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1. INTRODUCTION 
 Multi-level hypotheses testing provides a more 
precise characterization of potential faults than the 
bi-level fail/no-fail hypothesis testing, and is often 
essential for early warning and timely detection and 
identification of soft failures in degrading devices 
[Basseville ‘93].  The contribution of this short 
communication is analytical formulation of a 
recursive algorithm that is built upon the statistical 
decision-theoretic principles of multi-level 
hypotheses testing.   The algorithm is potentially 
applicable to real-time condition monitoring, early 
warning, and fault identification in complex 
dynamical systems like undersea vehicles, 
advanced aircraft, spacecraft, and power plants.   

2. MULTI-LEVEL HYPOTHESES TESTING 
 Let { }m,3,2,1, =η kk  be statistically 
independent observations of a continuous random 
process at consecutive sampling instants.  For 
example, these observations could be (zero-mean) 
residuals obtained from noisy sensor data and/or 
analytical measurements. 
 We assume M  distinct possible modes of 
abnormal operation (i.e., faults) in addition to the 
normal (i.e., no-fault) condition that is denoted as 

the th0  mode such that exactly one of the )1( +M  
modes is occupied at each instant.  Occupancy of 
each of these )1( +M  modes is designated as an 
event.  These )1( +M  events constitute a set of 
mutually exclusive and exhaustive Markov states.  
Correspondingly, the following hypotheses are 
defined for Mi ,,2,1 m= : 
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We assume a one-to-one correspondence between 
the set of )1( +M  events and the set of hypotheses, 

MjH j
k ,,2,1,0, m= , of their occurrence at the thk  

sample.  The terms, event, mode, and hypothesis, 
are therefore synonymously used in the sequel.  

 We define the a posteriori probability j
kπ  of 

the thj  event at the thk  sample as: 

 MjZHP k
j

k
j

k ,,2,1,0,][ m=≡π  (2) 
based on the cumulative observations 

},,,{ 21 kk zzzZ m≡  over k  consecutive samples 
where the observations, { }iBiiz ∈η≡ , are mutually 
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statistically independent and iB  is the region of 

interest at the thi  sample.  The sampling instants 
are not necessarily uniformly spaced in time. 
 The problem is to derive a recursive algorithm 
for a posteriori probabilities, Mjj

k ,,2,1: m=π , at 

the thk  sample in real time. This information also 
leads to evaluation of the total a posteriori 
probability kΠ  of occurrence of any one of the M  

abnormal events at the thk  sample: 
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Equation (3) holds because of the exhaustive and 
mutually exclusive properties of the Markov states, 

MjH j
k ,,2,1, m= .  To construct a recursive relation 

for kΠ , we define the following:  

 Joint probability: ],[ k
j

k
j
k ZHP≡ξ  (4) 

 A priori probability: 




≡λ j
kk

j
k HzP  (5) 

 Transition probability: 



≡ −

i
k

j
k

ji
k HHPa 1
,  (6) 

Then, because of independence of the events 

1and −kk Zz , Eq. (4) takes the following form: 
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Furthermore, the exhaustive and mutually exclusive 

properties of the Markov states Mjj
kH ,,2,1,0, m= , 

and independence of 1−kZ  and j
kH  lead to: 
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A combination of Eqs. (4) to (8) yields the 
following relation: 
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We introduce a new term 0
k

j
kj

k ξ

ξ
≡ψ  that reduces to 

the following form by use of Eq. (9): 
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and we obtain the a posteriori probability j
kπ  in 

Eq. (2) in terms of j
kξ  and j

kψ as: 
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A combination of Eqs. (3) and (11), leads to the 
total a posteriori probability kΠ  as: 
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Two examples show how the above expressions can 
be realized by simple recursive relations under the 
following assumptions: 

• Assumption 1 (for Examples a and b): At the 
starting point (i.e., k=0), the device operates in 
the normal mode, i.e., 1][ 0

0 =HP  and 

0][ 0 =jHP  for Mj ,,2,1 m= .  Therefore, in 

Eq. (4), 10
0 =ξ  and 00 =jξ  for Mj ,,2,1 m= . 

• Assumption 2 (for Examples a and b):  No 
transition takes place from an abnormal mode to 
the normal mode, i.e., 00, =i

ka  for 
Mi ,,2,1 m= , and all k .  The implication is 

zero probability of an abnormally operating 
device returning to the normal operation (unless 
replaced or repaired). 

• Assumption 3 (for Examples a and b):  The 
transition from the normal mode to any 
abnormal mode is equally likely.  That is, if p  
is the a priori probability of failure during one 
sampling interval, then pak −=10,0  and 

M
pi

ka =,0 . 

• Assumption 4a (for Example a): The transition 
from an abnormal mode to any abnormal mode 
including itself is equally likely, i.e., M

ji
ka 1, =  

k∀  and Mji ,,2,1, m= .  The implication is a 
high noise-to-signal ratio or erratic behavior of 
instrumentation components.  

