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Abstract: This paper describes the Lyapunov-based force control suppressing the
coupled bending and torsional vibrations of a one-link flexible arm with a rigid tip
body. On the basis of the distributed parameter model, the output feedback control
law is constructed using Lyapunov method, and the asymptotic stability of the closed-
loop system is proved. The proposed controller consists of the PD feedback of the
motor angle and a feedback of the bending strain at the root of the flexible arm.
Some simulations are performed to show the effectiveness of the proposed controller.
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1. INTRODUCTION

Modeling and vibration control of flexible struc-
tures have received a great deal of attention in
recent years. Vibration control of a flexible arm
especially with a concentrated mass has been
studied(Sakawa, Matsuno and Fukushima, 1985;
Luo, 1993). In the case of the flexible arm with a
rigid tip body, for example when the end-effecter
is attached at the end tip of the arm and it grasps
an object, however, coupled bending and torsional
vibrations occur. For this reason, the robust con-
troller design of a flexible arm with a rigid tip
body have been discussed (Sakawa and Luo, 1989;
Matsuno, Murachi and Sakawa, 1994; Morita and
Matsuno et al., 2001). However, the order of the
resulting controller becomes large owing to the
elimination of the spillover effect. So the controller
cannot help being complicated.

On the other hands, the Lyapunov-based control
has been proposed for some simple distributed pa-
rameter systems(Matsuno and Ohno, 1997; Kasai
and Matsuno, 2000). The resulting control law is

a kind of direct sensor feedback control, and is
simple and robust against parameter uncertainty.
However, the applicability of the Lyapunov-based
control to the coupled bending and torsional vi-
brations system has never been discussed.

In this paper, robust force control based on Lya-
punov method is discussed considering the absorp-
tion of the coupled bending and torsional vibra-
tions of a one-link flexible arm with a rigid tip
body. In Section 2, an ordinary differential equa-
tion of a motor angle and distributed parameter
systems of coupled bending and torsional vibra-
tions are derived by using Hamilton’s principle.
In Section 3, an output feedback control law is
constructed by applying Lyapunov method to the
distributed parameter model. In Section 4, the
asymptotic stability of the closed-loop system is
proved on the basis of the distributed parameter
model. The simulation results are given in Sec-
tion 5.
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2. DISTRIBUTED PARAMETER MODEL

The constrained one-link flexible arm with a rigid
tip body considered in this paper is shown in
Figure 1. The flexible arm of length L, having
uniform mass density ρ per unit length, mass
polar moment of inertia ρκ2 per unit length, uni-
form bending rigidity EI, and uniform torsional
rigidity GJ , is clamped on the vertical shaft of
the rotor of the motor at one end, and has the
rigid body at the other end. Let O2 denote the
connected point of the arm and the rigid tip body,
and let Q and R denote the center of gravity and
the end point of the rigid tip body, respectively.
To simplify the discussion, we assume that O2, Q
and R are positioned on the same straight line.

Let X, Y, Z denote an inertial Cartesian coordi-
nate frame. Let X1, Y1, Z1(= Z) denote a coordi-
nate frame rotating with the motor. LetX2, Y2, Z2

denote a coordinate frame attached to the point
O2, where the X2 axis is the beam’s tip tangent,
the Z2 axis is on the straight line passing through
O2 and Q when there is no torsional deformation
of the arm, and the Y2 axis is chosen accord-
ing to the right-handed coordinate system. By
the torsional deformation, the coordinate frame
X2, Y2, Z2 is rotated around the X2 axis, and let
X3(= X2), Y3, Z3 be the rotated coordinate frame.
Let X4, Y4, Z4 be a coordinate frame attached to
the point Q, where the X4, Y4, Z4 axes are parallel
to the X3, Y3, Z3 axes, respectively. The rigid tip
body has the mass m and the moment of inertia
Jx around the X4 axis.

Let θ(t), τ(t) and Jm be the angle of rotation of
the motor, the torque developed by the motor, and
the moment of inertia of the rotor of the motor.
Let w(t, r) and ϕ(t, r) denote the bending and
torsional displacements at time t and at a spatial
point r (0 ≤ r ≤ L). Because the point R is con-
strained, a reaction force f(t) is generated along
the normal direction of the constraint surface. Let
g be the acceleration of gravity. (˙) and ( ′ ) denote
the time derivative and the derivative with respect
to the spatial variable r, respectively.

