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Abstract: In this paper, we present a new approach for nonlinear identification
using Variable Structure Recurrent Neural Networks (VSRNN). We propose a neural
network identifier, whose structure changes depending on the error. In this way, a
trade off between identification error and computational complexity is achieved.
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1. INTRODUCTION

Amain topic for nonlinear system identification is to
select a suitable identifier structure. Recurrent neu-
ral networks offer the advantage of approximating a
nonlinear system within any accuracy degree (Cot-
ter N. E., 1990), provided that the neural identifier
has sufficient synaptic connections (Kosmatopoulos
E. B., 1997). However, it is quite difficult to deter-
mine the number of sufficient synaptic connections
to approximate such a dynamical system.

If the neural identifier has no enough synaptic
connections, it is not possible to assure that the
parameters converge to their optimal values even
using persistently excitation inputs, and in many
cases the identification error does not converge to
zero. On the other hand, if there are too many
synaptic connections, computational resources are
misused.

In this paper, to alleviate this situation, we propose
a Variable Structure Neural Network (VSRNN) for
nonlinear system identification. An initial configu-

ration for the neural identifier is assumed, but if a
pre-specified error criterion is not reached we add
more synaptic connections, in order to satisfy such
criterion.

2. MATHEMATICAL PRELIMINARIES

Before proceeding with the main subject of the
paper, we introduce some required mathematical
concepts.

2.1 Input-to-State Stability

Let consider the nonlinear system (Krstic M.,1998)

ẋ = f(x, t) + g1(x, t)d (1)

where x ∈ <n is the state space, d ∈ <r is an
external disturbance, and f(0, t) = 0.

Definition 1. The system (1) is said to be input-to-
state stable (ISS) if there exist a class KL function
β and a K function χ, such that, for any x(t0) an
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for any input d(·) continuous on [0,∞) the solution
exist for all t ≥ 0 and satisfies

||x(t)|| ≤ β(x(t0), t− t0) + χ

µ
sup

t0≤τ≤t
||d(τ)||

¶
for any t0, 0 ≤ t0 ≤ t.

Theorem 1. (Sontag) Suppose that for the system
(1) there exist a C1 function V : <n×<+ such that
for all x ∈ <n and for all d ∈ <r,

γ1(||x||) ≤ V (x, t) ≤ γ2(||x||)

|x|≤ δ(||d||)⇒ ∂V

∂t
+

∂V

∂x
f(x, t) +

∂V

∂x
g1(x, t)d

≤−γ3(||x||)
where γ1, γ2 and δ are class K∞ functions and γ3 is
a class K function, hence the system (1) is ISS with
χ = γ−11 ◦ γ2 ◦ δ.

2.2 Switched Systems

Let the family of vector fields P = {fσ(x, u), fσ :
<n × <m → <n, σ ∈ Γ}, where Γ is a index set,
fσ(0, 0) = 0 ∀σ ∈ Γ, and for each σ ∈ Γ fσ is
locally Lispchitz (Mancilla J. L., 2000).

Given the family P , the switched system is consid-
ered

ẋ = fs(x, u) (2)

where x ∈ <n, u ∈ <n t ≤ 0 and s is the switching
signal defined as a continuous function [0,∞)→ Γ;
associated with the signal s there is a sequence of
real numbers Υ = t0 < t1 < ... < tk < ... called
switching time secuence and the sequence of indexes
Σ = σ0,σ1, ...,σk, ... such that s(t) = σk for all
tk ≤ t < tk+1.

Theorem 2. Suppose that there exist a common
ISS-Lyapunov pair (V, δ) for P . Then the system
(2) is ISS (Mancilla J.L., 2000).

2.3 Stability Lemmas

Lemma 3. (Barbalat). Let φ : < → < be a
uniformly continuous on [tq,∞). Suppose that
limt→∞

R∞
tq

φ(τ)dτ exists and is finite (Khalil H.,
1996), then,

φ(t)→ 0 as t→∞
with tq ≥ 0.

Lemma 4. Consider the system (Khalil H., 1996)

ẋ = f(t, x) (3)

where x ∈ <n and f(t, x) is locally Lipschitz in
x and uniformly in t. Suppose that there exists a
function V : <n → <+ radially unbounded and
continuously differentiable such that

V̇ =
∂V

∂x
f(t, x) ≤ −W (x) ≤ 0

∀t ≥ t0 ∀x ∈ <n, where W (x) is a positive
semidefinite function, then all trajectories of (3) are
bounded for t ≥ t0 and kx(t0)k < c, where c is a
positive and bounded constant, moreover

lim
t→∞W (x) = 0

3. RECURRENT HIGH ORDER NEURAL
NETWORK

The recurrent neural network structure presented
in (Kosmatopoulos E. B., 1997) is considered. For
the sake of completeness, a brief description of this
neural network is included here. In (Kosmatopoulos
E. B., 1997), recurrent high order recurrent neural
network (RHONN) are defined as