• Assumption 4b (for Example b): No transition is 
allowed from an abnormal mode, i.e., 

ij
ji

ka δ=,  k∀ and Mji ,,2,1, m= . The 
implication is that a device remains at any one 
of the abnormal modes for a long period (e.g., 
slow drift or bias error of a sensor). 

 Now a recursive relation for kΨ  can be 
generated based on the assumptions 1, 2, 3 and 4a, 
and using Eq. (10) for Mj ,,2,1 m=  to yield:  
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which is simplified via the relation ∑ψ≡Ψ
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Eq. (12):  
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Similarly, another recursive relation for kΨ  can be 
generated based on the assumptions 1, 2, 3 and 4b, 
and using Eq. (10) for Mj ,,2,1 m=  to yield: 
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which is simplified via the relation ∑ψ≡Ψ
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Eq. (12): 
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 If the probability measure in each abnormal 
mode is absolutely continuous relative to that in the 

normal mode, then the ratio 0/ k
j
k λλ  of a priori 

probabilities converges to a Radon-Nikodym 
derivative as the region kB  in { }kkk Bz ∈≡ η  
approaches zero measure [Wong ‘85].  This Radon-
Nikodym derivative is simply the likelihood ratio 

,,,2,1),(/)( 0 Mjff kk
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m=ηη  where )(•jf is the a 
priori density function conditioned on the 
hypothesis .,,2,1,0, MjH j

m=   Accordingly, 
given 00 =Ψ , the recursive relations in Eqs. (14a) 
and (14b) combined with Eq. (12) become: 
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Equations (15a) and (15b) recursively compute the 
total a posteriori probability kΠ  based on the 
observations { }m,3,2,1, =η kk  for different 
operating conditions as delineated under 
Assumptions 4(a) and 4(b), respectively. 

3. AN APPLICATION EXAMPLE 

 The recursive algorithm of the multi-level 
hypotheses test algorithm, derived above, has been 
validated on a data set of temperature sensors in a 
320 MWe coal-fired supercritical power plant.  The 

set of redundant measurements of throttle steam 
temperature at ~ )560(1040 CF oo  is generated by 
four temperature sensors installed at different 
spatial locations of the main steam header that 
carries superheated steam from the steam generator 
into the high-pressure turbine via the throttle valves 
and governor valves.  The readings of all four 
temperature sensors were collected over a period of 
10 hours at the sampling frequency of once every 
15 seconds.  For this specific application, the filter 
parameters of the hypotheses test algorithm are 
selected as described below.   

3.1  Filter Parameters  
 In this section, we evauate the parameters and 
functions that are necessary for the hypotheses 
testing algorithm.  The noise associated with each 
sensor output is assumed to be additive Gaussian 
that assures existence of the likelihood ratios in 
Eqs. (13a).and (13b).   
 The set of four temperature sensing 
instrumentation that are appropriately calibrated for 
zero bias error is modeled at the thk  sample as: 
 kkk xHy ε+=  (16) 
where 

ky  is the )14( ×  sensor data vector; 
H  is the )14( ×  a priori determined matrix of 
scale factor having rank 1 .  After conversion 
of the sensor data into engineering units, the 
scale factor matrix becomes: 

[ ]TH 1111= ; 

kx  is the )11( ×  vector of true (unknown) 
value of the measured temperature; 

kε  is the )14( ×  vector of additive noise, such 

that 0][ =εkE  and �� kk
T

k RE δ=εε )(  with 
.0>kR  

The noise associated with each of the four similar 
sensors was found to be stationary Gaussian and 
independent and identically distributed so that 

44
2

×σ== IRRk .   

 We now construct the )13( ×  parity residual 
vector kη  from the sensor vector ky , which is 
defined [Potter ’77; Chow ’80; Ray 91] as: 
 kk Vy=η  (17) 

where the rows of the parity matrix 43×ℜ∈V  form 
an orthonormal basis of the left null space of the 
scale factor matrix 14×ℜ∈H  in Eq. (1)., i.e.,  

  3313 ;0 ×× == IVVHV T  (18) 

and 
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Note that the columns of V , often called failure 
directions, span the parity space.  Under the normal 
condition when all sensor readings are clustered 
together, the magnitude of the parity residual vector 

kη  is small.  Under an abnormal condition, if the 
thj  sensor undergoes a posittive (negative) fault, 

then the component of kη  along the thj  failure 

direction (i.e., thj  column of the V matrix in Eq. 
(19)) grows in the positive (negative) sense and 
thus identifies the faulty sensor and its failure mode 
[Ray ‘89].  Following (16), (17) and (18), the mean 
and covariance of parity residual vector are:  
 ( ) 130 ×=ηkE and 

( ) 33
2

×σ==ηη IVRVE TT
kk  (20) 

The structures of the a priori conditional density 
functions for a three-level ( 2=M ) hypotheses test 
based on the time series of the parity residuals, are 
chosen as follows: 
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where σ  is the standard deviation, and θ  and θ−  
are the thresholds for high and low failures, 
respectively, for each component of the parity 
residual vector under the density functions )(1 •f  

and )(2 •f , respectively.  