As force control is considered as small motion
around an equilibrium state, it is assumed that
θ(t) ∼= 0, w(t, r) ∼= 0, w′(t, r) ∼= 0, ϕ(t, r) ∼= 0, and
their product terms are neglected. Let r and P
be a position vector of an arbitrary point on the
arm and the point Q, which can be expressed as

r = [ r rθ(t) − w(t, r) 0 ]
T
, (1)

P = [L Lθ(t)− wE(t)− ϕE(t)ez ez ]
T
, (2)

where wE(t) = w(t, L), ϕE(t) = ϕ(t, L) and
ez = |O3Q|. In Figure 1, the constraint surface
is assumed to be described as

Φ(X, Y, Z) = Y = 0. (3)

The surface equation (3) can be rewritten as the
constraint condition:
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Fig. 1. Constrained flexible arm with a rigid tip
body

φ(θ(t), wE(t), ϕE(t))

= Lθ(t)− (wE(t) + lzϕE(t)) = 0, (4)

where lz = |O3R|.
The total kinetic energy T and the potential
energy V are given by

T = Tmotor + Tarm + Ttip, (5)

Tmotor =
1

2
Jmθ̇

2(t),

Tarm =
1

2

L∫

0

ρṙT ṙdr +
1

2

L∫

0

ρκ2ϕ̇2(t, r)dr,

Ttip =
1

2
mṖ

T
Ṗ +

1

2
Jxϕ̇

2

E(t),

V =
1

2

L∫

0

[EIw′′2(t, r) +GJϕ′2(t, r)]dr +mgez.(6)

The virtual work δW of the motor is given by

δW = τδθ. (7)

Let λ(t) be the Lagrange multiplier associated
with the constraint condition (4). The constraint
force f(t) at the end point of the arm, i.e., the
contact force between the end-effector and the
constraint surface, can be expressed in terms of
the Lagrange multiplier as f(t) = −λ(t). By us-
ing Hamilton’s principle and Lagrange multiplier
method, the equations of motion are derived as
follows:
the equation of the motor angle:

Jmθ̈(t) + EIw′′(t, 0) = τ(t)

+λ(t)(
∂φ

∂θ
+

∂φ

∂wE

L), (8)

the equation of the bending vibration of the arm:

ẅ(t, r) +
EI

ρ
w′′′′(t, r) = rθ̈(t), (9)

EI[
m

ρ
w′′′′E (t) + w′′′E (t)]− mGJez

ρκ2
ϕ′′E(t)



= −λ(t)
∂φ

∂wE

, (10)

EIw′′E(t) = 0, w(t, 0) = 0, w′(t, 0) = 0,(11)

the equation of the torsional vibration of the arm:

ϕ̈(t, r) − GJ

ρκ2
ϕ′′(t, r) = 0, (12)

−mEIez

ρ
w′′′′E (t) + (me2z + Jx)

GJ

ρκ2
ϕ′′E(t)

+GJϕ′E(t) = λ(t)
∂φ

∂ϕE

, (13)

ϕ(t, 0) = 0. (14)

The boundary conditions (10) and (13) are cou-
pled each other. It is found that the bending and
torsional vibrations are coupled.

3. LYAPUNOV-BASED FORCE CONTROL

3.1 The relation between a desired force and the
state variables

Let fd be the desired constraint force, λd the
related Lagrange multiplier, θd the related static
motor angle, wd(r) the related static bending dis-
placement and ϕd(r) the related static torsional
displacement at the desired state. In the situation
where the system is controlled to accomplish the
desired contact force fd, the relation between fd

and the desired Lagrange multiplier λd is given by

fd = −λd. (15)

By substituting the condition for the desired
states:





θ(t) = θd, θ̇(t) = θ̈(t) = 0,
w(t, r) = wd(r), ẇ(t, r) = ẅ(t, r) = 0,
ϕ(t, r) = ϕd(r), ϕ̇(t, r) = ϕ̈(t, r) = 0,
f(t) = fd, λ(t) = λd,

into the equations of vibration (9)–(14) and the
constraint condition (4), and solving them for
the static bending displacement wd(r) and the
static torsional displacement ϕd(r), the relations
of wd(r), ϕd(r) and fd are given by

wd(r) =
1

6EI

(
3Lr2 − r3

)
fd, (16)

ϕd(r) =
lz
GJ

rfd, (17)

and the related desired motor angle θd to the
desired contact force fd is obtained as

θd =
h0

3EIGJ
fd, (18)

where h0 = GJL2 + 3EIl2z(> 0) is a constant.

