1), the average computational cost of solving path
planning tasks in the multi-hierarchy (> ), the average
optimality of the solution paths {f3), and the storage
needs for the multi-hierarchy §4). These factors are
expressed as a weighted linear combination:

Goodness(M) =w1.f1 +wofotwsfa+wafa [1]

4.1 Bvatuation of the ACO Subsystem

CLAUDIA has provided good results taking into
account the exponential complexity of the
Multi-AH-graph model. Three different plain graphs
have been used as ground levels: a grid graph consisting
of a rectangular grid of 100 nodes with relations among
neighbor nodes; a random graph of 100 nodes with a
25% density of relations; and a 100 nodes structured
graph formed by 20 groups of 5 nodes that have a high
density of internal relations (70%), and a lower density
of relations among nodes of different groups (1 or 2
arcs). A graph-partitioning algorithm based on a growth
procedure similar to the STAR algorithm (Mkadmi,
1993) has been used for clustering.

Different evaluation tests have been performed by
defining different weights for each of the factors of
expression [1]. Table 1 shows the average percentage
of improvement obtained in the goodness of the final
multi-hierarchies with respect to the initial ones, for a
set of five different tests and for each of the three plain
graphs. All the tests have been done on a Pentium III
computer running at 450Mhz.  Although the
optimization time has been limited to 4 hours, and then
the algorithm stopped, that time seems to be acceptable
since the improvement in goodness decreases
exponentially at the end.

It can be noticed from table 1 that in the first three
tests (General test (G.), Computational Cost test (C.C)),
and Path Optimality test (P.O.)), the random graph
yields better results than the other graphs. This is
explained by the implicit structures existing in the grid

and structured graphs, which imply a smaller number
of alternatives when clustering the ground graph, and
therefore, a smaller improvement in goodness than in
the random graph.

Some other conclusions can be drawn from these
results: first, the improvement in the goodness of the
initial multi-hierarchy (constructed at random) are quite
good: about 30% in the grid and structured graphs, and
about 60% in the random graph (in the optimization of
Solving Capability (S.C.) and Storage Requirements
(SR) tests, the results are more similar to each other
since those goodness definitions are not so dependent
on the clustering of nodes); second, in general, the
larger the number of hierarchies of the initial
multi-hierarchy, the better the absolute wvalue of
goodness, because a multi-hierarchy with more than
one hierarchy adapts better to a set of different
problems (this effect has been studied in (Fernandez,
2000)).

G(M) Random  Grid  Structured
0.5/2+0.5/3 | 57.89% | 26.93% | 32.21%
12 59.05% [ 2051% | 35.72%
/3 52.08% | 35.58% | 41.37%
yil 0.17 % 0% 0%
Jfa 45.84% | 50 % 50 %

Table 1. Results of the evaluation tests performec
by CLAUDIA during 4 hours of computation
Each row shows the average percentages of
improvement in the goodness of the initia
multi-hierarchy. Notice that in the solvin
capability test (S.C.) no improvement it
achieved, since the initial multi-hierarchies ar
optimal yet.

4.2 Implementation of CLAUDIA in the RAM-2 Mobile
Robor

CLAUDIA has been plugged into the software
architecture of the RAM-2 mobile robot (fig. 4).
RAM-2 has been designed and constructed in the
System Engineering and Automation department of the
University of Malaga. It has a variety of sensors such as
two laser scanners, a sonar ring, and a camera, and a
manipulator arm placed in front of the platform. In the
RAM-2 architecture a 2D geometrical map builder
module obtains line segment maps of the areas where
the robot navigates using the laser rangefinder
(Gonzalez et al, 1992), a position estimator module
calculates the position and orientation of the robot by
matching the data acquired by the radial laser
rangefinder against the maps previously built by the
map builder (Gonzalez et 4, 1995), a local navigator
module moves the robot to a desired relative location
avoiding collisions with unexpected obstacles (Mufioz ez
al, 1998), and a command executor module takes
navigation commands (for example: "go to the node
labeled B in the Multi-AH-graph"™) and moves the
robot along a geometrical trajectory derived from path
searching in the Multi-AH-graph previously generated
by CLAUDIA. This command module also implements
the GI? as a human-machine interactive process.



