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1. INTRODUCTION

Fault detection and isolation (FDI) for nonlinear sys-
tems has generated a significant amount of awareness
in recent years. The design of FDI is motivated by the
need for knowledge about occurring faults in fault-
tolerant control systems (FTCS); (Patton, 1997). A
major part of designing and developing FTCS systems
consists of developing/applying appropriate methods
to detect, isolate, and accommodate occurring faults in
such a way that the systems can still perform in a re-
quired manner. One prefers reduced performance after
occurrence of a fault to the shut down of sub-systems;
(Blanke, 1999). Hence, the idea of fault-tolerance can
be applied to ordinary industrial processes that are
not categorized as high risk applications, but where
high availability is desirable; e.g. propulsion systems
in commercial marine vessels. In the past mainly lin-
ear FDI methods have been developed, but as most
plants show nonlinear behavior, nonlinear methods are
preferred (Frank et al., 1999).

Among different approaches for FDI the geometric
methods are of high interest. Geometric theory offers
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various advantages as it gives a general formulation of
the FDI problem. It is more compact and more trans-
parent for more general systems (like the nonlinear
systems) than the algebraic approach. In recent years
the existing geometric theory for the residual gener-
ation in linear systems based on the original work
by Massoumnia (Massoumnia et al., 1989; Massoum-
nia, 1986) has been extended. Formulations for differ-
ent classes of nonlinear systems were derived in order
to handle state-affine nonlinear systems (Hammouri
et al., 1998) and lately also the class of input-affine
systems (DePersis and Isidori, 2000a; Hammouri et
al., 1999). A detailed geometric description of how to
tackle the residual generation problem for nonlinear
systems is given by DePersis and Isidori; (DePersis
and Isidori, 2000a).

Only few results from applying the geometric ap-
proach have been obtained so far. This paper con-
tributes with application results where the geometric
approach for input-affine nonlinear systems is applied
to a ship propulsion benchmark. The used geometric
approach is briefly outlined in Section 2 followed by a
description of the ship propulsion system in Section
3. For each subsystem different fault scenarios are
considered. Using the geometric approach in Section
4, the possibility of detecting and isolating different

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



faults is investigated considering the different fault
scenarios. Finally, the obtained results are presented
and discussed.

2. GEOMETRIC APPROACH TO NONLINEAR
FDI

This section reviews briefly the geometric approach
to nonlinear FDI by (DePersis, 1999; DePersis and
Isidori, 2000a) for systems of the form:

ẋ � f
�
x ��� m

∑
i � 1

gi

�
x � ui � s

∑
i � 1

pi

�
x � wi � l

�
x � ν

y j
� h j

�
x ��� j � l

(1)

where the states x are defined on a neighborhood 	
of the origin in 
 n . ui, i � m ��� 1 ��
�
�
�� m � , denotes
the m inputs and y j, j � l, the l outputs of system
(1). ν ��
 describes a scalar fault signal with the
nonlinear fault signature l

�
x � . f

�
x � , gi

�
x ��� i � m, l

�
x � ,

and pi

�
x ��� i � s are smooth vector fields and h j

�
x ��� j � l

is a smooth function. Furthermore, let f
�
0 � � 0 and

h
�
0 � � 0. The vector w ���w1 w2 
�
�
 ws � T ��
 s denotes

the disturbances and fault signals from which the fault
ν has to be isolated.

In order to detect the fault ν and isolate it from the
disturbances and other faults (wi) in system (1) the fol-
lowing problem definition is formulated as described
in (DePersis, 1999):

Definition 1. Considering a system of the form (1)
the local nonlinear fundamental problem of residual
generation (l-NLFPRG) is to find, if possible, a filter:

ż � f̃
�
y � z ��� m

∑
i � 1

g̃i

�
y � z � ui

r � h̃
�
y � z � (2)

where z ��
 q , r ��
 p , 1 � p � l. f̃
�
y � z � , g̃i

�
y � z ��� i � m,

and h̃
�
y � z � are smooth vector fields, with f̃

�
0 � 0 � � 0

and h̃
�
0 � 0 � � 0, such that on a neighborhood 	 e of

xe � �
x � z � � �

0 � 0 � , where xe denotes the state vector
of the cascaded system formed by (1) and (2), the
following properties hold:�

i � if ν � 0, then r is unaffected by ui, w j , � i � j;�
ii � r is affected by ν;�

iii � limt � ∞ � r � t;x0 � z0;u � ν � 0 � w � � � 0 for any initial
condition x0, z0 in a suitable set containing the
origin

�
x � z � � �

0 � 0 � .
For linear systems Definition 1 reduces exactly to the
linear Fundamental problem of residual generation
(FPRG) defined in (Massoumnia et al., 1989). Both
describe the problem of detecting a fault and isolating
it from disturbances and other faults. Condition

�
i � in

Definition 1 assures that the control signals u and the
disturbances (and other faults) w do not affect (i.e.
do not become visible in) the residual r in the fault-
free case (ν � 0). If fault ν occurs Condition

�
ii �

assures that the fault affects the residual. Condition�
iii � considers the stability of the filter (2). Note that

the convergence to zero of the residual is only required
in absence of the fault (ν � 0).