3.2 Controller Design

The following Lyapunov function candidate:

V (x) = k1Tmotor + k2(Tarm + Ttip + V)

+
1

2
k3(θ(t) − θd)

2, (19)

is investigated, where k1, k2 and k3 are positive
parameters, and

x= [ θ(t), θ̇(t), w(t, r), ẇ(t, r), ϕ(t, r), ϕ̇(t, r),

wE(t), ẇE(t), ϕE(t), ϕ̇E(t),

w′E(t), ẇ′E(t), w′′(t, r), ϕ′(t, r) ]T ,

V =
1

2

L∫

0

EI[w′′(t, r)− w′′d (r)]2dr

+
1

2

L∫

0

GJ [ϕ′(t, r) − ϕ′d(r)]
2dr.

The last term in (19) has been added as a pseudo-
energy to insure that the desired final states:

xd = [ θd, 0, wd(r), 0, ϕd(r), 0, wd(L), 0, ϕd(L), 0,

w′d(L), 0, w′′d(r), ϕ′d(r) ]T , (20)

is a unique minimum of V . It is straightforward
to check that the positiveness of the parameters
k1, k2 and k3 in (19) guarantees V (x) ≥ 0 and
that indeed the global minimum of V (x) = 0 is
attained only at the desired states xd.

Differentiating (19) with respect to t, employing
the equations of motion (8)-(14), and using the
constraint condition (4) yield

dV (x)

dt
= θ̇(t)

{
k1τ(t) + (k2 − k1)EIw

′′(t, 0)

+k3(θ(t)− θd)− k2EIw
′′

d (0)
}
. (21)

If the following control law:

τ(t) =−{k3

k1

(θ(t)− θd) +
k4

k1

θ̇(t)

+
k2 − k1

k1

EI(w′′(t, 0)− w′′d (0))

−EIw′′d (0)}, (22)

is used, where k4 > 0, then substituting (22) into
(21) yields

dV (x)

dt
= −k4θ̇

2(t) ≤ 0, (23)

which implies the boundedness V (x(T )) ≤ V (x(0))
<∞ of the Lyapunov function candidate (19) for
all T ≥ 0 and the stability of the solutions of the
closed-loop system (8)-(14) and (22).



4. ASYMPTOTIC STABILITY

The invariance principle (Henry, 1981) is applica-
ble to this system. By virtue of this principle, the
trajectories of the closed-loop system (8)-(14) and
(22) tend to the maximal invariant subset of a set

of solutions of (8)-(14) and (22) for V̇ (x) = 0. The
latter equality implies that

θ̇(t) = 0, (θ(t) = θs = const.), θ̈(t) = 0. (24)

Under the condition (24), the constraint condition
(4) is represented by

wE(t) + lzϕE(t) = Lθs = const., (25)

which is regarded as a boundary condition along
the manifold where V̇ (x) = 0. Substituting (24)
into the closed-loop system of (8) and (22) yields

w′′(t, 0) = − k3

k2EI
(θs − θd) + w′′d (0). (26)

Moreover, by using the conditions (24) and (25)
and introducing new variables:

v1(t, r) =w(t, r) +
GJ

2h0

θs(r
3 − 3Lr2), (27)

v2(t, r) = ϕ(t, r) − 3EIlz
h0

θsr, (28)

the following equations of vibration of the arm
along the manifold where V̇ (x) = 0 are obtained,
the equation of bending vibration:

v̈1(t, r) +
EI

ρ
v′′′′1 (t, r) = 0, (29)

EIv′′1E(t) = 0, (30)

v1E(t) + lzv2E(t) = 0, (31)

v1(t, 0) = 0, v′
1
(t, 0) = 0, (32)

the equation of torsional vibration:

v̈2(t, r) −
GJ

ρκ2
v′′2 (t, r) = 0, (33)

EI[
m

ρ
(lz − ez)v

′′′′

1E(t) + lzv
′′′

1E(t)]

+GJv′2E(t) + {mez(ez − lz)

+Jx}
GJ

ρκ2
v′′2E(t) = 0, (34)

v2(t, 0) = 0, (35)

where v1E(t) = v1(t, L), v2E(t) = v2(t, L).