Fig. 4. The RAM-2 mobile robot, on which ar
application that uses CLAUDIA has beer
implemented. 1) Radial laser scanner. 2) Camera
3) Robot arm. 4) Frontal laser scanner. 5
Sonars. 6) On-board display.

At a first stage of the experiment, the ground
hierarchical level of the Multi-AH-graph is built
through the interactive GI% the operator provides the
structural information (distinctive places) that supports
the perceptual information gathered by the robot
sensors (maps and reference systems from the map
builder and the position estimator modules,
respectively). The resulting annotated plain graph is
provided to the ACO subsystem of CLAUDIA, which
optimizes an initial multi-hierarchy generated at
random through performing path planning tasks.

At a second stage, when the final Multi-AH-graph is
completely built, the command executor module can
receive a navigation command for moving the robot to
another place represented in the Multi-AH-graph. For
this purpose, the executor firstly issues a path-finding
request to the Multi-AH-graph for searching a path
between both nodes. Then, it follows the solution path
moving the robot from the location represented by
each node to the next (Fernandez and Gonzilez,
1998b).

The floor plan of the real environment where the
robot navigates is shown in fig. 5. A simplified floor
plan of the environment and the distinctive places
marked by the human operator by manual guidance of
the robot are also shown.

For this experiment, the factors that define the
goodness of the multi-hierarchies are defined as
follows:

Goodness(M) = 0.25f1 +0.25/, + 0.25/3+0.25f,  [2]

CLAUDIA begins by generating an initial
multi-hierarchy with only one hierarchy (since we want
to reduce the computational cost of calculating
goodness) with three hierarchical levels. The lowest one
corresponds to the ground graph depicted in fig. 5, and
the highest one consists of only one node. The
clustering of nodes of the ground level of this hierarchy
is not very good, since it defines clusters of very

different sizes”. The goodness of that multi-hierarchy is
0.618208.

Northern
corridor

3

Fig. 5. Floor plan of the real environment wher
RAM-2 navigates and topology extracted by the
GI- 1- Hall. 2- Old building. 3- Robotics Lab. 4
Northern corridor. 5- Yard. 6- Outside.

The fimal multi-hierarchy (after 4 hours of
optimization) has again one hierarchy (due to the
storage requirement factor of expression [2]) with five
hierarchical levels. The first level is shown on the floor
plan in fig. 6. The clusterings of this multi-hierarchy are
more uniform in size, which improves its value of
goodness: 0.903202. The final multi-hierarchy 1s 46,1%
better than the initial multi-hierarchy for performing
path planning operations, if the goodness is defined as
shown in expression [2].

* As explained in (Fernindez and Gonzélez, 2002), the computational cost of solving search problems is low when clusters are
small, while the optimality of the solutions is better when clusters are large. If a clustering defines clusters of very different size,
the worst cases for computational cost and solution optimality are found, and therefore the goodness of the multi-hierarchy as
defined in expression [2] tends to decrease. Multi-hierarchies with uniform size of clusters tends to avoid bad results in
computational costs and path optimality.
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Fig. 6. First level of the resulting clusterization of th
space in the final multi-hierarchy. Notice tha
arcs with greater costs (large distances) tend tc
be external (connecting different areas).

5. CONCLUSIONS AND FUTURE WORIK

This paper contributes with two important extensions
of hierarchical models of large-scale space: we have
introduced a multiple abstraction model of the
environment and presented an automatic system for

constructing such a model from environmental
information. The model and the automatic
construction  system  have been  successfully

implemented in the RAM-2 mobile robot. Several
experiments demonstrated the suitability of both
approaches to increase both the adaptability of the
robot to its environment and its efficiency in
performing operations.

The wotk presented in this paper opens a wide area
of research, since an automatic abstraction system such
as the one described here can be adapted to many
applications (stereo computer vision, geographical
information systems, mnetwork routing, cognitive
science, etc.), and the system itself can be extended and
improved. Some lines of future research are: more
general and powerful definitions for the goodness of a
multi-hierarchy, mechanisms capable of coping with
dynamic variations in the lower hierarchical levels, and
the improvement of the Multi-AH-graph model for
dealing with uncertainty in the existence of relations
and concepts.

Currently, we are also working on connecting the
Spatial Semantic Hierarchy (Kuipers, 2000) as the
ground information interface (GI®) of CLAUDIA
(Remolina ez a/., 1999).
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