ẋi = −aixi +
LiX
k=1

wik
Y
j∈Ik

η
dj(k)
k , i = 1, ..., n (4)

where: xi is i-th neuron state, Li is number of high
order connections, {I1, I2, ..., ILi} is a collection of
no ordered subsets of {1, 2, ...,m+ n}, ai > 0., wik
are the adjustable weights of the neural network,
dj(k) are no negative integers, and η is a vector
defined as:

η =



η1
...
ηn
ηn+1
...

η2n
η2n+1
...

η2n+m


=



S(x1)
...

S(xn)
S0(x1)
...

S0(xn)
u1
...
um


with u = [u1, u2, ..., um]

T the input to the neural
networks, and S(·) a smooth sigmoid function for-
mulated as:

S(x) =
2

1 + exp(−βx) − 1



For the sigmoid, β is a positive constant. Hence
S(x) ∈ (−1, 1). and S0(·) is a smooth sigmoid
function given by:

S0(x) =
1

1 + exp(−βx)
As it can be seen, (4) allows the inclusion of high
order terms.

Defining the vector

ρi =


ρi1
ρi2
...

ρi,Li

 =



Y
j∈I1

η
dj(1)
jY

j∈I2
η
dj(2)
j

...Y
j∈ILi

η
dj(Li)
j


(4) can be rewritten as

ẋi = −aixi +
LiX
k=1

wikρik, i = 1, ..., n

or

ẋi = −aixi + w>i ρi(x, u), i = 1, ..., n (5)

where wi = [wi1...wi,Li ]
> is the vector of adaptive

weights. It is clear that the synaptic weights de-
pends on time. We name each wikρik a high order
connection, and each ρik a high order term.

3.1 Variable Structure Recurrent Neural Networks

For simplicity, we define the dynamics for each neu-
ron of a variable structure recurrent neural networks
(VSRNN) as

ẋi = −aixi + fsi (x, u,wi), i = 1, ..., n (6)

For the i-th neuron let a family of functions Pi =
{fσi (x, u,wi), fσi : <n × <m × <Li+∆i → <, σ ∈
Γi}, where Γi = {0, 1, 2, ...,∆i}, s(t) : t → Γi is
the switching signal and ∆i is called the maximal
number, which is finite, of high order connections for
the i-th neuron. We propose to select Pi such that
Pi = {f0i = w0Ti ρ0i , f

1
i = f0i + wi,L0i+1ρi,L0i+1, ...,

fσi = fσ−1i + wi,L0
i
+σρi,L0

i
+σ,σ = 2, ...,∆i}, where

w0i , ρ
0
i ∈ <L

0
i and L0i is the number of initial high

order connections; hence, the maximal number of
high order connections is L0i +∆i.

For simplicity, we can rewrite Pi = {f0i = w0i ρ
0
i ,

f1i = w1>i ρ1i , ..., f
σ
i = wσ>i ρσi , σ = 2, ...,∆i},

where w1i = [w0>i wi,L0
i
+1]

>, ρ1i = [ρ0>i ρi,L0
i
+1]

>,

wσi = [w
(σ−1)>
i wi,(L0

i
+σ)]

> and ρσi = [ρ
(σ−1)>
i

ρi,(L0
i
+σ)]

> with σ = 2, ...,∆i.We name f0i = w
0>
i ρ0i

and f∆i
i = w>i ρi as the initial or minimal structure

and the maximal structure, respectively, for the i-th
neuron state. We define the high order connection
which have not been connected at tσ ≤ t < tσ+1 as
w̄σ>
i ρ̄σi . It is worth mentioning that for the VSRNN,
the function time s is a increasing one, with s(0) =
0.

The function s is determined by an external agent
called supervisor; this agent evaluates the VSRNN
performance and depending on this evaluation, it
calculates, on-line, the value of s. Due to the way
as we define the family of functions Pi, and the
switching function s, the indexes secuence Σi, which
is 0, 1, 2, ...,∆i, is defined off-line. So that, only the
switching time secuence Υi is given on-line by the
supervisor.

As we stated before, the weights are time functions;
hence, every wik, k = 1, 2, ..., L0i for the initial
structure is the solution of a differential equation
as

ẇik = vik(t), wik(0) ∈ < (7)

For l = L0i + 1, L
0
i + 2, ..., L

0
i +∆i, the weights are

given by

ẇil = µ(t− ts)vil(t), wil(0) = 0 (8)

where vij(·) is a bounded time function defined in
the section 4.1 and µ(·) is the well known unit step
function. The above equations mean that all the
weights not included are zeros until the respective
high order connections are added.