By using the eigenvalues γn and the correspond-

ing eigenfunctions ψn(r) = [ψ1n(r) ψ2n(r) ]
T

described in Appendix A, the solution of (29)–
(35) is known to be expanded into the series:

[
v1(t, r)
v2(t, r)

]
=

∞∑

n=1

1

γn

[
ψ1n(r)
ψ2n(r)

]
νn(t), (36)

where the variables νn(t) satisfy

ν̈n(t) = −γnνn(t), n = 1, 2, · · · . (37)

Since the solution of (37) is given by

νn(t) = cn sin(
√
γnt+ φn), n = 1, 2, · · · , (38)

where cn and φn are constants, the expansion (36)
results in

[
v1(t, r)
v2(t, r)

]
=

∞∑

n=1

1

γn

[
ψ1n(r)
ψ2n(r)

]
cn sin(

√
γnt+ φn).

(39)

Differentiating v1(t, r) twice with respect to the
spatial variable r and setting r = 0 yield

v′′
1
(t, 0) =

∞∑

n=1

1

γn

ψ′′
1n(0)cn sin(

√
γnt+ φn). (40)

On the other hand, (27) ensures that

v′′1 (t, 0) = w′′(t, 0)− 3GJL

h0

θs. (41)

Cancelling w′′(t, 0) from (26) and (41) yields

v′′1 (t, 0) =− k3

k2EI
(θs − θd) + w′′d (0)− 3GJL

h0

θs

= −c0 = const. (42)

Now, combining (40) and (42) gives

c0 +

∞∑

n=1

cn
1

γn

ψ′′1n(0) sin(
√
γnt+ φn) = 0,(43)

while from (A.5) we can find that

ψ′′
1n(0) =− 2

Ĉn

µ1(βn)
(βn

L

)2

6= 0, n = 1, 2, · · · . (44)

Due to the property of the eigenvalues (0 < β1 <
β2 < · · ·) and by virtue of the linear independence
of the functions {1, sin

√
γ1t, sin

√
γ2t, · · ·}, it is

concluded from (43) that c0 = c1 = c2 = · · · = 0
and the ordinary differential equation (38) has the
trivial solution:

νn(t) = 0, n = 1, 2, · · · (45)

only. From these results, Eqs.(36) and (42) are
expressed as

v1(t, r) = 0, v2(t, r) = 0, (46)

− k3

k2EI
(θs − θd) + w′′d (0)− 3GJL

h0

θs = 0. (47)



Thus, the relation (47) ensures from (16), (18) and
(25) that

θs = θd. (48)

By using (25), (46) and (48), Eqs.(27) and (28)
are expressed as

w(t, r) =−GJ
2h0

θd(r
3 − 3Lr2), (49)

ϕ(t, r) =
3EIlz
h0

θdr. (50)

In turn, the relations (49) and (50) ensure from
(16), (17) and (18) that w(t, r) = wd(r), ϕ(t, r) =

ϕd(r). Thus, the equality V̇ (x) = 0 holds just
at the equilibrium point, and in accordance with
the invariance principle the proposed control law
(22) stabilizes the distributed parameter system
asymptotically.

To this end, the control law (22) can be repre-
sented in the form:

τ(t) =−Kp(θ(t) − θd)−Kdθ̇(t)

−KsEI(w
′′(t, 0)− w′′d (0)) + EIw′′d (0) (51)

where Kp = k3/k1, Kd = k4/k1 and Ks = (k2 −
k1)/k1. This control law consists of the PD feed-
back of the motor angle and a bending strain(S)
feedback of the flexible arm, which is called PDS
control. The last term in the right side of (51) is
the feedforward of the desired bending moment
torque to achieve the desired force control. It is
clear that the controller (51) admits simple im-
plementation since no state estimation is required.
When applying this controller to the system, the
spillover does not occur. The joint angle and the
angular velocity as well as the root bending strain
can be measured by using conventional sensors.
Letting k1 = k2 in (51), the control law becomes
the local PD feedback. It implies that the PD
control law also ensures the asymptotic stability
of the closed-loop system. Moreover, it is noted
that the PDS control law ensures the asymptotic
stability of the closed-loop system of the coupled
bending and torsional vibration system, although
no information on the torsional vibration is used
in the control law. The PDS control law is effective
even if the arm separates from the constraint sur-
face, because the arm approaches the constraint
surface by the first and the last terms in the right
side of (51).

5. SIMULATION

Some simulations are performed to confirm the
effectiveness of the PDS controller.