Using the method presented in (DePersis and Isidori,
2000b) a solution for the l-NLFPRG can be obtained.
It is based on the calculation of the largest observ-
ability codistribution (o.c.a.

���
ΣP� ��� � ) contained in P �

the annihilator of P (i.e. P � �!� x " ; x " x � 0 �#� x � P � ),
where P is the distribution spanned by the disturbance
vectors pi � i � s: P � span � p1 ��
�
�
$� ps � . For System
(1) one can calculate o.c.a.

���
ΣP� ���%� by the following

two algorithms (details are given in (DePersis and
Isidori, 2000b)):

Computing ΣP� :

S0
� P

Sk & 1
� Sk � m

∑
i � 0

� gi � Sk ' Ker � dh � � (3)

where ∆ denotes the involutive closure of a distribu-
tion ∆. For every constant distribution ∆ it holds that
∆ � ∆. The notation � ξ � ζ � with ξ � ζ ��
 n denotes the
Lie bracket. g0 
�
�
 gm stand for the column vectors of
g
�
x � and for f

�
x � , which is written as f

�
x � � g0

�
x �

to ease the notation. Ker � dh � denotes the distribution
annihilating the differentials of the rows of the map-
ping h

�
x � . If there exists a k

�
such that:

Sk ()& 1
� Sk (

then one sets ΣP� � Sk ( and continues with the follow-
ing algorithm.

Computing o.c.a.
���

ΣP� � � � :
Q0

� �
ΣP
� � � ' span � dh �

Qk & 1
� �

ΣP
� � � ' *

m

∑
i � 0

Lgi
Qk � span � dh �,+ (4)

where span � dh � is the codistribution spanned by the
differentials of the rows of the mapping h

�
x � and L

denotes the Lie derivative. Suppose that all codistri-
butions Qk of this sequence are nonsingular, so that
there is an integer k

� � n - 1 such that Qk
� Qk ( for

all k . k
�
, then

o.c.a.
���

ΣP
� � � � � Qk ( 


When the distribution ΣP� is well-defined and nonsin-
gular, and ΣP� ' Ker � dh � is a smooth distribution, then
o.c.a.

���
ΣP� ���%� is the maximal (in the sense of codistri-

bution inclusion) observability codistribution, which
is locally spanned by exact differentials and contained
in P � . The corresponding unobservability distribution
Q can be obtained by:

Q � �
o.c.a.

���
ΣP
� � � ��� �

For more details about the o.c.a. algorithm and the
calculation of Q the reader is referred to (DePersis and
Isidori, 2000a).

As a result of the algorithms Q is the smallest invo-
lutive unobservability distribution that contains P (i.e.



the disturbance and unwanted fault effects) due to the
maximality of o.c.a.

���
ΣP� ���%� .

In (DePersis and Isidori, 2000b) it is shown that if

span � l � x �$� � �
o.c.a.

���
ΣP
� � � ��� � � Q

then it is possible, under certain conditions, to find a
change of state coordinates x̃ � Φ

�
x � and a change of

output coordinates ỹ � Ψ
�
y � , defined locally around

x � 0 and, respectively, y � 0, such that, in the new co-
ordinates, the system (1) admits the following normal
form (Proposition 3 in (DePersis and Isidori, 2000b)):

˙̃x1
� f̃1

�
x̃1 � x̃2 ��� g̃1

�
x̃1 � x̃2 � u � l̃1

�
x̃1 � x̃2 � x̃3 � ν

˙̃x2
� f̃2

�
x̃1 � x̃2 � x̃3 ��� g̃2

�
x̃1 � x̃2 � x̃3 � u� p̃2

�
x̃1 � x̃2 � x̃3 � w � l̃2

�
x̃1 � x̃2 � x̃3 � ν

˙̃x3
� f̃3

�
x̃1 � x̃2 � x̃3 ��� g̃3

�
x̃1 � x̃2 � x̃3 � u� p̃3

�
x̃1 � x̃2 � x̃3 � w � l̃2

�
x̃1 � x̃2 � x̃3 � ν

ỹ1
� h1

�
x̃1 �

ỹ2
� x̃2

where the states x̃2 are all measured. Output ỹ1 is a
function of the states x̃1, but not of the other states
x̃2 and x̃3. Hence, the following subsystem can be
subtracted:

˙̃x1
� f̃1

�
x̃1 � ỹ2 ��� g̃1

�
x̃1 � ỹ2 � u � l̃1

�
x̃1 � ỹ2 � x̃3 � ν

ỹ1
� h1

�
x̃1 � (5)

which, obviously, when it admits an observer can
be used to solve the corresponding l-NLFPRG. As
mentioned in chapter 10 of (Åström et al., 2000) the
observability can be guaranteed depending on how the
conditioned invariant distribution Q is generated. The
resulting estimation error e � ỹ1 - ˆ̃y1 is only affected
by the unknown fault signal ν but not by the w.
Hence, it can by construction be used as residual r that
fulfills all conditions given in Definition 1 as long as
l̃1
�
x̃1 � x̃2 � x̃3 ���� 0.

3. SHIP PROPULSION BENCHMARK

A complete mathematical model for the benchmark
is described in (Izadi-Zamanabadi and Blanke, 1998).
In the following the dynamics and the considered
fault scenarios are briefly described. The subsystems
of interest in this paper include dynamics for ship
speed (U), shaft speed (n), propeller pitch (θ ), and the
prime mover (Qeng). The essence is a model where
developed thrust and torque are functions of diesel
throttle position Y , propeller pitch θ , shaft speed n and
ship speed U . The corresponding measured variables
are Ym � θm � nm and Um.

Diesel engine and shaft dynamic equations are:

Qeng
� kyY (6)

Imṅ � Qeng - Qprop � (7)

where Qeng is the engine’s generated torque, ky the
constant engine gain, Im the shaft inertia, and Qprop

denotes the propellers developed torque.

The dynamics of the propeller pitch θ can be de-
scribed as follows:

θ̇ � kt � θre f - θm � (8)

where kt is a constant, θre f denotes the pitch reference,
and θm stands for the pitch measurement.

Developed propeller thrust Tprop and torque Qprop are
given by the following (approximate) quadratic rela-
tions (for forward movement)

Tprop
� T � n � nθn2 � T � n �U nU (9)

Qprop
� Q � n � nθn2 � Q � n �U θnU (10)

The coefficients T � n � n � T � n �U � Q � n � n and Q � n �U are in fact
complex functions of propeller pitch θ (see (Izadi-
Zamanabadi and Blanke, 1998) for details). They are
calculated from tables of data, which are obtained
from sea trial.

Ship speed dynamics with corresponding hull resis-
tance is described by the first order equation

mU̇ � R
�
U ��� �

1 - tT � Tprop (11)

The Ship’s resistance to motion through the water,
denoted R

�
U � , can be described by a resistance curve,

which is a third to fifth order polynomial in U . m is the
the ship weight and tT is the thrust deduction number
(and is a known value).

For the ship propulsion benchmark different faults
have been defined including sensor, actuator, and pa-
rameter faults. A complete list is given in Table 1.
For more details see (Izadi-Zamanabadi and Blanke,
1998).

Table 1. Implemented faults.

Fault Type

shaft speed sensor faults additive - abrupt
∆nsensor - pos./neg.
pitch sensor faults additive - abrupt
∆θsensor - pos./neg.
hydraulic leak additive - incipient
∆θ̇inc - neg.
diesel fault multiplicative - abrupt
∆ky - neg.

4. DIAGNOSIS USING THE GEOMETRIC
APPROACH

In order to apply the geometric approach, described
in Section 2, to the ship benchmark, it is necessary to
define a set of l-NLFPRGs and rewrite the considered
system dynamics. The dynamics should have a form
that corresponds to the required form given by Equa-
tion (1).