4. NONLINEAR IDENTIFICATION

In this section, we consider the problem of identify-
ing a nonlinear affine system given as

χ̇ = f(χ) +G(χ)u (9)

where χ ∈ <n, u ∈ <m, f is a smooth vector field,
G(χ) is a matrix with columns gi, i = 1, 2, ..., n,
G = [g1 g2 ... gn]. In order to identify this system
(9), we use the VSRNN explained in Section 3.1.
As discussed in (Kosmatopoulos E. B., 1997), it is
assumed that the system (9) is fully described by a
RHONN, with each neuron state given by

χ̇i = −aiχi + w∗>i ρ∗i (χ, u) (10)

where w∗i , ρ
∗
i ∈ <Li . The optimal unknown param-

eters vector w∗i is defined as

w∗i = arg min
wi

(
sup
χ,u

|fi(χ) + gi(χ)u
+aiχi − wTi ρi(χ, u)|

)



Fig. 1. Scheme proposed block diagram.

A1.We assume that the optimal weight vector w∗i
can be expressed as

w∗i = [w
∗q>
i w̄∗q>i ]>

where the entries of w∗qi can be any bounded value
and the ones of w̄∗qi are zeros.

This implies that there could exist a neural structure
simpler than the maximal one, that can approx-
imate arbitrary well the system (9); it is worth
mentioning that the dimensions of w∗qi and w̄∗qi are
unknown.

In order to identify the system (9), it is assumed
that it can be represented by the proposed RHONN;
then two possible model can be built.

• Parallel model ẋi = −aixi + w>i ρi(x, u)
• Series-Parallel model ẋi = −aixi+w>i ρi(χ, u)

where xi is the i-th component of the RHONN, and
χ is the state of the system (9).

To develop the on line weight update law, we use
the Series-Parallel model. The idea is to propose
an initial structure for the RHONN and adapt the
neural parameters, but if an error criterion is not
satisfied we add an extra high order connection.
We continue adding different high order connections
until the error criterion is satisfied or the maximal
neural structure is reached. Fig. 1 shows a block di-
agram of this scheme, where the supervisor evaluate
the VSRNN’s performance; if the error criterion is
not satisfied, a high order connections will be added.

As in the definition of a VSRNN we can define w∗i =
[w∗s>i w̄∗s>i ]>, where w∗si ρsi are de connection added
to the VSRNN and w̄∗s>i ρ̄si are the connections not
added ∀ts ≤ t < ts+1.
Let define the i−th identification error as

ei = xi − χi

and the i−th parameter error at ts ≤ t < ts+1
w̃si = w

s
i − w∗si

Then from (6) and (10) we can obtain the error
equation

ėi = −aiei + w̃s>i ρsi − w̄∗s>i ρ̄si (11)

Lemma 5. The identification error e is ISS with
respect to d = [d1 d2 ... dn]>, di = w̃s>i zsi − w̄∗s>i z̄si ,
i = 1, 2, ..., n.

Proof. Let define the matrixA = diag{a1, a2, ..., an}.
Now we propose the ISS-Lyapunov function V =
1
2 ||e||2.
If

||e|| ≥ δ(||d||) = ||d||
||A||− b

then

V̇ = e>Ae+ d>e < −b||e||2
with ||A|| > b > 0. Therefore, according with the
lemma 1, e is ISS with respect to d, and χ(||d||) =
||d||

||A||−b .

Considering that the definition of d is valid for
any structure, then according to (Mancilla J. L.,
2000), the last Lemma states that the identification
error can not diverge for any sequence of high order
connections, hence ei is always bounded for any
structure.

4.1 On-line Identification

Using Barbalat’s Lemma we can propose a definite
positive and bounded by below function Vi(ei, wi)
and a parameter adaptive law such limt→∞ Vi(ei(t),
w(t)) exist; and V̇i is uniformly continuous on
[tq,∞) and if V̇i → 0 ⇒ ei → 0. Thereafter, we
consider the Lyapunov function candidate

Vi =
1

2
(γe2i + w̃

>
i w̃i) (12)

where γ is the learning rate. Differentiating (12)
along the trajectories of (11) we obtain

V̇i =−γaie2i + γeiw̃
s>
i ρsi − γeiw̄

∗s>
i ρ̄si (13)

+w̃>i
.
w̃i (14)

If we define the weight adaptive law (Rovithakis G.
A., 1994) as



ẇsi =−γeiρsi (15)
·
w̄
s

i = 0

then (7) and (8) are satisfied, and the equation (13)
becomes

V̇i = −γaie2i − γeiw̄
∗s>
i ρ̄si

Considering A1, we are able to find some interme-
diate structure simpler than the maximal structure
such that the term w̄∗s>i ρ̄si

∼= 0; hence, there exist
some finite time tq, such that

V̇i = −γaie2i
for all t ≥ tq. That means that, after we add the q−
th connection to the VSRNN, we will not consider
to add more high order terms.