As the simulation model, the finite dimensional
modal model derived by using the eigenfunction
expansion is used, and the first four modes are

considered. The physical parameters are taken as
follows: L = 0.85 [m], EI = 5.43 [Nm2], GJ =
7.61 [Nm2], ρ = 0.307 [kg/m], ρκ2 = 4.11 ×
10−5 [kgm], Jm = 0.137 [kgm2], Jx = 4.50 ×
10−3 [kgm2], m = 1.34[kg], lz = 0.13 [m], ez =
−0.05 [m]. The desired contact force is given by
fd = 2.0[N]. The corresponding desired values
are θd = 0.0693[rad], EIw′′d (0) = 1.76[Nm], and
GJϕ′d(0) = −0.260[Nm].

Figures 2 (a) and (b) show the step responses
for the PD controller and for the PDS controller,
respectively. Figures 3 (a) and (b) show the input
disturbance responses for the PD controller and
for the PDS controller, respectively. The input
disturbance 2.0[Nm] is applied for 0.05[s] from
t = 1[s] to t = 1.05[s]. In the simulations, the
controller gains are used as follows: PD control:
Kp = 20, Kd = 10, Ks = 0 and PDS control:
Kp = 20, Kd = 10, Ks = 5.

From the figures, it is found that the bending
strain feedback is effective for not only bending
vibration absorption but also torsional vibration
absorption. From the theoretical point of view,
both the PD and PDS feedback control law ensure
the asymptotic stability of the closed-loop system.
From simulation results, the advantage of the
bending strain feedback is found.

6. CONCLUSION

In this paper the force control of a one-link flexible
arm with a rigid tip body has been discussed using
Lyapunov method . On the basis of the distributed
parameter model, a simple and robust controller
has been constructed. By using Lyapunov method
and the invariance principle, the controller was
proved to ensure the asymptotic stability. The
simulation results demonstrated the effectiveness
of the proposed PDS feedback controller.

In order to accomplish the force control, in gen-
eral, the force is directly fed back. However, in the
case of a flexible arm, as the force sensor and the
actuator are located at the tip and the root of the
arm, respectively, the system is non-collocated,
hence the closed-loop system becomes a nonmin-
imum phase one. So, the direct force feedback
cannot necessarily ensure the closed-loop stability.
The result has been proved in the case that the
system is represented as the finite-dimensional
model(Morita and Matsuno et al., 2001). Even
in the case of the distributed parameter system
treated in this paper, one can guess the similar
result. Now the proposed force control based on
the position and root strain feedback is collocated
control. So the closed-loop stability can be en-
sured in this paper. On the other hand, since the
proposed force control is based on the position and
strain feedback, parameter uncertainty possibly
leads to the steady state error in force time re-
sponse. However, although the force error occurs,
the closed-loop stability is ensured. The discussion
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Fig. 2. Step Responses
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Fig. 3. Responses for input disturbance

about compensation of the parameter uncertainty
for achieving precise force control is the next work.

The future work is to demonstrate the validity
of the proposed controller by experiments and to
extend the results to cooperative control of flexible
arms for grasping an object.
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Appendix A. EIGENVALUE PROBLEM

An eigenvalue problem related to the distributed
parameter system (29)-(35) is as follows:




EI

ρ
ψ′′′′

1
(r)

−GJ
ρκ2

ψ′′
2
(r)


 = γ

[
ψ1(r)
ψ2(r)

]
, (A.1)

ψ1(0) = 0, ψ′1(0) = 0, ψ2(0) = 0,

EIψ′′
1
(L) = 0, ψ1(L) + lzψ2(L) = 0,

mγ(lz − ez)ψ1(L)− γ{mez(ez − lz) + Jx}ψ2(L)

+EIlzψ
′′′

1
(L) +GJψ′

2
(L) = 0.

A parameter β is introduced such that γ =
(EI/ρ)(β/L)4. Let βn be the solution of eigen-
equation such that 0 < β1 < β2 < · · · < βn < · · ·.
Then the eigenvalues γn are given by

γn =
EI

ρ

(βn

L

)4
, n = 1, 2, · · · , (A.2)

and the eigenfunctions are given by

ψ1n(r) =
1

Ĉn

{sin βn

L
r − sinh

βn

L
r

+µ1(βn)(cos
βn

L
r − cosh

βn

L
r)}, (A.3)

ψ2n(r) =
1

Ĉn

µ2(βn) sin
αβ2

n

L2
r, (A.4)

where Ĉn 6= 0 are bounded arbitrary constants,
and

µ1(βn) =− sinh βn + sin βn

coshβn + cosβn

, (A.5)

µ2(βn) =
2(sinh βn cosβn − coshβn sin βn)

lz(coshβn + cosβn) sin(αβ2
n/L)

.