Investigating the system dynamics shows that there
exist three different (sub-)systems: (a) the complete



Table 2. l-NLFPRGs for the complete sys-
tem.

l-NLFPRG Fault
�
ν � Disturbances

�
w �

l-NLFPRG 1 ∆kyY ∆̇nsensor , ∆̇θ sensor ,
∆θ̇inc

l-NLFPRG 2 ∆̇nsensor ∆kyY , ∆̇θ sensor ,
∆θ̇inc

l-NLFPRG 3 ∆̇θ sensor ∆kyY , ∆̇nsensor ,
∆θ̇inc

l-NLFPRG 4 ∆θ̇inc ∆kyY , ∆̇nsensor ,
∆̇θ sensor

Table 3. l-NLFPRGs for the pitch loop.

l-NLFPRG Fault
�
ν � Disturbance

�
w �

l-NLFPRG 5 ∆̇θ sensor ∆θ̇inc
l-NLFPRG 6 ∆θ̇inc ∆̇θ sensor

Table 4. l-NLFPRGs for the shaft speed
loop.

l-NLFPRG Fault
�
ν � Disturbances

�
w �

l-NLFPRG 7 ∆kyY ∆̇nsensor

l-NLFPRG 8 ∆̇nsensor ∆kyY

system, (b) the pitch loop, and (c) the shaft speed loop.
Hence, the following l-NLFPRGs can be formulated:

In (Lootsma, 2001) detailed calculations for the dif-
ferent l-NLFPRGs are given. It was shown that only
l-NLFPRG 7 and l-NLFPRG 8 can be solved when
designing an additional fault detector for a possible
pitch fault. Note that in that case it is only required
to detect pitch faults (∆̇θ sensor or ∆θ̇inc) not to isolate
them from each other, which can be achieved by a
simple observer design as shown in (Lootsma, 2001).
This result is in compliance with earlier results for
the ship benchmark, obtained by applying other FDI
analysis methods (Åström et al., 2000)[chapter 13].

Detailed calculations for l-NLFPRG 7 are provided In
the following.

First the dynamics of the shaft speed loop need to be
formulated corresponding to Equation (1):

ẋ � f
�
x ��� g

�
x � u � p

�
x � w � l

�
x � ν

y1
� nm

� n � x∆n
y2
� Um

� U
(12)

where

x ��� n U x∆n � T � u1
� Y � u2

� θm

ν � ∆kyY � w � ∆̇nsensor

and

f
�
x � � ��� 0

1
m

R
�
U ��� 1 - tT

m
T � n �U nU

0

�
	� �

g1

�
x � � ��� 1

Im
ky

0
0

�
	�
g2

�
x � �

����� -
1
Im � Q � n � nn2 � Q � n �U nU 


1 - tT
m

T � n � nn2

0

�
			�
p
�
x � � �� 0

0
1

�� � and l
�
x � � ��� 1

Im
0
0

� 	�
In (12) the shaft speed sensor fault is implemented
as a pseudo-actuator fault ∆̇nsensor in order to obtain
the form (1). This is done following a procedure
described in (Hashtrudi-Zad and Massoumnia, 1999)
by adding the following additional linear dynamics to
the original system:

ẋ∆n
� A∆nx∆n � L∆nν∆n

y∆n
� C∆nx∆n

� ∆nsensor

where ν∆n
� ∆̇nsensor

� w, A∆n
� 0, and L∆n

� C∆n
� 1.

The diesel engine gain fault is in its nature a multi-
plicative fault affecting the system parameter ky. In
(12) it is modeled as an additive fault by considering
ν � ∆kyY . Its magnitude depends on the diesel throttle
position Y . This is natural as the gain fault’s impact
becomes bigger as the higher the diesel intake to the
engine becomes. If Y � 0 the diesel engine is not
running, hence, the fault would not affect the system’s
operation anyway.

The goal is now to solve the l-NLFPRG for system
(12), i.e. to detect the diesel engine gain fault ν �
∆kyY and isolate it from the shaft speed measurement
fault ∆nsensor. The algorithms (3) and (4) are initiated
with:

P � span � p1 � � span � � 0 0 1 � T �
and lead to the following result (detailed calculations
can be found in (Lootsma, 2001)):

Q � �
o.c.a.

���
ΣP
� � � ��� � � P � span � � 0 0 1 � T �

hence

span � l � x �$� � Q and span � p
�
x �$��� Q

Following Proposition 3 in (DePersis and Isidori,
2000b) one can then obtain the following subsystem,
which corresponds to (5) and obviously is not affected
by the shaft speed sensor fault:

ṅ � 1
Im

�
ky Y � ν � - 1

Im
Q � n �U nU θm- 1

Im
Q � n � n n2 θm

(13)

U̇ � 1
m

R
�
U ��� 1 - tT

m � T � n �U nU � T � n � n n2 θm 

y � U

(14)



The obtained subsystem (13) and (14) is a good start-
ing point to obtain successful FDI that enables detec-
tion of the diesel engine gain fault and isolation from
the shaft speed sensor fault.In (Lootsma, 2001) and
(Lootsma et al., 2001) a dedicated nonlinear observer
has been designed corresponding to the filter stated by
Equation 2. The proposed observer has the following
form:

˙̂n � 1
Im

ky Ym - 1
Im

Q � n �U n̂Û θm- 1
Im

Q � n � n n̂2 θm � K n̂
∆ky

�
Um - Û � (15)

˙̂U � 1
m

R
�
Û ��� 1 - tT

m � T � n �U n̂Û � T � n � n n̂2θm 
� KÛ
∆ky

�
Um - Û �

ŷ � Û

(16)

with the diesel throttle position Ym and the pitch
measurement θm as external inputs. For the stability
proof the interested reader is referred to Section 5.2
in (Lootsma, 2001). It is based on the fact that the
observer structure corresponds to a form like:

˙̂x � f̂
�
x̂ ��� ĝ

�
x̂ � u � K

�
y - ŷ �

ŷ � h
�
x̂ �

The function f̂
�
x � � ĝ

�
x � u is globally Lipschitz for the

complete operating range: Ωx
� � x � 0 � n � nmax;0 �

U � Umax � and Ωu
� � u � - 1 � θ � 1; 0 � Y � 1 � ;

i.e. � f̂
�
x � � ĝ

�
x � u - f̂

�
x̂ � - ĝ

�
x̂ � u � � Λ � x - x̂ � , with

Lipschitz constant Λ � 
 and x � x̂ � Ωx. This is due
to the physical limitations and the upper-level control
of the propulsion system. It is designed to keep the
signals (n � θ ) inside certain boundaries (correspond-
ing to Ωx) to achieve desired operation and to avoid
overload situations for the shaft and the pitch. Fur-
thermore, there are the following physical limitations:
The pitch signal is physically limited by construction- 1 � θ � 1 like the fuel index 0 � Y � 1. The ship
speed U is limited by the top speed of the ship. The
shaft speed n is limited by an emergency shut-down.

Subsystem (13) and (14) is observable over the com-
plete operating range Ωx. This can be seen when look-
ing at the system and its corresponding observability
codistribution (Nijmeijer and van der Schaft, 1990,
Theorem 3.32). The observability codistribution can
be obtained as follows (Nijmeijer and van der Schaft,
1990): For the considered subsystem it can be seen
that

dh
�
x � � �

0 1 �
dL f h

�
x � ��� 1 - tT

m
T � n �UU

1
m

∂R
�
U �

∂U
� 1 - tT

m
T � n �U n �

� dimd � � x � � 2 � dimΩx for u � Ωu

Hence, the subsystem is observable over the complete
operating range Ωx.

Using the facts that f̂
�
x � � ĝ

�
x � u is globally Lipschitz,

the subsystem (13) and (14) is observable over the
complete operating range Ωx, and that the inputs are
bounded (u � Ωu) the stability of the proposed ob-
server can be proven by using the result of (Gauthier
et al., 1992). In (Gauthier et al., 1992) it is also shown
how the observer gain K has to be chosen.

The residual obtained by using observer (15) and (16)
is shown in figure 1. A sample sequence of 600 sec.
from the total sequence of 3500 sec. is sufficient to
illustrate the applicability of the observer. Measure-
ment noise is not simulated to enhance visibility. The
residual is generated as:

r � Um - Û

where Û is the observer output. The gains and initial
conditions are chosen as:
K n̂

∆ky

� 0 
 001, KÛ
∆ky

� 0 
 01, n̂
�
t � 0 � � 9 rad � s, and

Û
�
t � 0 � � 0 
 1 m � s.

The dynamic transient effect in Fig. 1 arises as a result
of mismatch between the real values of their involved
parameters in Eqs. 9 and 10 and the computed values
due to the shaft speed measurement fault as well as
the fast change in set-points. This transient response
is shown to have minimum impact on the residual and
can be handled by choosing an appropriate thresh-
old. The gain fault can be detected within the re-
quired time-to-detect proposed in (Izadi-Zamanabadi
and Blanke, 1998). Measurement noise can be dealt
with by using statistical methods such as CUSUM.

2600 2700 2800 2900 3000 3100 3200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

r 
[m

/s
]

Gain fault

Shaft measurement fault 

Transient
impact 

Fig. 1. Residual, r � Um - Û . Both the shaft speed
measurement and gain fault are present.

5. CONCLUSIONS

A brief review of a geometric approach to nonlin-
ear fault detection and isolation was presented. The
applicability of the method was illustrated on a ship
propulsion system.

The results illustrate the strong ability of the geometric
approach to analyze a system in a systematic way. The



prerequisite is that a complete nonlinear analytical
model of the system is available. The outputs of the
diagnosis are dedicated subsystems that can be used
as starting point for designing observer-based FDI.
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