Using Lemma 4 and supposing A1, it easy to see
that if we reduce the modelling error term, by
adding sufficient connections, at a finite time tq,
with the adaptive law (15) we guarantee that the
weights are bounded and the identification error
converges to zero after tq, with x = [ei w

>
i ]
>,

V (x) = Vi(ei, wi), and W (x) = γaie
2
i .

4.2 Robust On-line Identification

When the final parametrization has no been reached,
the adaptive law (15) does not guarantee either the
boundness of the weights or the convergence of the
identification error to zero. Therefore the learning
law (15) has to be modified in order to avoid the
parameters drift problem. Then the well known σ-
modification (Ioannou P. A., 1996), is applied to
(15)

ẇsi = −γeiρsi − σiw
s
i (16)

where σi is given as:

σi =


0, if ||wsi || ≤Miµ ||wsi ||

Mi

¶q
σio , if Mi < ||wsi || ≤ 2Mi

σio , if ||wsi || > 2Mi

with integer q ≥ 1 , and σi0 and Mi positive
constants.

Lemma 6. Consider the system (10) and the VSRNN
(6) whose parameters are adapted using the law
(16), then ei, wi ∈ L∞.

Proof. The differential of Vi along the trajectories
of (11) and (16) is given by

V̇i = −γaie2i − σiw̃
s>
i wsi − γeiw̄

∗s>
i ρ̄si

Applying the inequality

−w̃s>i wsi ≤−(w̃s>i w̃si − w̃s>i w∗si )

≤−1
2
|w̃si |2 +

1

2
|w∗si |2

and defining d0 = maxt≤0(w̄∗s>i ρ̄si ), we have

V̇i ≤ −γaie2i − σiw̃
s>
i wsi +

γ2e2i
2

+
d0
2

2

Since w̃si = w
s
i − w∗si , then

−w̃s>i wsi ≤−(w̃s>i w̃si + w̃
s>
i w∗si )

≤−1
2
||w̃si ||2 +

1

2
||w∗si ||2

Therefore

V̇i ≤−γaie2i +
γ2e2i
2
− 1
2
σi||w̃si ||2

+
1

2
σi||w∗si ||2 +

d20
2

We define α = ai − 1
2γ, hence

V̇i ≤−γαe2i −
1

2
σi||w̃si ||2

+
1

2
σi||w∗si ||2 +

d20
2

Substituting ei from (12) in the above inequality, we
have

V̇i ≤−αVi + αw̃>i w̃i −
1

2
σi||w̃si ||2

+
1

2
σi||w∗si ||2 +

d20
2

Taking the worst case, when ||wsi || > 2Mi, we can
select σio > 2α, then

V̇i ≤ −αVi + α||w̄∗si ||2 +
1

2
σio||w∗si ||2 +

d20
2

therefore Vi ∈ L∞ and the proof is complete.

5. SIMULATIONS

We consider the Duffing system to test the proposed
identication scheme. The plant is defined as

χ̇1 = χ2 (17)

χ̇2 = (−kχ1 − ka3χ31 − cχ2 + u)/m
with m = 3, K = 0.1, a = 0.2, C = 0.05,
u = A sin(ωt), A = 0.5Nm, ω = 1rad/s. To identify



the system (17) we consider a two states VSRNN
given by

ẋ1 =−a1x1 + ws>1 ρs1 (18)

ẋ2 =−a2x2 + ws>2 ρs2

where a1 = a2 = 8, β = 0.5, and γ = 10.

The results are presented in Fig. 1 and Fig. 2, for
χ1 and χ2 respectively

Fig. 1. Position tracking

Fig. 2. Velocity tracking

6. CONCLUSIONS

The proposed identification scheme is suitable to
deal with uncertainties in the plant. This scheme
trades off between the identifier performance and
the computational complexity. Research is being
pursued to test the applicability of the proposed
scheme via simulations. Some disadavantages of
this identification scheme are; all states need to
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be measurable and the order of the high order
connections to be added is fixed and defined off-line.
The most important topic for future works is to find
some way to estimate the modelling error term, and
then, the supervisor not only could give on-line the
switching time secuence, but, the indexes secuence.
It would be good to wipe away some connection if
it is not needed to reduce the modelling error term.
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