 The a posteriori probabilities j
kπ  could ideally 

achieve the lower and upper bounds of 0 and 1, 
respectively. However, the lower bound of each  

j
kπ  is set to p  to accommodate the (non-zero) 

probability p  of intra-sampling failure. This 
modification assists in achieving finite response 
time for fault detection from the normal operating 

condition.  The upper bound  of each  j
kπ  is set to 

)1( α−  to account for thealloowable probability α  
of false alarms for each of the four sensors [Ray 
‘89].  Numerical values of the parameters, σ , θ , 
p , and α  that have been generated from the 

archived data of pwer plant operation are presented 
below: 

•  The standard deviation of the a priori Gaussian 
density functions of each sensor (measurement 
noise only) is: )11.1(2 CF oo=σ ;  

•   The failure threshold parameter is: 
)67.1(3 CF oo=θ ,  

•  Operating experience at the power plant shows 

that the mean life of a resistance thermometer 
sensor, installed on the mean steam header, is 
about one year of continuous operation.  For a 
sampling interval of 15 seconds, this 
information leads to: 6105.0 −×≈p   

•  The probability of false alarms is selected in 
consultation with the plant operating 
personnel.  On the average, each sensor is 
allowed to generate a false alarm after 
approximately one year of continuous 
operation.  For a sampling interval of 15 
seconds, this information leads to: 

6105.0 −×≈α . 

3.1 Filter Performance based on Test Data 

 Based on the sensor data collected from the 
power plant, we investigate efficacy of the 
proposed algorithm for early warning in the event 
of intermittent sensor degradation.  The temperature 
sensors are more likely to be subjected to slow drift 
and bias errors than erratic behavior exhibiting a 
high noise-to-signal ratio.  Therefore, Assumption 
4b is more valid than Assumption 4a in this 
application and the algorithms in Eqs. (13b), (14b) 
and (15b)   have been used.   
 The plates on the left hand side in Figures 1 and 
2 exhibit the data and derived results under normal 
operation that include small deviations among the 
four sensor data as they are subjected to 
measurement noise and effects of thermo-fluid 
transients.   The corresponding plates on the right 
hand side in Figures 1 and 2 represent an abnormal 
scenario in which a bias fault of +4.5oF (2.5oC) is 
injected in one of the sensors, Sensor #4, over the 
period of 50 to 150 units of time.  This is seen by 
comparison of the two plates in the top row of 
Figure 1.  Consequently, the (signed) norm of the 
component of kη  along the failure direction of 
Sensor #4, having the same sign as that of kη , 
undergoes a change as seen in the right hand 
bottom-row plate of Figure 1. The norm of each of 
the remaining three components of kη  remains 
small. 
 The top row and middle row in Figure 2 show 
the probabilities of high failure and low failure of 
the four sensors, respectively.  The high failure, 
injected in Sensor#4, induces positive growth of the 
parity residual norm along the respective failure 
direction (i.e., the fourth column of the fourth 
column of the matrix V ). Consequently, the right 
hand plate in Figure 2 exhibits a significant growth 
in a posteriori probability 1

kπ of high failure for 
Sensor#4.   Therefore, the right hand plate in the 
bottom row of Figure 2 shows a significant increase 
in the total a posteriori probability kΠ  of failure in 
Sensor#4 within the time interval when the fault is 
prevalent.  The probability of failure in the 
remaining sensors is significantly small. 



 

  

4.  SUMMARY AND CONCLUSIONS 
 A recursive algorithm is formulated and a filter 
software is coded for multi-level hypotheses testing 
of potential faults in real time.  This algorithm is 
capable of small change detection, identification of 
incipient faults, and generation of early warnings 
for potentially pervasive failures.  The usage of the 
recursive algorithm is illustrated on a data set of 
temperature sensors, collected from a power plant. 
The algorithm detects and identifies the faulty 
sensor and its failure mode.  As such the algorithm 
could enhance the Instrumentation & Control 
System Software in tactical and transport aircraft, 
and nuclear and fossil power plants.   
 The algorithm is potentially applicable to real-
time condition monitoring, early warning, and fault 
identification in complex dynamical systems.  The 
algorithm is also suitable for identification of 
discrete events from continuous sensor signals in 
hybrid control systems. 
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Normal Operation
Bias Fault in Sensor #4 

(+4.5oF from Time 50 to 150)

Figure 1  Sensor Data and Parity Residuals 
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Normal Operation
Bias Fault in Sensor #4 

(+4.5oF from Time 50 to 150)

Figure 2  A Posteriori Probabilities of Failure 
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